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ABSTRACT
Software repositories provide rich information about the
construction and evolution of software systems. While static
data that can be mined directly from version control systems
has been extensively studied, dynamic metrics concerning the
execution of the software have received much less attention,
due to the inherent difficulty of running and monitoring a
large number of software versions.
In this paper, we present Covrig, a flexible infrastructure

that can be used to run each version of a system in isolation
and collect static and dynamic software metrics, using a
lightweight virtual machine environment that can be deployed
on a cluster of local or cloud machines.
We use Covrig to conduct an empirical study examining

how code and tests co-evolve in six popular open-source
systems. We report the main characteristics of software
patches, analyse the evolution of program and patch coverage,
assess the impact of nondeterminism on the execution of
test suites, and investigate whether the coverage of code
containing bugs and bug fixes is higher than average.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Monitors;
D.2.7 [Distribution, Maintenance, and Enhancement]:
Version control

General Terms
Measurement, Reliability

Keywords
Patch characteristics, coverage evolution, latent patch cover-
age, nondeterministic coverage, bugs and fixes.

1. INTRODUCTION
Software repositories provide detailed information about

the design and evolution of software systems. While there is a
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large body of work on mining software repositories—including
a dedicated conference on the topic, the Working Conference
on Mining Software Repositories (MSR)—past work has
focused almost exclusively on static metrics (i.e. requiring
no program execution). We suspect that the main reason
behind the scarcity of studies focusing on dynamic metrics
lies in the difficulty of running multiple software versions,1

especially since doing so involves evolving dependencies and
unstable (including non-compilable) versions. For example,
prior work [41] cites the manual effort and the long time
needed to run different revisions as the reason for reporting
dynamic measurements for only a small number of versions.
While static metrics can provide useful insights into the

construction and evolution of software, there are many soft-
ware engineering aspects which require information about
software executions. For example, the research community
has invested a lot of effort in designing techniques for im-
proving the testing of software patches, ranging from test
suite prioritisation and selection algorithms [11, 30, 35] to
program analysis techniques for test case generation and bug
finding [1, 2, 20, 21, 27, 28, 36, 40] to methods for surviving
errors introduced by patches at runtime [14]. Many of these
techniques depend on the existence of a manual test suite,
sometimes requiring the availability of a test exercising the
patch [24, 37], sometimes making assumptions about the
stability of program coverage or external behaviour over
time [14, 29], other times using it as a starting point for
exploration [10, 16, 22, 39], and often times employing it
as a baseline for comparison [3, 6, 9, 26]. However, despite
the key role that test suites play in software testing, it is
surprising how few empirical studies one can find in the
research literature regarding the co-evolution of test suites
and code and their impact on the execution of real systems.
In this paper, we present Covrig2—an infrastructure for

mining software repositories, which makes it easy to extract
both static and dynamic metrics. Covrig makes use of
lightweight virtual machine technology to run each version
of a software application in isolation, on a large number
of local or cloud machines. We use Covrig to conduct an
empirical study examining how programs evolve in terms of
code, tests and coverage. More precisely, we have analysed
the evolution of six popular software systems with a rich
development history over a combined period of twelve years,
with the goal of answering the following research questions:

1In this paper, we use the terms version and revision interchangeably.
2The name emphasises one of the core aspects of the framework, its
ability to measure coverage. Covrig also means bagel in Romanian.
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RQ1: Do executable and test code evolve in sync?
Are coding and testing continuous, closely linked
activities? Or do periods of intense development
alternate with periods of testing?

RQ2: How many patches touch only code, only tests,
none, or both? Are most code patches accompanied
by a new or modified test case? How many patches
modify neither executable code nor tests?

RQ3: What is the distribution of patch sizes? How
spread out is each patch through the code? Are
most patches small? How many different parts of the
code does a patch touch? What is the median number
of lines, hunks and files affected by a patch?

RQ4: Is test suite execution deterministic? Do tests
fail nondeterministically? Does running the test suite
multiple times cover different lines of code?

RQ5: How does the overall code coverage evolve?
Is it stable over time? Does the overall coverage
increase steadily over time, or does it remain con-
stant? Are there revisions that significantly increase
or decrease coverage?

RQ6: What is the distribution of patch coverage
across revisions? What fraction of a patch is cov-
ered by the regression test suite? Does patch coverage
depend on the size of the patch?

RQ7: What fraction of patch code is tested within a
few revisions after it is added, i.e. what is the
latent patch coverage? Are tests exercising recent
patches added shortly after the patch was submitted?
If so, how significant is this latent patch coverage?

RQ8: Are bug fixes better covered than other types
of patches? Are most fixes thoroughly exercised by
the regression suite? How many fixes are entirely
executed?

RQ9: Is the coverage of buggy code less than aver-
age? Is code that contains bugs exercised less than
other changes? Is coverage a reasonable indicator of
code quality?

Overall, the main contributions of this paper are:

(1) A software repository mining infrastructure called Cov-
rig, which can be used to run software versions in isolation,
using a lightweight virtual machine environment that can be
deployed on a private or public cloud.

(2) An analysis of the evolution of the execution of code
and test suites in six popular open-source software systems
over a combined period of twelve years. In particular, we
believe this is the first study that reports patch coverage and
coverage nondeterminism over a large number of program
versions.

(3) A list of both theoretical and practical aspects related
to mining dynamic information from software repositories,
including revision granularity, non-compilable versions, and
nondeterministic execution.

The rest of this paper is structured as follows. We first
describe the Covrig infrastructure in Section 2, and then
present our empirical study, structured around the research
questions introduced above, in Section 3. We discuss related
work in Section 4 and conclude in Section 5.
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Figure 1: Covrig infrastructure.

2. COVRIG INFRASTRUCTURE
The overall architecture of the Covrig infrastructure is

depicted in Figure 1. It contains a generic driver which
iterates through all the revisions in a given range and invokes
routines specific to each system to compile, run, and collect
statistics of interest.
Lightweight software containers. Covrig employs

software containers [33], an operating system-level virtu-
alisation mechanism that provides the ability to run multiple
isolated virtual Linux systems (“containers”) atop a single
host OS. When launched, Covrig starts by loading the
selected range of revisions from the project’s Git repository,
and for each revision starts a new software container. The
use of containers offers increased isolation and reproducibility
guarantees by providing a consistent environment in which
to run each software revision and ensuring that different revi-
sions do not interfere with each other, e.g. by inadvertently
leaving behind lock files or not properly freeing up resources.
The choice of lightweight OS-level virtualisation rather

than more traditional virtual machines (e.g. KVM3 or Xen4)
reduces the performance penalty associated with spawning
and tearing down VMs, operations performed for each revi-
sion analysed. To get a sense of this difference, we compared
an LXC5 container, which required under a second for these
operations, with a Xen VM, which needed over a minute.
In our implementation, we use Docker6 to create and

manage the lower-level LXC containers, and deploy them on
multiple local or cloud machines. Each container is used to
configure, compile and test one program revision, as well as
collect the metrics of interest, such as code size and coverage.
The containers are remotely controlled through SSH using
the Fabric7 framework.
Configuration file. Covrig has a modular architecture,

which makes it possible to analyse new systems with modest
effort. A potential user of our infrastructure only needs to
provide a Python configuration file describing the system.
A minimal file provides the name of the system, its Git
repository location, a method to compile the system, e.g.
install dependencies and run the appropriate make command,
and a method to run the regression tests, e.g. run the make
test command. Finally, the configuration file can also specify
an end revision and a specific number of revisions to analyse.
For accurate test suite size measurements, the files or folders
which make up the test suite can also be indicated.

3http://www.linux-kvm.org/
4http://www.xenproject.org/
5http://linuxcontainers.org/
6https://www.docker.io/
7http://fabfile.org/
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For each revision, Covrig collects several static and dy-
namic metrics. The static metrics are obtained either directly
from the version control system (e.g. the number of lines of
test code) or after compiling each revision (e.g. the number
of executable lines of code). The dynamic metrics require
running the regression tests (e.g. the overall line coverage or
the regression test success status). Further information and
graphs—including the ones presented in our empirical study—
are automatically derived in the post-processing stage from
these primary metrics using a set of scripts.
Bug data. One possible application of Covrig is finding

useful data about software bugs and correlating them with
the static and dynamic metrics collected. For our study, we
mined bug data from both software repositories and, where
available, bug tracking systems. We automatically obtained a
list of candidate bug-fixing revisions by iterating through the
list of commits and checking the commit message for words
such as fix, bug or issue, followed by a number representing
the bug identifier. For example, a typical Memcached bug fix
commit message looks like "Issue 224 - check retval of main
event loop". The regular expression that we used to identify
these commits is similar to the ones used in prior work [12]:
(?:bug|issue|fix|resolve|close)\s*\#?\s?(\d+)

Where possible, we confirmed that the bug identifier is
valid by querying the associated bug tracking system. We
further manually checked all reported revisions and confirmed
that they included no false positives. While it is impossible
to quantify the false negative rate without a knowledgeable
developer manually checking all the revisions in a repository,
we believe that the automatically obtained bug fixes create
a representative subset of the fixes in the repository.
Line mapping. The ability to track how lines move and

change across revisions is the cornerstone of many high-
level software evolution analyses. A line mapping algorithm
improves over the traditional diff algorithm by tracking the
movement of individual lines rather than hunks. Conceptu-
ally, line mapping is a function which takes two revisions,
r1 and r2, and a program location described by a pair (file
name 1, line number 1) associated with r1. The output is a
pair (file name 2, line number 2) identifying the correspond-
ing location in r2.
Our implementation of the line mapping algorithm is simi-

lar to the algorithms described in previous work [4,17,32,38].
It makes use of the Levenshtein edit distance [19] to track line
edits, and tf–idf [34] and cosine similarity [31] to track line
movements. It also uses the Hungarian algorithm [18] to find
the optimal matching of lines across versions. Compared to
previous work, our implementation can also improve precision
by using coverage information to filter non-executable lines.
In our study, we used line mapping to determine whether

patches are tested within the next few revisions after they
were created (§3.4).
Cloud deployment. To enable large-scale data collection

and processing, we deployed Covrig to our private cloud.
We have built our system around a standard set of tools:
Packer8 for building custom Docker-enabled machine images,
Vagrant9 for controlling and provisioning the virtual machines
based on these images, a Docker registry for serving Covrig’s
Docker containers and a fabfile for orchestrating the entire
cluster. The same set of tools and scripts can be used to
deploy Covrig to different private or public clouds.

8http://www.packer.io/
9http://www.vagrantup.com/

Table 1: Summary of applications used in our study.
ELOC represents the number of executable lines of
code and TLOC the number of lines in test files in
the last revision analysed.

Code Tests
App Lang. ELOC Lang. TLOC
Binutils C 27,029 DejaGnu 5,186
Git C 79,760 C/shell 108,464
Lighttpd C 23,884 Python 2,440
Memcached C 4,426 C/Perl 4,605
Redis C 18,203 Tcl 7,589
ØMQ C++ 7,276 C++ 3,460

3. EMPIRICAL STUDY
We used the Covrig infrastructure to understand the

evolution of six popular open-source applications written
in C/C++, over a combined period of twelve years. Our
empirical study has been successfully validated by the ISSTA
artifact evaluation committee, and found to exceed expecta-
tions. The six evaluated applications are:
GNU Binutils10 is a set of utilities for inspecting and
modifying object files, libraries and binary programs. We
selected for analysis the twelve utilities from the binutils
folder (addr2line, ar, cxxfilt, elfedit, nm, objcopy, objdump,
ranlib, readelf, size, strings and strip), which are standard
user-level programs under many UNIX distributions.
Git11 is one the most popular distributed version control
systems used by the open-source developer community.
Lighttpd12 is a lightweight web server used by several high-
traffic websites such as Wikipedia and YouTube. We exam-
ined version 2, which is the latest development branch.
Memcached13 is a general-purpose distributed memory
caching system used by several popular sites such as Craigslist,
Digg and Twitter.
Redis14 is a popular key-value data store used by many
well-known services such as GitHub and Flickr.
ØMQ15 is a high-performance asynchronous messaging mid-
dleware library used by a number of organisations such as
Los Alamos Labs, NASA and CERN.
The six applications are representative for C/C++ open-

source code: GNU Binutils are user-level utilities, Git is a
version control system, Lighttpd, Memcached and Redis are
server applications, while ØMQ is a library. All applications
include a regression test suite.
Basic characteristics. Table 1 shows some basic charac-
teristics of these systems: the language in which the code
and tests are written, the number of executable lines of code
(ELOC) and the number of lines of test code (TLOC) in the
last revision analysed. To accurately measure the number of
ELOC, we leveraged the information stored by the compiler
in gcov graph files, while to measure the number of TLOC
we did a simple line count of the test files (using cloc, or
wc -l when cloc cannot detect the file types).

10http://www.gnu.org/software/binutils/
11http://git-scm.com/
12http://redmine.lighttpd.net/projects/lighttpd2/
13http://memcached.org/
14http://redis.io/
15http://zeromq.org/
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The code size for these applications varies from only 4,426
ELOC for Memcached to 79,760 ELOC for Git. The test
code is written in a variety of languages and ranges from
2,440 lines of Python code for Lighttpd to 108,464 lines
of C and shell code for Git. The test code is 36% larger
than the application code in the case of Git, approximately
as large as the application code for Memcached, around
40% of the application code for Redis and ØMQ, and only
around 10% and 19% of the application code for Lighttpd
and Binutils respectively. Running the test suite on the last
version takes only a few seconds for Binutils, Lighttpd, and
ØMQ, 110 seconds for Memcached, 315 seconds for Redis,
and 30 minutes for Git, using a four-core Intel Xeon E3-1280
machine with 16 GB of RAM.
The version control system used by all these applications

is Git. Four of these projects—Git, Memcached, Redis, and
ØMQ—are hosted on the GitHub16 online project site. The
other two—Binutils and Lighttpd—use their own Git hosting.
Selection of revisions. Our goal was to select a compara-

ble number of revisions across applications. The methodology
was to start from the current version at the day of our
experiments, and select an equal number of previous revisions
for all systems. We only counted revisions which modify
executable code, tests or both because this is what our
analyses look at. We decided to select 250 such revisions
from each system because some systems had non-trivial
dependency issues further back than this, which prevented
us from properly compiling or running them. We still had
to install the correct dependencies where appropriate, e.g.
downgrade libev for older versions of Lighttpd and libevent
for Memcached.
Note that not all revisions compile, either due to devel-

opment errors or portability issues (e.g. system header files
differing across OS distributions). Redis has the largest
number of such transient compilation errors—38. The pre-
vailing reasons are missing #include directives, e.g. unistd.h
for the sleep function, and compiler warnings subsequently
treated as errors. The missing #include directives most likely
slipped past the developers because on some systems other
headers cause the missing ones to be indirectly included. The
compiler warnings were generated because newer compiler
versions, such as the one that we used, are more pedan-
tic. Other reasons include forgotten files and even missing
semicolons.
We decided to fix the errors which had not likely been

seen at the time a particular revision was created, for ex-
ample by adding the compile flag -Wno-error in Binutils so
that warnings do not terminate the build process. In all
situations when we could not compile a revision, we rolled
over the changes to the next revisions until we found one
where compilation was successful. Revisions which do not
successfully compile are not counted towards the 250 limit.
Another important decision concerns the granularity of the

revisions being considered. Modern decentralised software
repositories based on version control systems such as Git do
not have a linear structure and the development history is a
directed acyclic graph rather than a simple chain. Different
development styles generate different development histories;
for example, Git, Redis and ØMQ exhibit a large amount
of branching and merging while the other three systems
have a mostly linear history. Our decision was to focus on
the main branch, and treat each merge into it as a single

16https://github.com/

Table 2: Revisions used in our study. OK: code
compiles and tests complete successfully, TF: some
tests fail, TO: tests time out, CF: compilation fails,
Time: the number of months analysed.

OK+TF+TO=250
App OK TF TO CF Time
Binutils 240 10 0 25 35mo
Git 249 0 1 0 5mo
Lighttpd 145 105 0 13 36mo
Memcached 206 43 1 5 47mo
Redis 211 38 1 38 6mo
ØMQ 171 79 0 11 17mo

revision. In other words, we considered each feature branch
a single indivisible unit. Our motivation for this decision
was twofold: first, development branches are often spawned
by individual developers in order to work on a certain issue
and are often “private” until they are merged into the main
branch. As a result, sub-revisions in such branches are often
unusable or even non-compilable, reflecting work-in-progress.
Second, the main branch is generally the one tracked by
most users, therefore analysing revisions at this level is
a good match in terms of understanding what problems
are seen in the field. This being said, there are certainly
development styles and/or research questions that would
require tracking additional branches; however, we believe
that for our benchmarks and research questions this level of
granularity provides meaningful answers.
Table 2 summarises the revisions that we selected: they

are grouped into those that compile and pass all the tests
(OK ), compile but fail some tests (TF ), and compile but
time out while running the test suite (TO). The time limit
that we enforced was empirically selected for each system
such that it is large enough to allow a correct revision to
complete all tests. As shown in the table, timeouts were a
rare occurrence, with at most one occurrence per application.
Table 2 also shows the development time span considered,

which ranges from only 5-6 months for Git and Redis, which
had a fast-paced development during this period, to almost
4 years for Memcached. The age of the projects at the first
version that we analysed ranges from a little over 2 years for
Lighttpd (version 2), to 11 years for Binutils.
Setup. All the programs analysed were compiled to record

coverage information. In addition, we disabled compiler
optimisations, which generally interact poorly with coverage
measurements. For this we used existing build targets and
configuration options if available, otherwise we configured
the application with the flags CFLAGS=’-O0 -coverage’ and
LDFLAGS=-coverage. All code from the system headers, i.e.
/usr/include/ was excluded from the results.

Each revision was run in a virtualised environment based on
the 64-bit version of Ubuntu 12.10 (12.04.3 for Git) running
inside an LXC container. To take advantage of the inherent
parallelism of this approach, the containers were spawned in
one of 28 long-running Xen VMs, each with a 4 Ghz CPU,
6 GB of RAM, and 20 GB of storage, running a 64-bit version
of Ubuntu 12.04.3.
The following subsections present the main findings of our

analysis. They first reiterate and then examine in detail our
target research questions (RQs).

96



 25000
 25200
 25400
 25600
 25800
 26000
 26200
 26400
 26600
 26800
 27000
 27200

EL
O

C
Binutils

 76500

 77000

 77500

 78000

 78500

 79000

 79500

 80000

EL
O

C

Git

 19000
 19500
 20000
 20500
 21000
 21500
 22000
 22500
 23000
 23500
 24000

EL
O

C

Lighttpd

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

EL
O

C

Memcached

 16800

 17000

 17200

 17400

 17600

 17800

 18000

 18200

 18400
EL

O
C

Redis

 5000

 5500

 6000

 6500

 7000

 7500

EL
O

C

ØMQ

Figure 2: Evolution of executable lines of code.

3.1 Code and Test Evolution

RQ1: Do executable and test code evolve in sync?

Figure 2 shows the evolution of each system in terms of
ELOC. As discussed above, we measured the number of
ELOC in each revision by using the information stored in
gcov graph files. This eliminates all lines which were not
compiled, such as those targeting architectures different from
our machine. One of the main reasons for which we have
decided to measure ELOC rather than other similar metrics
is that they can be easily related to the dynamic metrics,
such as patch coverage, presented in Sections 3.3 and 3.4.
As evident from Figure 2, all six systems grow over time,

with periods of intense development that increase the ELOC
significantly, alternating with periods of code tuning and
testing, where the code size increases at a slower pace. It is
interesting to note that there are also several revisions where
the number of ELOC decreases (e.g. in ØMQ): upon manual
inspection, we noticed that they relate to refactorings such
as using macros or removing duplicate code.
The total number of ELOC added or modified varies be-

tween 2,296 for Redis and 10,834 for Lighttpd, while the
end-to-end difference in ELOC varies between 1,257 for
Memcached and 4,466 for Lighttpd.
Figure 3 presents the evolution of the size of the test

suite in each system, measured in textual lines of test code
(TLOC). For each system, we manually identified the files
responsible for regression testing and recorded the number of
lines contained in them at each revision. It can be seen that
test evolution is less dynamic than code evolution, developers
adding less test code than regular code.
To better understand the co-evolution of executable and

test code, we merged the above data and plotted in Figure 4
only whether a revision changes the code (tests) or not: that
is, the Code and Test values increase by one when a change is
made to the code, respectively to the tests in a revision, and
stay constant otherwise. As it can be seen, while the Code
line smoothly increases over time, the Test line frequently
stays constant across revisions, indicating that testing is
often a phased activity [41], that takes place only at certain
times during development. One exception is Git, where code
and tests evolve more synchronously, with a large number of
revisions modifying both code and tests.
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Figure 3: Evolution of textual lines of test code.
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Figure 4: Co-evolution of executable and test code.
Each increment represents a change.

3.2 Main Patch Characteristics

RQ2: How many patches touch only code, only tests,
none, or both?

Each revision defines a patch, which consists of the totality
of changes introduced by that revision. Software patches
represent the building blocks of software evolution, and can
affect code, regression tests, or infrastructure components
such as build scripts, and play a variety of roles, including
bug fixing, feature addition, and better testing.
Figure 5 classifies patches into those that modify exe-

cutable application code but not the test code (Code only),
those that modify both executable application code and test
code (Code+Test), and those that modify test code but not
executable application code (Test only). Note that for each
application, these three values sum to 250, since we only
selected revisions which modify executable code and/or tests,
as discussed previously. Figure 5 also shows the number of
patches from the time span analysed that modify neither
executable program code nor tests (Other).
The first observation is that a substantial amount of time

is spent in maintenance activities that do not involve code or
tests. For example, during the period analysed, in addition
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Figure 5: Breakdown of patches by type: affecting
executable application code but not test code, af-
fecting both, affecting only test code, and neither.

to the 250 target patches, there were around 120 additional
such patches in Binutils, Memcached and ØMQ, and 204 in
Git. Note that some of these patches may modify code that
is excluded during preprocessing on our machine, but most
cases involved changes to build scripts, documentation, and
other similar software artefacts.
From the 250 patches selected for each application, the

majority only modify code, with a relatively small number
of patches (73 in Git, and under 52 for the others) touching
only tests. The number of revisions that modify both code
and tests can offer some indication of the development style
used: at one end of the spectrum there is Redis, with only
one such patch, suggesting that coding and testing are quite
separate activities; at the other end there is Git, with 100
such patches, suggesting a development discipline in which
code changes are frequently accompanied by a test case.

RQ3: What is the distribution of patch sizes? How
spread out is each patch through the code?

The size of a patch and the number of locations that
it affects can provide useful guidance for longitudinal test-
ing techniques. The Lines column in Table 3 provides
information about the size of the executable code patches
analysed in each system, measured in ELOC. Note that our
measurements ignore changes in the amount of whitespace,
e.g. whitespace at the end of the line, because our target
programming languages, C and C++, are insensitive to such
modifications. Most patches are small, with the median
number of ELOC ranging from 4 to 7.
To understand the degree to which patches are spread

out through the code, we also recorded the number of areas
in the code—hunks in Git terminology—and the number
of files containing executable code which suffered changes.
More formally, a hunk groups together all the lines added or
modified in a patch which are at a distance smaller than the
context size. We used the default unified diff format with a
context size of three lines when computing the hunks.17 The
Hunks column in Table 3 shows that the median number of
hunks varies between 2 and 4.

17See http://www.gnu.org/software/diffutils/manual/html_node/ for
more details.

Table 3: The median number of executable lines,
hunks from executable files, and executable files in a
patch. Only data from patches which add or modify
executable code is considered.

App Lines Hunks Files
Binutils 5 2 1
Git 7 3 1
Lighttpd 6 3 1
Memcached 6 3 1
Redis 4 2 1
ØMQ 7 4 2

Table 4: Number of revisions where the test suite
nondeterministically succeeds/fails, and the maxi-
mum, median and average number of lines which
are nondeterministically executed in a revision.

Nondet. Nondet. ELOC
App. Result Max Median Average
Binutils 0 0 0 0
Git 1 23 13 11.80
Lighttpd 1 37 10 13.01
Memcached 21 22 8.5 7.55
Redis 16 71 23 30.98
ØMQ 32 47 27 19.52

Finally, the median number of files modified by a patch is
only 1 for all benchmarks with the exception of ØMQ, for
which it is 2. The fraction of patches that modify a single
file is, in increasing order, 48.7% for ØMQ, 58.7% for Git,
65.1% for Lighttpd, 66.6% for Memcached, 84.9% for Redis,
and 88.5% for Binutils.

3.3 Overall Code Coverage

RQ4: Is test suite execution deterministic?

As a large part of our study focuses on coverage metrics,
we first investigate whether code coverage is deterministic,
i.e. whether the regression test suite in a given revision
achieves the same coverage every time it is executed. As we
show, nondeterminism has implications in the reproducibility
of test results—including the ones that we report—and the
fault detection capability of the tests.
We measured the overall coverage achieved by the re-

gression test suite using gcov. Interestingly, we found that
all the programs from our experiments except Binutils are
nondeterministic, obtaining slightly different coverage in each
run of the test suite. Therefore, we first quantified this
nondeterminism by running the test suite five times for each
revision and measuring how many revisions obtained mixed
results, i.e. one run reported success while another reported
failure. We were surprised to see a fair number of revisions
displaying this behaviour, as listed in Table 4 under the
column Nondet Result.
We further counted for each pair of runs the number of lines

whose coverage status differs. We used a 0/1 metric, i.e. we
only considered a difference when one of the five runs never
executes a line and another one executes it. We only did this
for revisions in which the test suite completes successfully to
avoid spurious results that would occur if we compare a run
which completed with one that was prematurely terminated
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Figure 6: Evolution of the overall line and branch
coverage.

due to a failure. As shown in Table 4, Binutils seems to be
completely deterministic with respect to its test suite, while
Redis, for example, contains on average 30.98 lines that are
nondeterministically executed.
We manually investigated the nondeterminism and pin-

pointed three sources: (1) multi-threaded code, (2) ordering
of network events, and (3) nondeterminism in the test har-
ness. As an example from the first category, the test from
ØMQ test_shutdown_stress creates 100 threads to check the
connection shutdown sequence. In a small percentage of
runs, this test exposes a race condition.18 As an example
in the third category, some Redis tests generate and store
random integers, nondeterministically executing the code
implementing the internal database data structures. The
Memcached test expirations.t is representative of tests that
make assumptions based on hardcoded wall-clock time values,
which cause failures under certain circumstances. The test
timings were previously adjusted19 in response to failures
under Solaris’ dtrace and we believe that some of the fail-
ures that we encountered were influenced by the Docker
environment.
The potential drawback of nondeterminism is the inability

of coverage comparison across revisions, lack of reproducibil-
ity and consequent difficulty in debugging. Developers and
researchers relying on test suite executions should take non-
determinism into account, by either quantifying its effects,
or by using tools that enforce deterministic execution across
versions [14], as appropriate. Tests with nondeterministic
executions—such as the ones presented above—are fragile
and should be rewritten. For example, tests relying on wall-
clock time could be rewritten as event-based tests [15].

RQ5: How does the overall code coverage evolve? Is
it stable over time?

When reporting the overall coverage numbers, we accu-
mulated the coverage information across all five runs.20

Therefore, the results aim to count a line as covered if the
18https://github.com/zeromq/zeromq4-x/commit/de239f3
19https://github.com/memcached/memcached/commit/890e3cd
20With the exception of Git, where for convenience we considered
a single run, as the number of lines affected by nondeterminism
represent less than 0.3% of the total codebase.

#define zmq_assert(x) \
do {\
if (unlikely (!(x))) {\
fprintf (stderr, "Assertion failed: %s (%s:%d)\n", #x, \

__FILE__, __LINE__);\
zmq::zmq_abort (#x);\

}\
} while (false)

Listing 1: Example of an assertion macro used in
ØMQ codebase.

test suite may execute it. The blue (upper) lines in Figure 6
plot the overall line coverage for all benchmarks. It can
be seen that coverage level varies significantly, with Binu-
tils at one end achieving only 17.39% coverage on average,
and Git at the other achieving 80.74%, while in-between
Lighttpd achieves 39.08%, Redis 59.97%, ØMQ 66.88%, and
Memcached 72.98%.
One interesting question is whether coverage stays constant

over time. As evident from Figure 6, for Binutils, Git, Mem-
cached, and Redis, the overall coverage remains stable over
time, with their coverage changing with less than 2 percentage
points within the analysed period. On the other hand, the
coverage in Lighttpd and ØMQ increases significantly during
the time span considered, with Lighttpd increasing from only
2.02% to 49.37% (ignoring the last two versions for which the
regression suite fails), and ØMQ increasing from 62.89% to
73.04%. An interesting observation is that coverage evolution
is not strongly correlated to the co-evolution of executable
and test code (RQ1). Even when testing is a phased activity,
coverage remains constant because the already existing tests
execute part of the newly added code.
One may notice that a few revisions from Lighttpd, Mem-

cached and Redis cause a sudden decrease in coverage. This
happens because either bugs in the program or in the test
suite prevent the regression tests from successfully running
to completion. In all cases, these bugs are fixed after just a
few revisions.
Figure 6 also shows that branch coverage closely follows line

coverage. The difference between line and branch coverage is
relatively small, with the exception of Memcached and ØMQ.
The larger difference is due to the frequent use of certain
code patterns which generate multiple branches on a single
line, such as the one shown in Listing 1, which comes from
the ØMQ codebase. The zmq_assert macro is expanded
into a single line resulting in 100% line coverage, but only
50% branch coverage when executed in a typical run of the
program (where assertions do not fail).
The fact that line and branch coverage closely follow one

another suggests that in many situations only one of these two
metrics might be needed. For this reason, in the remainder
of the paper, we report only line coverage.
Finally, we have looked at the impact on coverage of

revisions that only add or modify tests (Test only in Figure 5).
An interesting observation is that many of these revisions
bring no coverage improvements. For instance, in Lighttpd
only 26 out of 52 such revisions improve coverage. The other
26 either do not affect coverage (18 revisions) or decrease
it (8 revisions). The revisions which do not affect coverage
can be a sign of test-driven development, i.e. tests are
added before the code which they are intended to exercise.
The revisions which decrease coverage are either a symptom
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Figure 7: Patch coverage distribution. Each colour
represents a range of coverage values with the bar
size indicating the percentage of patches whose
coverage lies in the respective range.

of nondeterminism—six of them, with small decreases in
coverage—or expose bugs or bigger changes in the testing
infrastructure (the other two). These two revisions exhibit a
drop in coverage of several thousands lines of code. In one
case, the tests cause Lighttpd to time out, which leads to a
forceful termination and loss of coverage data. This problem
is promptly fixed in the next revision. In the other case,
the new tests require a specific (new) module to be built
into the server, terminating the entire test suite prematurely
otherwise.

3.4 Patch Coverage

RQ6: What is the distribution of patch coverage
across revisions?

We define patch coverage as the ratio between the number
of executed lines of code added or modified by a patch and
the total number of executable lines in the patch, measured
in the revision that adds the patch.
Figure 7 shows the distribution of patch coverage for each

system. Each column corresponds to all patches which affect
executable code in a system, normalised to 100%. The
patches are further grouped into four categories depending
on their coverage. As it can be observed, the patch coverage
distribution is bimodal across applications: the majority
of the patches in Git, Memcached and ØMQ achieve over
75% coverage, while the majority of the patches in Binutils,
Lighttpd and Redis achieve under 25%. One interesting
aspect is that for all applications, there are relatively few
patches with coverage in the middle ranges: most of them
are either poorly (≤25%) or thoroughly (>75%) covered.
Table 5 presents the same patch coverage statistics, but

with the patches bucketed by their size into three categories:
less than or equal to 10 ELOC, between 11 and 100 ELOC,
and greater than 100 ELOC. For all benchmarks, patches
are distributed similarly across buckets, with the majority
of patches having ≤10 ELOC and only a few exceeding 100
ELOC. Across the board, the average coverage of patches

Table 5: Overall patch coverage bucketed by the size
of the patch in ELOC. NP is the number of patches
in the bucket and C is their overall coverage. Only
patches which add or modify executable code are
considered.

≤10 11-100 >100
App NP C NP C NP C
Binutils 128 19.5% 63 25.0% 9 16.8%
Git 102 87.4% 65 82.4% 10 87.0%
Lighttpd 120 41.9% 58 31.3% 20 30.8%
Memcached 122 73.7% 73 70.8% 3 57.0%
Redis 164 33.8% 51 34.8% 4 21.1%
ØMQ 119 65.5% 64 68.0% 18 48.9%

Table 6: Overall latent patch coverage: the fraction
of lines of code in all patches that are only executed
by the regression suite in the next 1, 5 or 10
revisions. The overall patch coverage is listed for
comparison.

App Overall +1 +5 +10
Binutils 21.2% 0.1% 0.3% 0.3%
Git 85.1% 0% 0% 0%
Lighttpd 31.3% 0.9% 5.0% 6.1%
Memcached 68.9% 2.1% 3.4% 3.5%
Redis 30.4% 5.2% 5.5% 6.4%
ØMQ 56.9% 0.4% 3.5% 6.0%

with ≤10 ELOC is higher than for those with >100 ELOC,
but the coverage of the middle-size category varies.
Finally, the Overall column in Table 6 shows the overall

patch coverage, i.e. the percentage of covered ELOC across
all patches. For Binutils, Git and Memcached, it is within
five percentage points from the overall program coverage,
while for the other benchmarks it is substantially lower—for
example, the average overall program coverage in Redis is
59.97%, while the overall patch coverage is only 30.4%.

RQ7: What fraction of patch code is tested within a
few revisions after it is added, i.e. what is the
latent patch coverage?

In some projects, tests exercising the patch are added
only after the code has been submitted, or the patch is
only enabled (e.g. by changing the value of a configuration
parameter) after related patches or tests have been added.
To account for this development style, we also recorded the
number of ELOC in each patch which are only covered in
the next few revisions (we considered up to ten subsequent
revisions). We refer to the ratio between the number of such
ELOC and the total patch ELOC as latent patch coverage.
We counted these lines by keeping a sliding window of

uncovered patch lines from the past ten revisions and checking
whether the current revision covers them. When a patch
modifies a source file, all entries from the sliding window
associated with lines from that file are remapped if needed,
using the line mapping algorithm discussed in Section 2.
Table 6 shows the overall latent patch coverage i.e. the

fraction of patch lines that are covered in the next few
revisions after the patch is introduced. We report the results
for three sliding window sizes: one, five and ten revisions.
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Table 7: The median coverage and the number of
revisions achieving 100% coverage for the revisions
containing bug fixes. The overall metrics are in-
cluded for comparison.

Coverage (med) Fully Covered
App Overall Fix Overall Fix
Memcached 89.0% 100% 45.4% 58.5%
Redis 0% 94.1% 25.5% 50.0%
ØMQ 76.0% 55.4% 33.3% 31.8%

The latent patch coverage is significantly smaller compared
to the overall patch coverage, accounting for at most 6.4%
in Redis, where, as previously pointed out, the developers
almost never add code and tests in the same revision.
As conjectured, we found two main causes of latent patch

coverage: tests being added only after the patch was written
(this was the case in Lighttpd, where 12 revisions which
only add tests cover an additional 74 ELOC) and patch code
being enabled later on. In fact, the majority of latent patch
coverage in Lighttpd—337 lines—is obtained by 6 revisions
which change no test files. Upon manual inspection, we found
that the code involved was initially unused, and only later
revisions added calls to it.
Latent patch coverage is important to consider in various

coverage analyses. The delay of several revisions until obtain-
ing the patch coverage can be an artefact of the development
methodology, in which case it should be assimilated into the
normal patch coverage. Furthermore, our results show that
in most of the systems analysed, latent patch coverage is
small but non-negligible.

3.5 Bug Analysis

RQ8: Are bug fixes better covered than other types
of patches?

RQ9: Is the coverage of buggy code less than aver-
age?

To answer these RQs, we collected bug data according to
the methodology presented in Section 2 and we limited our
analysis to the three systems which lend themselves to auto-
matic identification of bug fixes based on commit messages:
Memcached, Redis and ØMQ. The other three systems
use non-specific commit messages for bug fixes, requiring
an extensive manual analysis or more complex algorithms
such as machine learning and natural language processing
to understand the contents of a specific revision [25]. We
ignored revisions which do not affect executable files, such as
fixes to the build infrastructure or the documentation and
then manually confirmed that the remaining revisions are
indeed bug fixes [13] and further removed fixes which do not
add or modify executable lines. We thus obtained 41 fixes in
Memcached and 22 fixes each in Redis and ØMQ.
We measured the patch coverage of these revisions and

report the median values in Table 7, together with the corre-
sponding overall metric for comparison. For both Memcached
and Redis, the coverage for fixes is higher than that for other
types of patches. For Redis, the median value jumps from
0% to 94.1%, while for Memcached the difference is less
pronounced. On the other hand, the fixes in ØMQ are

covered less than on average. The fraction of fixes which
have 100% coverage follows the same trend.
To try to understand whether buggy code is less thoroughly

tested than the rest of the code, we started from the observa-
tion that bug-fixing revisions are usually only addressing the
bug, without touching unrelated code. Because of this, we
can identify the code responsible for the bugs by looking
at the code which is removed or modified by bug-fixing
revisions and compute its coverage in the revision before
the fix. The overall coverage for this code is 72.7% for
Memcached—roughly the same as the overall patch coverage,
65.2% for Redis—much larger than the overall patch coverage,
and 35.8% for ØMQ—significantly lower.
While these numbers cannot be used to infer the correlation

between the level of coverage and the occurrence of bugs—
the sample is too small, and the bugs collected are biased
by the way they are reported—they suggest the limitations
of line coverage as a testing metric, with bugs even being
introduced by patches with a high coverage. Therefore,
even for well-tested code, tools which thoroughly check each
program statement for bugs using techniques such as symbolic
execution can be useful in practice—for instance, our tool
ZESTI [22] was specifically designed to enhance existing
regression tests to check for corner-case scenarios.

3.6 Threats to Validity
The main threat to validity in our study regards the

generalisation of our results. The patterns we have observed
in our data may not generalise to other systems, or even to
other development periods for the same systems. However,
we regard the selected systems to be representative for open-
source C/C++ code, and the analysis period was chosen in
an unbiased way, starting with the current version at the
time of our experiments.
Errors in the software underlying our framework could

have interfered with our experiments. Both Docker and LXC
were under development and not recommended for use in
production systems at the time of our study. Furthermore,
in case of some applications, we have observed test failures
caused by the AuFS21 filesystem used by Docker. However,
we have thoroughly investigated these failures and we believe
they did not affect the results presented in our study.
Given the large quantity of data that we collected from

a large number of software revisions, errors in our scripts
cannot be excluded. However, we have thoroughly checked
our results and scripts, and we are making our framework
and data available for further validation.

4. RELATED WORK
Despite the significant role that coverage information plays

in software testing, there are relatively few empirical studies
on this topic. We discuss some representative studies below.
Early work on this topic was done by Elbaum et al. [8],

who have analysed how the overall program coverage changes
when software evolves, using a controlled experiment involv-
ing the space program, and seven versions of the Bash shell.
One of the key findings of this study was that even small
changes in the code can lead to large differences in program
coverage, relative to a given test suite. This is a different
finding from previous work, such as that by Rosenblum
and Weyuker [29], which has found that coverage remains

21http://aufs.sourceforge.net/
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stable over time for the KornShell benchmark. In this paper,
we have looked at a related question, of whether overall
coverage remains stable over time, taking into consideration
the changes to the evolving test suite as well.
Zaidman et al. [41] have examined the co-evolution of

code and tests on two open-source and one industrial Java
applications. The study looks at the evolution of program
coverage over time, but only computes coverage for the major
and minor releases of each system, providing around ten data
points for each system. By looking at the co-evolution of
code and tests, the analysis can infer the development style
employed by each project: one key finding is that code and
tests co-evolve either synchronously, as when agile methods
are used; or phased, with periods of intense coding followed
by periods of intense testing. For our benchmarks, we have
observed both development styles.
To the best of our knowledge, this is the first paper that

specifically looks at how well patches are covered over a
large number of program versions. Our prior work on testing
software patches [23] reported the aggregate patch coverage
achieved by regression test suites, but the focus was on
evaluating the patch testing technique proposed.
There is a rich literature on predicting software bugs by

mining software repositories [12, 13]; however, prior work
has focused almost exclusively on static metrics, while in
this work we propose using dynamic metrics such as patch
coverage to aid the task.
Our ongoing effort is to develop Covrig into a flexible

platform for mining static and dynamic metrics from software
repositories. In terms of similar infrastructure efforts, SIR [7]
is a well-known repository for software testing research,
which offers a variety of programs written in several different
languages, together with test suites, bug data, and scripts.
SIR also provides multiple versions for the same application,
but typically less than a dozen. Furthermore, SIR does not
include any support for running versions in isolation. Ideally,
the mechanisms provided by Covrig would be integrated
with the rich data in SIR to enable more types of analyses
at the intersection of software testing and evolution.
While SIR contains mostly artificially-generated faults,

iBUGS [5] provides a semi-automated approach for extracting
benchmarks with real bugs from project histories, using an
approach based on commit messages and regression tests.
iBUGS’ idea of using the regression tests as a semi-automatic
bug confirmation mechanism could be borrowed by Covrig
whenever fixes are accompanied by tests, reducing the manual
effort needed to apply it to new projects.

5. CONCLUSION
Despite the important role that regression test suites play

in software testing, there are surprisingly few empirical
studies that report how they co-evolve with the application
code, and the coverage level that they achieve. Our empirical
study on six popular open-source applications, spanning a
combined period of twelve years, aims to contribute to this
knowledge base. To the best of our knowledge, the number
of revisions executed in the context of this study—1,500—is
significantly larger than in prior work, and this is also the
first study that specifically examines patch coverage.
Our experience has revealed two main types of challenges

for conducting similar or larger studies that involve running a
large number of program revisions. The first category relates
to the inherent difficulty of running revisions:

1. Decentralised repositories have non-linear histories, so
even defining what a revision is can be difficult, and
should be done with respect to the research questions
being answered. In our case, we chose a granularity at
the level of commits and merges to the main branch.

2. Older revisions have undocumented dependencies on
specific compiler versions, libraries, and tools. We found
it critical to run each revision in a separate virtualised
environment as provided by Covrig, to make it easy to
install the right dependencies, or adjust build scripts.

3. Some revisions do not compile. This may be due to
errors introduced during development and fixed later,
or due to incompatible dependencies. The execution
infrastructure has to be flexible in tolerating such cases,
and one needs a methodology for dealing with non-
compilable revisions. In our case, we have skipped over
the non-compilable revisions and incorporated their
changes into the next compilable one.

4. The execution of the regression test suite is often
nondeterministic—the test suite may nondeterministi-
cally fail and some lines may be nondeterministically
executed. Studies monitoring program execution need
to take nondeterminism into account.

The second category of challenges relates to reproducibility
and performance. To address these challenges, we have
designed and implemented Covrig, a flexible framework that
ensures reproducibility through the use of software containers
technology. Performance has two different aspects: at the
level of an individual revision, we have found it essential to use
a form of operating system-level virtualisation (in our case,
LXC and Docker), in order to minimise the time and space
overhead typically associated with hardware virtualisation.
Across revisions, we found it necessary to provide the ability
of running our set of revisions on multiple local and cloud
machines. For example, running the Git regression suite took
in our case 26 machine days (250 revisions × 30 min/revision
× 5 runs), which would have been too expensive if we used a
single machine, especially since we also had to repeat some
runs during our experimentation.
We are making Covrig available to the wider research

community, together with our demonstrative empirical study
and experimental data, hoping it will encourage further
studies examining both static and dynamic metrics related
to the evolution of real systems. The project webpage can
be found at http://srg.doc.ic.ac.uk/projects/covrig.
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