
Analysing the Program Analyser

Cristian Cadar and Alastair F. Donaldson
Imperial College London, UK

{c.cadar, a.donaldson}@imperial.ac.uk

ABSTRACT
The reliability of program analysis tools is clearly important
if such tools are to play a serious role in improving the quality
and integrity of software systems, and the confidence which
users place in such systems. Yet our experience is that,
currently, little attention is paid to analysing the correctness
of program analysers themselves, beyond regression testing.
In this position paper we present our vision that, by 2025,
the use of more rigorous analyses to check the reliability of
program analysers will be commonplace. Inspired by recent
advances in compiler testing, we set out initial steps towards
this vision, building upon techniques such as cross-checking,
program transformation and program generation.

CCS Concepts
•Software and its engineering → Software testing
and debugging;

Keywords
Program analysis, testing, cross-checking, program transfor-
mations, program generators

Preface. It is the year 2025. FutureCorp, the private
sector defence contractor to whom the US government has
outsourced its management of nuclear weapons, has just
had its missile control software hijacked by terrorists. It
is only a matter of hours before Armageddon. The CEO
of FutureCorp, Dr F. Methods, is incredulous: “This is
impossible”, he told one of our reporters. “We used program
analysis to formally prove that the software was secure!”.
“Ah, Dr Methods,” responded open-source developer Mr B.
Door, “But did you check the analyser?”

1. INTRODUCTION
Automated program analysis techniques have tremendous

potential to improve the reliability of the software systems
on which our day-to-day life now depends. Yet for all the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889206

espoused benefits of program analysis by its proponents
(authors of this article included), when asked the obvious
question: “what do you do to check the analyser is correct?”,
with few exceptions the response of a tool developer is “we
have a large test suite”at best, if not simply“well, it works on
all the examples we have tried”. This is despite the fact that
program analysers are incredibly complex pieces of software.

Being unable to trust the correctness of a program analyser
can seriously undermine its benefits. Imagine for example
programmers having to constantly question the correctness of
their debuggers—they would likely stop using them, reverting
to less helpful but more accurate debugging aids such as print
statements. Similarly, the utility of a verifier that claims to
have proven the absence of a certain class of bugs, or of a
testing tool that claims to provide inputs that achieve high
coverage, is doubtful if the probability of implementation
bugs in the tools themselves is high.

Our vision for 2025 is that continued advances both in the
technology that drives program analysis, and the rigour with
which program analysers are engineered, will provide a step
change in the quality of analysers. Our inspiration comes
from the world of compilers, whose correctness has attracted
a great deal of attention [9–12,14,16,19]. Broadly speaking,
compiler quality is addressed by three mechanisms that go
beyond manually-written test suites: (A) the “eat your own
dog food” test, whereby a compiler is written in one of the
languages it is capable of compiling, so that the compiler can
be used to compile itself, (B) formal verification of compiler
source code [10] or translation validation with respect to gen-
erated code [14] and (C) the application of automated testing
methods, such as fuzzing [19] and metamorphic testing [9].

In the context of program analysers, the analogy of (A),
the “dog food” test, would be for an analyser to analyse its
own code base. While this may be possible in some instances,
it is often difficult (e.g., the KLEE program analyser [5] is
written in C++ and symbolically executes LLVM bitcode,
thus could in principle be applied to itself by compiling the
KLEE source code into LLVM bitcode, but lack of support
for e.g., C++ libraries, makes this a difficult task in practice),
limited in effectiveness (e.g., a buffer overflow checker could
only find buffer overflow errors in its own code base), or
simply impossible (e.g., it would be unreasonable to expect
an analyser for GPU kernels, such as GPUVerify [1] to itself
be implemented as a GPU kernel).

With regard to (B), formal verification, our view is that
while these efforts are valuable and valiant, the human effort
required to construct mechanised proofs of correctness for
full-blown compilers and analysers is not feasible in general.

Our vision is to draw principally on the success of (C),
automated compiler testing techniques, to yield practical
methods for the analysis of program analysers. In this paper,
we outline our ideas for cross-checking of analysis results (§2)
and using program transformations as a basis for checking
analysers (§3). Both approaches try to circumvent the oracle
problem, which is particularly challenging in the context of
program analysers, which one may regard as non-testable
programs [17]. To some extent, these techniques depend on
a source of interesting test programs. We believe that to
enable thorough checking of specific analyses, advances are
necessary in program generation methods that are customis-
able, generating programs that are relevant to the testing of
a particular analysis, and incremental, enabling the form of
programs to be modified as the capabilities of an analyser
evolve (§4).

2. CROSS-CHECKING ANALYSERS
Cross-checking the results of an analyser with those of a

similar tool, or performing internal consistency checks within
a single analyser, are effective and often widely-available
methods for bug-finding. Given the tremendous success that
this approach has had in compiler testing—where it has
found hundreds of bugs in real-world compilers such as gcc

and clang [19]—we believe it is just a matter of time until
we see a similar adoption in many different types of program
analysis. The advantage of cross-checking analysers is that it
does not require a specification, other than the fact that the
analysers implement the same underlying analysis. For many
types of analyses, there are often multiple implementations
available—this is certainly the case for standard analyses such
as dead code elimination or pointer aliasing, but also for more
sophisticated ones like those based on symbolic execution or
search-based testing. A method for testing refactoring tools
applies this cross-checking idea [7]. Refactorings common
to Eclipse and NetBeans are tested by applying each tool
to a test program. Cases where the tools yield different
refactored programs are flagged up for inspection, in case one
of the tools has applied the refactoring incorrectly. Cross-
checking has also been used to test constraint solvers [3],
which underpin many symbolic program analysers.

The cross-checking approach could use either real pro-
grams, or small automatically-generated programs exhibiting
relevant features (§4). For expensive analyses, the latter
option might be the primary one: within a fixed time budget,
two analysers might each only partially explore a complex,
real-world program, making it hard to cross-check their in-
complete results.

A challenge for cross-checking is making sure that the
output of different analysers follows a standard specification—
while this is often not the case, we hope that the prospect
of improving analysers via cross-checking will provide the
incentive for standardisation. Moreover, recent efforts on
organising competitions for various kinds of analysers (e.g.,
SV-COMP [2]) are helping in this respect.

As for compilers, many implementation bugs are in the
various optimisations that analysers perform. Therefore,
comparing results with and without certain optimisations
can cheaply and effectively find such bugs. Some ongoing
experiments in the context of the symbolic execution engine
KLEE have indeed revealed optimisation bugs.

For static program analysers, one can validate statically-
inferred results against precise information obtained at run-

time. For example, program invariants inferred by static
analysis can be checked on a set of real executions. Such
checks can be effective: a recent paper has shown that many
pointer alias analysers incorrectly claim that two pointers
never alias, when in fact they actually alias on real execu-
tions [18].

3. PROGRAM TRANSFORMATIONS AS A
BASIS FOR CHECKING ANALYSERS

Creating relevant inputs that can be fed to program anal-
ysers in order to check that they are behaving correctly is
challenging. While real programs are readily available, such
programs unfortunately do not come with oracles. The cross-
checking approach described in §2 can alleviate this problem,
but it is not always applicable because different analysers
might examine different parts of the program search space
within a fixed time budget, and because when writing a
brand new analysis for a specific program property, no other
compatible analysis tools are available.

Instead, we propose the use of variations of mutation
testing [8] and metamorphic testing [6] to test analysers on
real(istic) programs. Starting from an existing program, one
can perform program transformations to generate a slightly
changed program with predictably different characteristics.
The set of transformations, chosen according to the analysis
of interest, should ideally: (1) lead to a better coverage of
analysis features, e.g., by introducing new language features
or new data structures, and (2) create programs for which it
can be determined in advance whether a deviation in analysis
results is expected compared with the original program.

Mutations. To achieve the latter goal, one could apply
mutations that are either known to change expected analysis
results, or to leave analysis results unchanged (even though
they might otherwise change the semantics of the program).
For instance, a points-to analysis should not be affected by a
program modification that does not influence the conditions
under which aliasing scenarios arise. In contrast, a conserva-
tive buffer overflow analysis should certainly be affected by
a mutation that changes an in-bounds index variable to an
index lying out of bounds.

Semantics-preserving transformations. A more gen-
eral approach can introduce semantics-preserving program
transformations (e.g., those performed by compiler optimi-
sations, such as loop-invariant code motion, loop unrolling
and inlining), which can have a significant impact on some
types of analyses. For example, semantics-preserving trans-
formations have been shown to lead to surprisingly large
performance differences in dynamic symbolic execution [4];
semantics-preserving program transformations mimicking
code changes by programmers have been used to evaluate
code clone detection tools [15]; and removal of dead code
is the basis of equivalence modulo inputs (EMI) testing, a
recent technique proposed for testing compilers [9].

Recent work inspired by the EMI idea uses opaque pred-
icates to inject “dead-by-construction” code into programs,
and has proven effective in triggering miscompilations [11].
The idea is to equip an existing function with an extra
boolean argument, FF, whose value is unknown to the com-
piler, and inject new code whose reachability is conditional
on this argument:

if (FF) { /∗ injected code ∗/ }

If false is provided as the value for FF at runtime, the
program semantics should be unaffected by the injection.
This means that if the original and injected program yield
different results, the compiler must have miscompiled the
program (under the assumption that the program is otherwise
well-defined and deterministic). Reducing the injection to
help identify the root cause of the bug is straightforward,
by iteratively simplifying the injected code until further
simplifications cause the mismatch to disappear.

This technique is applicable more generally, when the re-
sults of a static analysis pass are used to improve other static
or dynamic analyses. For example, suppose that a sym-
bolic execution tool can be accelerated via pointer aliasing
information gathered by a static analysis: whenever a call
through a symbolic function pointer is encountered, each
potential function target (provided by the static analysis) is
checked to see whether it satisfies the constraints gathered at
that execution point. If so, a new path is forked to execute
that function. As long as the static aliasing information is
a conservative over-approximation, the symbolic execution
tool should produce identical results; the more precise the
alias analysis, the faster the symbolic execution stage.

Suppose we use the above strategy to inject code, con-
structed such that complex aliasing scenarios would arise if
FF were true. Because the program should behave identically
with or without the injection when false is passed as param-
eter FF, the symbolic execution tool should produce identical
results. Because the static alias analysis has to work harder
when analysing the injected program, due to its added com-
plexity, bugs in the implementation of the alias analysis may
be triggered. Differences in symbolic execution behaviour
caused by wrong aliasing information would provide evidence
that something is wrong with the static alias analysis.

Semantics-preserving transformations, as well as semantics-
altering mutations under which the results of a particular
analysis do not change, can both be seen as instances of
metamorphic testing [6]. The key idea is to start with a
program A (typically a real program), and then apply a
transformation to generate a different program B, such that
the properties of interest for the two programs are in a
known relationship. Therefore, while it is unknown what the
absolute results of program analysis should be for A or B,
one can increase confidence in the analysis by checking that
the results reported for A are related to the results reported
for B in the expected manner. As a simple example, we
may not know whether an analysis that reports the number
of basic blocks in a program is correct, but it is clear that
adding another basic block to the program should increase
the reported value by one.

4. CUSTOMISABLE, INCREMENTAL PRO-
GRAM GENERATORS

While starting with real programs and applying the tech-
niques in §3 has the important advantage of using real or
realistic programs, sometimes automatically generating pro-
grams that focus on specific features relevant to the analysis
can be more effective at finding certain classes of errors.
For instance, compiler testing has seen tremendous progress
since the development of Csmith, a tool for automatically
generating C programs without undefined behaviour [19].

Existing analyses can already benefit from program gener-
ators such as Csmith, but the resulting generated programs

are not targeted toward checking specific analyses. We envi-
sion two ways of addressing this. One would be to specify,
for a given analysis, a vocabulary of program features to be
included in the generated program. For example, a buffer
overflow checker would request programs with a higher den-
sity of array and pointer operations. A second idea is to
exploit a form of programming by example. Starting from
a set of example programs written by the developers that
expose the kind of properties that the analyser should han-
dle correctly, the generator would create a large number of
similar programs, in order to stress-test the analyser and
find mishandled corner cases. An approach along these lines
has been applied in the context of testing refactoring tools
using bounded-exhaustive testing, whereby the user specifies
a number of generators for particular program constructs [7],
in a manner such that generators can be composed to yield
programs with a set of desired features.

An ambitious challenge is to make these program genera-
tors incremental with respect to the evolving code base of the
analyser. Instead of generating programs in a manner that is
oblivious to properties of the analyser under test, one would
likely want to focus on testing newly added features. For
example, if a tool for analysing OpenCL kernels adds support
for reasoning about multiple command queues, one should be
able to configure the program generator to primarily create
programs with multiple command queues.

A key challenge faced by program generators like Csmith
is ensuring that generated programs are free from undefined
behaviour or, in the case of program analysis, that the only
undefined behaviours are of the kind that the analysis un-
der test is supposed to detect. This is because undefined
behaviours in general allow a program analysis to output
any result. For the case of arithmetic and bitwise opera-
tions, Csmith ensures definedness in a conservative manner
by replacing all possibly unsafe operations with “safe math”
versions, which yield some default value in the case where the
result would be undefined. For instance, instead of issuing
an unsigned division operation, X / Y, Csmith generates a
guarded expression Y == 0 ? X : X / Y. This simple idea
eliminates undefined behaviours, but makes the format of
Csmith-generated programs rather prescribed, e.g., the di-
vision operator, /, only ever appears as the third argument
to the ternary operator, (·?·:·); the same holds for other
operators with potentially undefined behaviour.

In the context of compiler testing, this prescribed form may
prevent certain optimisations from triggering, thus denying
them from being tested. In the more general context of pro-
gram analysis, we believe that more sophisticated methods
for limiting undefined behaviour in generated programs will
be necessary. We propose leveraging mechanised program-
ming language specifications during program generation (e.g.,
the Cerberus formalisation of C [13]), to search for programs
that are guaranteed to be well-defined but are less prescribed
than the programs generated by current techniques. A chal-
lenge here will be efficient program generation; the rate at
which programs can be generated and executed is known to
directly influence the rate at which compiler bugs are found
using fuzzing; we hypothesise that this will also hold for
testing program analysers.

5. RELATED WORK
Checking the correctness of program analysis tools is a

natural thing to do, and our research agenda is inspired by our

own experience maintaining the GPUVerify [1] and KLEE [5]
tools. Many of our ideas are based on well-known techniques
such as crosschecking, mutation testing [8], metamorphic
testing [6] and program fuzzing [19]. These have been broadly
applied in numerous contexts, and we argue that they can
be effectively adapted to test program analysers, as already
demonstrated in prior isolated projects [7, 15,18].

Compilers and interpreters can be seen as a particular type
of program analyser, and more systematic effort has been
put into testing and verifying them.

Compiler verification. The CompCert compiler showed
that formal verification of a compiler for a real-world lan-
guage is possible [10], but verification of optimisations re-
mains extremely challenging, and the code base of a certified
compiler is necessarily calcified by being coupled with a for-
mal proof. We estimate the level of difficulty associated with
formally verifying aspects of sophisticated program analyses
to be comparable to that of verifying compiler optimisations.
Further, program analysis tools must evolve in response to
the growing number of contexts in which they are applied.
We thus do not believe that formal verification of program
analysis tools will be viable in general.

Compiler fuzzing. Random differential testing [12,16,19],
where the results of multiple compilers are cross-checked
against randomly generated programs, has been successful
in uncovering bugs in numerous compilers. A limitation of
current program generators such as Csmith [19] is that they
can be hard to tailor and control, beyond tweaking the prob-
abilities with which program constructs are generated and
allowing specific classes of program features to be disabled.
As discussed in §4, we believe that testing program analysers
will require more flexible program generation strategies.

Program analysis competitions. Software verification
tools targeting the C language compete in the annual SV-
COMP competition, which has been running since 2012 [2].
This competition provides (a) a very large repository of bench-
marks with known expected analysis results, (b) a large set
of tools whose results over this benchmark suite are largely
reproducible, and (c) a standard format for verification re-
sults, to allow comparison of tools. The set of submitted
SV-COMP tools provide an army of analysers that can be
used to cross-check a new analyser (§2). As well as forming a
large regression suite, the benchmarks provide a rich source
of examples on which program transformation-based testing
can be applied (§3). A limitation of SV-COMP is that it
is currently mostly restricted to tools that check whether
assertions in C programs can fail.

6. CONCLUSION
The reliability of program analysis tools is clearly impor-

tant if such tools are to play a serious role in improving the
quality and integrity of software systems. We argue that a
step change in the way analysers are tested is needed, and
could be made possible by adapting well-known techniques
such as crosschecking, mutation testing, semantics-preserving
program transformations and metamorphic testing. To this
end, developers of program analysis tools could agree on
standardised output formats, and share standard test suites
and libraries of program transformations specific to their

analysis. More research into flexible, incremental program
generators would also help realise this goal.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and

Jeroen Ketema, Tomasz Kuchta, Daniel Liew, and Hristina
Palikareva for their comments on this paper, and EPSRC for
supporting this research via EP/L002795/1.

8. REFERENCES
[1] A. Betts, N. Chong, A. F. Donaldson, J. Ketema,

S. Qadeer, P. Thomson, and J. Wickerson. The design
and implementation of a verification technique for GPU
kernels. TOPLAS, 37(3):10, 2015.

[2] D. Beyer. Software verification and verifiable witnesses
(Report on SV-COMP 2015). In TACAS’15.

[3] R. Brummayer and A. Biere. Fuzzing and
delta-debugging SMT solvers. In SMT’09.

[4] C. Cadar. Targeted program transformations for
symbolic execution. In ESEC/FSE NI’15.

[5] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs.
In OSDI’08.

[6] T. Chen, S. Cheung, and S. Yiu. Metamorphic testing:
a new approach for generating next test cases.
Technical Report HKUST-CS98-01, Hong Kong
University of Science and Technology.

[7] B. Daniel, D. Dig, K. Garcia, and D. Marinov.
Automated testing of refactoring engines. In
ESEC/FSE’07.

[8] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. TSE, 37(5):649–678,
2011.

[9] V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In PLDI’14.

[10] X. Leroy. Formal verification of a realistic compiler.
CACM, 52(7):107–115, 2009.

[11] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core compiler fuzzing. In PLDI’15.

[12] W. M. McKeeman. Differential testing for software.
Digital Technical Journal, 10:100–107, 1998.

[13] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis,
D. Chisnall, R. Watson, and P. Sewell. Into the depths
of C: elaborating the de facto standards. In PLDI’16.

[14] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In TACAS’98.

[15] C. Roy and J. Cordy. A mutation/injection-based
automatic framework for evaluating code clone
detection tools. In Mutation’09.

[16] F. Sheridan. Practical testing of a C99 compiler using
output comparison. SPE, 37(14):1475–1488, 2007.

[17] E. J. Weyuker. Pseudo-oracles for non-testable
programs. The Computer Journal, 25(4):465–470, 1982.

[18] J. Wu, G. Hu, Y. Tang, and J. Yang. Effective dynamic
detection of alias analysis errors. In ESEC/FSE’13.

[19] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In PLDI’11.

