
FreeDA: Deploying Incompatible Stock Dynamic
Analyses in Production via Multi-Version Execution

Luís Pina
George Mason University∗

lpina2@gmu.edu

Anastasios Andronidis
Imperial College London

a.andronidis15@imperial.ac.uk

Cristian Cadar
Imperial College London
c.cadar@imperial.ac.uk

ABSTRACT
Dynamic analyses such as those implemented by compiler sanitizers
and Valgrind are effective at finding and diagnosing challenging
bugs and security vulnerabilities. However, most analyses cannot
be combined on the same program execution, and they incur a
high overhead, which typically prevents them from being used in
production.

This paper addresses the ambitious goal of running concurrently
multiple incompatible stock dynamic analysis tools in production,
without requiring any modifications to the tools themselves or
adding significant runtime overhead to the deployed system. This is
accomplished using multi-version execution, in which the dynamic
analyses are run concurrently with the native version, all on the
same program execution.

We implement our approach in a system called FreeDA and show
that it is applicable to several common scenarios, involving network
servers and interactive applications. In particular, we show how
incompatible stock dynamic analyses implemented by Clang’s sani-
tizers and Valgrind can be used to check high-performance servers
such as Memcached, Nginx and Redis, and interactive applications
such as Git, HTop and OpenSSH.

CCS CONCEPTS
• Computer systems organization → Reliability; • Software
and its engineering→ Runtime environments; Software test-
ing and debugging;

KEYWORDS
Multi-version execution, sanitizers, Valgrind

ACM Reference Format:
Luís Pina, Anastasios Andronidis, and Cristian Cadar. 2018. FreeDA: Deploy-
ing Incompatible Stock Dynamic Analyses in Production via Multi-Version
Execution. In Proceedings of CF ’18: Computing Frontiers Conference, Ischia,
Italy, May 8–10, 2018 (CF ’18), 10 pages.
https://doi.org/10.1145/3203217.3203237

∗ Most work done while the author was at Imperial College London.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF ’18, May 8–10, 2018, Ischia, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203237

1 INTRODUCTION
Modern dynamic analysis tools, such as compiler sanitizers [38, 39,
41] and Valgrind [32] can find many different types of important
errors without false positives. Unfortunately, such tools have two
critical shortcomings. First, they are not modular and thus cannot
be combined over the same program execution. For instance, with
compiler sanitizers, users can choose to analyze their program
execution for memory or address safety, but not both. Second, they
introduce a high runtime overhead—for instance, Clang’s memory
and address sanitizers impose overheads of 2–4x, and Valgrind
imposes 10–100x.

These two shortcomings generally prevent these tools from be-
ing applied in production, instead restricting their usage to offline
testing. While offline testing is a key component of good software
development, test suites exercise a limited, often artificial, set of
executions. Therefore, the ability to complement offline testing with
online in-production testing is important. In particular, tools such
as compiler sanitizers and Valgrind could flag errors on executions
that actually occur in production, providing detailed information
necessary for debugging and fixing any errors found. Note that
many of these errors could otherwise go unnoticed, silently cor-
rupting the application state.

Our vision is to make popular stock dynamic analysis (DA) tools,
such as compiler sanitizers and Valgrind, run as black boxes that
can be seamlessly combined with low-enough overhead to be de-
ployable in production. In this paper, we show that this vision is
achievable in many practical scenarios, and we present FreeDA, a
system which accomplishes this goal in a transparent way. More
concretely, we show that FreeDA can: (1) deploy multiple analy-
ses concurrently, even if such analyses are incompatible with one
another, and (2) mask the runtime overhead of such analyses for typ-
ical scenarios involving high-performance servers and interactive
applications.

FreeDA leveragesMulti-Version Execution (MVE) [17, 19, 20, 23, 27,
29, 31, 37, 44, 46, 47] to run the native application concurrently with
several DA versions (e.g., in parallel with Valgrind and compiler-
sanitized versions), each in their own process. FreeDA leverages
the record-replay strategy used in the second-generation of multi-
version execution systems [28, 29, 44, 46], by recording the results
of system calls issued by the native version into an in-memory
system-call buffer, while each DA version reads the results of its
system calls from this buffer. This separation allows FreeDA to run
the native version at full speed (minus the small time needed to
write the results of system calls into a buffer), while each DA version
operates at a lower speed in the background.

However, given that the slower DA versions consume system
calls at a much lower rate than the fast native version issues them,
the system-call buffer can get full quickly, making this approach

1

https://doi.org/10.1145/3203217.3203237
https://doi.org/10.1145/3203217.3203237

CF ’18, May 8–10, 2018, Ischia, Italy Luís Pina, Anastasios Andronidis, and Cristian Cadar

impractical. Our work provides solutions that enable FreeDA to
sustain native performance for indefinite periods of time for two
common application scenarios: interactive applications (§2.2.1) and
load-balanced server applications (§2.2.2). The basic idea is to ex-
ploit idle times between interactions/requests to allow the slow
analyses to catch up with the fast native version. For server applica-
tions, FreeDA can also provide probabilistic error detection without
an increase in latency through weighted load balancing. We also
present an analytical model to estimate the minimum size of the
system-call buffer for each case (§3).

As an additional challenge, given that FreeDA synchronises all
versions at the system-call level, the sequences of system calls on all
the versions must match. However, dynamic analyses can modify
the system call sequence that the analysed program issues, resulting
in divergences. We provide a taxonomy of the changes introduced
by popular stock dynamic analyses and take advantage of prior
work on multi-version execution to reconcile these changes (§2.1).

We provide a prototype implementation of these ideas and thor-
oughly evaluate its effectiveness on a variety of interactive and
server applications using the popular stock dynamic analyses pro-
vided by ASan, MSan, TSan and Valgrind (§5).

In summary, this paper makes the following contributions:

(1) A low overhead multi-version execution system, FreeDA, that
allows the deployment of popular incompatible stock dynamic
analysis tools in production environments.

(2) A taxonomy of the changes introduced by popular stock dy-
namic analyses (ASan, TSan, etc.) that result into different
sequences of system calls from the native application.

(3) An analytical model that predicts how many system calls need
to be buffered to retain native performance indefinitely based
on measurable properties of the native application.

(4) Two common scenarios in which FreeDA is immediately ap-
plicable: (1) interactive applications with enough idle times to
absorb the overhead of DA checks, and (2) server applications
in which idle time is introduced by splitting traffic through load
balancing.

(5) An approach for checking a fraction of the requests sent to a net-
work server in order to balance the tradeoff between checking
coverage and resource consumption.

(6) A thorough evaluation involving the popular interactive appli-
cations Git, OpenSSH, HTop and Vim, and high-performance
servers Memcached, Nginx and Redis, deployed together with
the stock dynamic analyses implemented by Clang’s sanitizers
(ASan, MSan and TSan), and the Valgrind tool.

2 DESIGN
The architecture of FreeDA, shown in Figure 1, is similar to state-
of-the-art second-generation MVE systems [28, 29, 44]. FreeDA
executes several versions in the same MVE deployment, each in its
own process: a fast native version, with which the users interact
directly; and a DA version for each dynamic analysis.

FreeDA rewrites the binary code of each version, as they are
loaded in memory, to intercept all system calls. For each system call
that the native version issues, FreeDA forwards it to the operating
system kernel, and copies the system call number, its arguments,
and the return value to a system-call ring buffer (SCB for short)

1
2

3

4

5
67

8

9

10

11
12

System-call
Buffer

Shared Memory

Native

Valgrind

Analysis 1

MSan

Analysis 2

TSan

Analysis 3

ASan

Analysis 4

User

FreeDA

Figure 1: Architecture of FreeDA. Red entries are full.

located in memory shared among all the versions. For each system
call that each DA version issues, FreeDA matches it with the next
system call on the SCB and takes the results that the native version
registered.

The decentralized architecture of FreeDA has two main advan-
tages. First, FreeDA enables the deployment of multiple incompat-
ible stock dynamic analyses over the same program execution, as
each analysis is executed independently on a dedicated process and
all sources of input/output and non-determinism are intercepted by
FreeDA. In the example shown in Figure 1, there are four such DA
versions: one where the application runs under Valgrind’s mem-
check (Valgrind), one compiled with memory sanitization (MSan),
one with thread sanitization (TSan), and one with address sanitiza-
tion (ASan).

Second, FreeDA is well suited for deploying slow analyses trail-
ing behind a fast native version. FreeDA executes the fast native
version of the application at full speed, minus the small overhead
of registering system calls in the shared SCB, thus providing a fast
response time to the user. Each analysis then makes progress at its
own pace, in its own separate (background) process. Figure 1 shows
a native version running ahead of all analyses, currently register-
ing a new system call in position 9. Each analysis executes at its
own speed and consumes a different position: Valgrind consumes
position 12, while MSan consumes position 3, and so on.

However, FreeDA faces two challenges: (1) The dynamic analyses
may change the sequence of system calls issued during execution,
and (2) the buffer may become full because the analyses are signif-
icantly slower than the native version. Note that when the latter
happens, the native version will execute at the speed of the slowest
analysis, as each attempt to write into the buffer causes the native
version to block until the slowest analysis frees a position.

FreeDA overcomes both challenges. First, it takes advantage of
prior work [28, 31, 36] to reconcile divergences in the sequences
of system calls between the native version and each analysis using
rewrite rules (§2.1). Second, to prevent the SCB from becoming full,
FreeDA exploits idle times in interactive applications due to slow
user input, and introduces additional idle time to server applications
by splitting traffic through load balancing (§2.2).

2.1 System-call changes introduced by DA tools
To run stock dynamic analyses, FreeDA must reconcile the system-
call changes they introduce. A key observation is that these changes
fit into a small number of categories:

2

FreeDA: Incompatible Stock Dynamic Analyses in Production CF ’18, May 8–10, 2018, Ischia, Italy

(1) Intercepting. Dynamic analyses intercept some system calls
that the program under analysis issues and transforms them
using a set of fixed patterns. The same pattern often applies to
many different system calls:
(a) Wrapping. A system call issued by the program is sur-
rounded by additional system calls before and/or after it. For
instance, Valgrind wraps most system calls with two extra sys-
tem calls: one to disable signal delivery just before the original
system call, and another to re-enable it immediately after. Or,
ASan adds a sched_getaffinity after a fork.
(b) Modifying. A sequence of system calls is replaced by a
different sequence. For instance, Valgrind transforms an open

system call into a sequence of dup, lseek.
(c) Skipping. A system call issued by the program is skipped
completely. For instance, most analyses monitor some signals
(e.g., SIGSEGV) by installing signal handlers. If the program un-
der analysis registers its own handler, the analysis just updates
its internal state.

(2) Weaving. The analysis has additional functionality which does
not exist in the target program. The system calls invoked by
this additional functionality do not result from intercepting
any system call issued by the target program. There are fixed
regular patterns that analyses use:
(a) Initialization/Teardown. Analyses usually introduce ex-
tra system calls in the beginning and end of the program execu-
tion, to initialize their internal state, perform sanity checks, or
gather statistics after the program ends.
(b) Error reporting.When the analysis finds an error, it writes
a message to a file or to standard output.
(c) Bookkeeping. System calls that manage the internal state
of the analysis. For instance, when Valgrind JITs code, it has to
manage the code cache and sometimes allocate more memory
through system call mmap.
As an example, consider an application performing the following

sequence of three system calls:
1 open("/proc/self/cmdline", ...)=4
2 read(4,...,4096)=188
3 rt_sigaction(SEGV,0x7f932...,0,8)=0

Valgrind transforms this sequence as follows:
1.1 dup(1025)=4
1.2 lseek(4,0,SEEK_SET)=0
2.1 gettid()=29387
2.2 write(1029,"Z",1)=1
2.3 rt_sigprocmask(SIG_SETMASK,[],~[ILL,TRAP,...],8)=0
2.4 read(4,...,4096)=188
2.5 rt_sigprocmask(SIG_SETMASK,~[ILL,TRAP,...],0,8)=0
2.6 gettid()=29387
2.7 read(1028,"Z",1)=1

The sequence starts by opening a file that contains the command
line used to launch the current process. Earlier in execution, during
its initialization, Valgrind creates a temporary file with the original
command line (i.e. without Valgrind and its arguments), and keeps
it open on file descriptor 1025. During execution, Valgrind replaces
the original open system call, on line 1, with a dup and lseek, on
lines 1.1–1.2, to provide the program with a file descriptor with the
original command line.

Valgrind wraps the original read system call with 6 system calls,
between lines 2.1 and 2.7. In the first and last two system calls,

Valgrind synchronizes itself internally by writing to and reading
from file descriptors 1029 and 1028, respectively. Then, Valgrind
disables signal delivery on line 2.3, issues the original system call on
line 2.4, and re-enables signal delivery on line 2.5. Valgrind wraps in
this way most system calls that the program under analysis issues.

In the original program, system call rt_sigaction installs a
signal handler for signal SIGSEGV. This is an example of a skipped
system call: Valgrind installs a handler for signal SIGSEGV during
initialization, to detect memory errors, and handles system call
rt_sigaction by simply updating its internal state.

FreeDA takes advantage of prior work on multi-version execu-
tion to reconcile these changes through a small number of rewrite
rules [28, 31, 36].We refer the reader to prior work, particularly [36],
for details on how these rules are implemented in a multi-version
execution context. In total, only 3, 1, 4, and 14 rewrite rules are
needed to reconcile the changes introduced by ASan, MSan, TSan
and Valgrind, respectively.

2.2 Sustaining native performance
Existing research on multi-version execution focuses on scenarios
in which all the versions executed in parallel have the same per-
formance characteristics (e.g., two program versions with stacks
running in opposite directions [37] or two releases of the same appli-
cation [27]). FreeDA is the first multi-version execution system that
faces the challenge of running versions with widely different per-
formance characteristics. In particular, because the native version
is significantly faster, it will eventually fill the buffer, decreasing its
speed to that of the slowest analysis.

In this paper, we focus on two practical scenarios in which
FreeDA overcomes this challenge: interactive (§2.2.1) and server
applications (§2.2.2).

2.2.1 Interactive applications. Interactive applications are struc-
tured around a loop that waits for input from the user and then
processes it. For much of their execution time, interactive applica-
tions wait for user input. This is a key observation: Given a large
enough buffer, FreeDA can mask the latency of a slow dynamic
analysis by allowing the user to interact with the fast native ver-
sion, while executing each analysis in the background. During the
idle times the native version waits for user input, the analyses will
continue to execute and eventually catch up.

The SCB must be large enough to accommodate the peak of
program activity that follows each user input. Depending on the
particular pattern of interaction and the slowdown that the analysis
introduces, the SCB may need to be larger to accommodate more
than one user input. However, as we shall see in §5, an SCB of 1Mi
(220) entries (64MiB) is enough to mask the latency of techniques
as heavyweight as Valgrind.

It is interesting to note that a subtle phenomenon allows FreeDA
to slightly speed up the execution of the DA versions: When each
DA version issues a system call, the results are immediately ready
in the SCB. This means that the DA version effectively saves the
time that it would otherwise spend inside the OS kernel.

2.2.2 Server applications. High-performance network servers
often have both demanding throughput and latency requirements,
and under load, there are no pause times that FreeDA can use to

3

CF ’18, May 8–10, 2018, Ischia, Italy Luís Pina, Anastasios Andronidis, and Cristian Cadar

Load Balancer

Native

1 2
3
4

5678
9
10
11 12 DA1

DAM

. . .
Instance N

. . .Native

1 2
3
4

5678
9
10
11 12 DA1

DAM

. . .
Instance 1

(a)

Load Balancer

Native

1 2
3
4

5678
9
10
11 12 DA1

DAM

. . .
FreeDA

p%Native
(1 − p)%

(b)

Figure 2: DeployingM different dynamic analyses on server
applications with a load balancer that checks all requests
usingN instances of FreeDA (2a), or checksp% requests using
a FreeDA instance and sends the remaining (1 −p)% requests
to a native instance (2b).

empty the SCB. Our novel strategy for overcoming this challenge
is the new idea of combining a multi-version execution framework
with a load balancer in order to artificially introduce idle times.

The high-level architecture of our deployment is depicted in Fig-
ure 2a, which shows a load balancer managing N different FreeDA
instances. Each instance runs a native application (the one inter-
acting with the load balancer) andM different DA versions. In this
deployment, each instance processes a fraction of the requests. Be-
tween requests, each instance has time for the slower DA versions
to catch up while other instances are processing requests. To make
things concrete, if a native version would support up to 1000 request
per second, then, by splitting the traffic into two, we introduce 50%
idle time in each instance, which the DA versions can exploit.

We also propose another novel approach to combine load balanc-
ing with multi-version execution: Use a weighted load balancer to
check p% requests with a FreeDA instance, and send the remaining
(1−p)% to a native instance. This deployment, depicted in Figure 2b,
provides a convenient trade-off between the percentage of the ex-
ecution analyzed for errors and the hardware resources utilized,
which allows to deploy heavier analyses using less hardware while
retaining the native performance at the cost of not analyzing a
portion of the execution. Of course, this partial checking deploy-
ment can scale up in both number of native instances, for increased
throughput, or number of FreeDA instances, for increased checking
coverage (p%).

Importantly, we note that employing a load balancer to deploy
the analyses without using FreeDA is not enough. Load balancing
can increase the throughput when additional instances are added,
but cannot improve latency. In contrast, MVE reduces the maximum
throughput to restore latency close to the native level by replying to
each request as soon as the fast native version finishes. It is only by
this novel combination that FreeDA achieves both high throughput
and low latency.

3 ANALYTICAL MODEL
In this section, we present an analytical model of FreeDA’s behavior
with respect to the required space in its SCB. For simplicity, we
consider the case of running a single analysis in the background.
This model is valid for multiple analyses by simply reserving the
maximum buffer size required for each analysis.

When a request1 arrives to the native version, FreeDA starts
storing system calls in the SCB. Ideally, if every new request comes
exactly after the analysis has finished processing the previous re-
quest, then FreeDA only needs to store the system calls of one
request. In general, FreeDA requires additional capacity to store
new requests that arrive while processing an earlier request. Of
course, if every request always arrives before the analysis has fin-
ished earlier requests, any finite buffer will eventually become full.

A load L (requests/time) greater than the throughput of the
analysis TPa fills a buffer of size B in time tf ull . Assuming that
each request issues Sr eq system calls, an upper bound of tf ull is:

tf ull = B/((L −TPa) × Sr eq) (1)
For example, a load of L = 11 req/s applied to FreeDA deploying

an analysis with throughput TPa = 10 reqs/s, with each request
issuing Sr eq = 10 system calls, fills a buffer of size B = 100 in at
most tf ull = 10s. After tf ull , FreeDA performs with the latency of
the analysis.

Of course, if L ≤ TPa , then the analysis always consumes all
requests in every time unit. FreeDA can execute with native per-
formance if L ≤ TPa over a time period T , even if L > TPa during
smaller intervals of T . For instance, consider a server that receives
a request every 100ms, which the native version processes in 20ms
but the analysis takes 70ms. Then, L ≤ TPa holds over T = 100ms
but not T = 50ms. FreeDA needs to store all NT requests issued
during T , which yields a buffer of size: B = NT × Sr eq . Choosing
the time scale ofT thus has a direct impact on the size of the buffer.
Large units (e.g., hours) will result into a large buffer, while small
units might violate L ≤ TPa .

We can improve this bound by observing that when the native
version issues a certain number of requests, the analysis will have
consumed a portion of them, proportional to its performance speed.
For instance, if FreeDA is deployed behind a load balancer that
guarantees 12 req/s, it should provision a buffer of size B = 12×Sr eq .
However, let us also consider that the analysis FreeDA deploys is
F = 3 times slower. When the native version finishes all 12 requests,
the analysis will have consumed around NT /F = 4 of them. Thus,
instead of a buffer of size 12 requests, we now require 8+1 (we need
an extra unit to count the currently consumed one). Given that a
particular implementation of FreeDA may require several buffer
entries Nsys per system call, the space required is thus:

B = (NT × Sr eq − NT /F × Sr eq + Sr eq) × Nsys (2)
Our approach ensures that L ≤ TPa for a time period T by

either adding additional capacity for network servers, or exploiting
idle times for interactive applications. For servers, well-tuned load
balancers can provide guarantees on the time between requests and
thus ensure a small enough B. For interactive applications we have
two cases. Short-lived interactive applications have a single request,
so B should be simply Sr eq . For long-lived interactive applications,
1In this section we use network server terminology, but the model holds for interactive
applications too, by replacing request with interaction, latency with response time, etc.

4

FreeDA: Incompatible Stock Dynamic Analyses in Production CF ’18, May 8–10, 2018, Ischia, Italy

we can choose appropriate T and NT by understanding every how
often the user is idle, e.g., measuring how fast average users type
and how much time they spend reading the results on the screen.

4 IMPLEMENTATION
FreeDA shares similarities with modern MVEs based on a decen-
tralized ring buffer architecture, such as Varan [28], MvArmor [29]
and ReMon [44]. We decided to implement a prototype of FreeDA
on a thorough re-engineering of Varan because it is maintained
in our group and we find it simpler for this purpose than ReMon
(which includes a kernel module) and MvArmor (which requires a
virtualized environment). In Varan’s terminology, FreeDA runs the
native version as the leader and each analysis as a follower.
Non-determinism andmulti-threading. Varan already handles
non-deterministic and multi-threaded applications [28]. Varan han-
dles naturally all sources of non-determinism that involve system
calls (e.g., reading data from /dev/random), since the followers
just read the results of system calls from the SCB. FreeDA thus
supports OpenSSH, which uses such random data (§5.1). Varan
captures the order in which threads issue system calls in the leader
and enforces that same order on every follower. FreeDA thus sup-
ports multi-threaded applications that synchronize threads through
system calls (e.g., Memcached described in §5.2).

This approach, however, fails for programs that synchronize
threads using memory operations, e.g, Git (see §5.1). For instance,
pthreads implement mutual exclusion (mutexes) through a compare-
and-swap operation. FreeDA extends Varan to support pthreads
by: extending Varan to intercept calls for locking and unlocking
mutexes, registering them on the SCB on the native leader, and
enforcing that each DA version obtains the same mutexes in the
same order.

We show in §5 that FreeDA supports running multi-threaded ap-
plications under analyses such as ASan, MSan, and TSan. However,
it does not support analyses that use their own thread scheduling
algorithm, such as Valgrind. In this case, the ordering that FreeDA
enforces may clash with the one that the analyses impose, which
results in followers deadlocking. One possibility is to change the
scheduler of such DAs to support preempting system calls (e.g.,
reschedule when a system call returns error code EAGAIN).
Synchronizing file descriptors. Inherited from Varan, FreeDA
uses an extra process—the monitor—to propagate open file descrip-
tors from the native version to all followers through UNIX sockets.
The monitor is needed because the native version does not know
the identity nor the number, if any, of DA versions running in the
background. The monitor is a single-threaded loop that: (1) waits
for a file descriptor from the leader and (2) sends the file descriptor
to each follower, in sequence. Due to the nature of UNIX sockets, all
steps require synchronous communication. This is not a problem
when all versions run at similar speeds, but slows down the fast
leader when it needs to synchronize with a slow follower. FreeDA
addresses this problem by using a producer-consumer monitor
with a thread to receive file descriptors from the leader and store
them in a file-descriptor buffer, and another thread to send each file
descriptor to all analyses.

5 EVALUATION
This section describes our empirical evaluation of FreeDA. We show
that FreeDA can successfully deploy popular stock dynamic analyses
for two types of common applications: interactive programs (§5.1)
and network servers (§5.2).

We used four stock dynamic analyses for C/C++ programs in
our experiments: Valgrind’s memcheck version 3.11 (revision 15920,
VEX revision 3233), and the compiler sanitizers ASan, MSan, and
TSan that ship with Clang version 3.8. Valgrind’s memcheck is a tool
that checks for uses of invalid memory (i.e. uninitialized, unallo-
cated, or freed memory) through heavyweight dynamic instrumen-
tation [40]. ASan is the address compiler sanitizer [38] that detects
buffer overflows and use-after-free errors. MSan is the memory
compiler sanitizer [41] that detects uses of uninitialized memory.
TSan is the thread sanitizer [39] that detects data races. Valgrind,
ASan, and TSan are readily applicable to existing programs. MSan
requires some application changes (e.g., marking data allocated in-
side libraries as initialized), thus we only used it for one application
(§5.1) after the appropriate code changes.

We refer to buffer sizes in terms of their capacity as follows: A
buffer that holds 1024 entries has capacity 1Ki entries and uses
64KiB of memory (64 bytes per entry). The maximum buffer used
has a size of 1Mi and consumes 64MiB of memory. Note that our
implementation of FreeDA requires buffer sizes to be powers of two
and uses two buffer entries per system call (entry and exit events,
Nsys = 2 from §3).

Each bar reported in our graphs is the average of five measure-
ments; error bars show the standard deviation.

5.1 Interactive Programs
We used two types of interactive applications in our evaluation:
short-lived command-line utilities (Git and OpenSSH) and text-
based long-lived applications (HTop and Vim). In both cases, we
are concerned with the response time perceived by the user. For
short-lived command-line utilities, the response time is simply
the execution time of the utility. For long-lived applications, it is
the period between the moment the user provides input to the
application (e.g., enters a string to be searched in Vim and presses
Enter) and the time the result is returned to the user. We automated
such interactions using the expect tool [14].

We tested the interactive applications on a machine equipped
with two 2.50GHz Intel Xeon E5-2450 v2 CPUs (8 physical cores,
16 logical per CPU), with 188G of RAM, and running 64-bit Ubuntu
16.04 (kernel version 4.4.0-45, glibc version 2.23). We now describe
the experiments for each application.

Git is a widely-used version control system [2]. We benchmarked
Git version 2.9.2 by using four common commands: (1) log -stat

HEAD∼200, which lists the 200 most recent commits and statistics
about files changed in each commit, (2) blame, which shows the au-
thor that last modified each line of a file, (3) diff, which compares
the changes between two versions, and (4) tag, which lists all the
tags. We ran these commands on the CMake [1] repository, which
had 32,374 modifications (commits) at the time of our experiments.

Figure 3a shows the time required to run each command. We
evaluate five different deployments of Git: the native version of the

5

CF ’18, May 8–10, 2018, Ischia, Italy Luís Pina, Anastasios Andronidis, and Cristian Cadar

log blame0.000.000.000.000.00

0.01

0.02

0.03
0.05
0.07
0.10

0.20
0.30
0.50
0.70
1.00

2.00
3.00
5.00
7.00

10.00

20.00

Ti
m

e
to

fin
is

h
(s

ec
)

Valgrind
FreeDA 1Ki
FreeDA 8Ki

Native
FreeDA’ 1Ki

(a)
log blame0.000.000.000.000.00

0.01

0.02

0.03
0.05
0.07
0.10

0.20
0.30
0.50
0.70
1.00

2.00
3.00
5.00
7.00

10.00

20.00

Ti
m

e
to

ve
rs

io
n

fin
is

h
(s

ec
)

Valgrind
Tsan
Msan

Asan
Native

(b)
grep with 1 consumer thread grep with 2 consumer threads0.000.000.000.000.000.00

1.00

2.00

3.00

4.00

5.00

6.00

10.00

20.00

30.00
40.00
50.00

TSan
Native
FreeDA’ 1Mi

FreeDA TSan 1Mi
FreeDA A+TSan 1Mi
FreeDA A+M+TSan 1Mi

(c)

Figure 3: Time required to run the Git tool for different commands with and without FreeDA (3a); time required for each
individual version under FreeDA to finish for each command, with an 8Ki SCB size (3b); and time required to run a concurrent
Git command with one and two consumer threads (3c).

tool (Native), Valgrind without FreeDA (Valgrind), FreeDA with a
native version running in the background instead of an analysis and
using a 1Ki SCB (FreeDA’ 1Ki), and FreeDA with all four analyses
and two SCB sizes: 1Ki (FreeDA 1Ki) and 8Ki (FreeDA 8Ki) entries.

Valgrind adds significant overhead (note that the scale is loga-
rithmic). For instance, the response time for git log increases from
under 0.3s to over 7s (over 23x), and that for git blame from under
5ms to around 700ms (over 140x). FreeDA’ 1Ki shows that the over-
head that FreeDA itself introduces, by registering the system calls
on the shared buffer, is low. Note that the startup time of FreeDA
results in a large overhead in relative terms, but small in absolute
terms (around 50ms).

FreeDA 8Ki has roughly the same performance as FreeDA’ 1Ki,
adding little overhead on top of the native execution. Also, note that
all native execution times under 100ms (unnoticeable to the human
eye) are kept under 100ms by FreeDA 8Ki. With the exception of
one command, git log, the smaller buffer of FreeDA 1Ki is enough
for these benchmarks. We measured that git log issues around
3200 system calls. From §3, we can predict a minimum buffer size of
around 6400 entries for such short-lived applications which, given
FreeDA’s requirement for power-of-two buffer sizes, means a buffer
size of 8Ki. We confirmed that a buffer of size 4Ki behaves as one
of 1Ki, and that a buffer of 32Ki does not improve the results over
8Ki. The results for git log with a buffer size of 1Ki show how a
buffer smaller than necessary affects performance.

Figure 3b shows how long the native leader and the four DA
versions took to execute inside FreeDA. Note that the Native bars in
this figure are the same as the FreeDA 8Ki bars in Figure 3a: FreeDA
ends execution and provides the user with a result as soon as the
fast native version terminates. The slower analyses finish in the
background without affecting the perceived latency. Comparing the
Valgrind bars in Figure 3a (which show the time taken by Valgrind
when run by itself) with the Valgrind bars in Figure 3b (which show
the time taken by Valgrind when run inside FreeDA), we can see
that FreeDA does not add any overhead to the DA versions. In fact,
as we discussed in §2.2, the analyses run under FreeDA sometimes
get faster, as they read the results of system calls directly from
the SCB, without any context switching into the kernel or any I/O
waiting.

We also ran the command git grep .which has a multithread-
ed implementation with one producer thread that generates work
(files to be searched) and a configurable number of consumer threads.
We ran this command with three analyses: ASan, MSan, and TSan
Figure 3c shows the results, comparing with the slowest analysis
used: TSan. As before, FreeDA’ deploys a native version in the back-
ground instead of an analysis. For one thread, the extra events from
intercepting pthread calls stress the SCB enough to show some
expected overhead when increasing the number of followers. For
two threads, the relative overhead is higher and the results are
noisy because each version has access to fewer physical cores than
active threads (2 cores per version). Even though FreeDA has non-
negligible overhead when not enough cores are available, it still
finishes execution much faster than ASan, MSan, or TSan alone,
significantly reducing the latency that the user experiences (i.e.
FreeDA shows the result to the user as soon as the native version
produces it). Adding more analyses increases the overhead due to
the underlying Varan implementation [28].

We repeated these experiments on two other repositories—namely
Memcached [7] with 1,220 modifications and Git [3] with 43,856—
and obtained similar results.

OpenSSH is a suite of utilities used to secure communication by
encrypting network traffic [10]. We used version 7.1. OpenSSH
uses the cryptographic primitives provided by the OpenSSL li-
brary [11]. We used OpenSSL 1.0.1 with two changes. First, we
compiled OpenSSL with -DPURIFY to remove undefined behav-
ior [12] which causes the DA versions to generate different random
data and diverge. Second, we added an option to initialize the ran-
dom number generator with a deterministic seed instead of using
/dev/random, to generate the same keys across different execu-
tions of OpenSSH.

We benchmarked OpenSSH by (1) executing the program true

(which simply exits with a zero return code) on the same machine
through the command ssh localhost, and (2) generating authen-
tication keys of size 4096 bits through command ssh-keygen, for
three different random seeds. The seed determines the execution
time, and we used three seeds that result in fast (∼0.3s), medium

6

FreeDA: Incompatible Stock Dynamic Analyses in Production CF ’18, May 8–10, 2018, Ischia, Italy

keygen-slow keygen-med keygen-fast ssh0.00.00.00.0
0.1
0.2
0.3

0.5
1.0
2.0
3.0
5.0

10.0
20.0
30.0
50.0

Ti
m

e
to

fin
is

h
(s

ec
)

Native
Valgrind

FreeDA 1Ki
FreeDA 32Ki

Figure 4: Time required to run the SSH command-line tools.
The numbers in the legend refer to the size of the SCB.

launch tree filtered
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

R
es

po
ns

e
tim

e
(s

ec
) Native

Valgrind
FreeDA 32Ki (1Ki)
FreeDA 32Ki

FreeDA 64Ki (1Ki)
FreeDA 64Ki
FreeDA 1Mi (1Ki)
FreeDA 1Mi

Figure 5: Response times for various tasks inHTop. The first
number in the legend is the size of the SCB, and the second
number is the size of the file-descriptor buffer.

(∼0.7s) and slow (∼3.0s) run time. Our results are shown in Fig-
ure 4. Even though Valgrind adds prohibitive overheads (up to 16x),
FreeDA is able to deploy all three analyses with negligible over-
head with a buffer size of 8Ki, predicted by inputing the number of
system calls of each command in Equation 2 in §3.

HTop is an interactive system monitor and process viewer [5]. We
designed a realistic interaction scenario between a user and HTop
version 2.0.1: the user launches HTop (launch); turns on tree view
(tree); presses the / key, types a pattern to filter, presses Enter and
waits for the result (filtered). Our scripts simulate a user latency
of one second between actions. HTop opens a large number of
files during normal operation, so the file-descriptor optimization
described in §4 was critical.

Figure 5 shows the response time for each simulated activity.
Valgrind causes HTop to run noticeably slower between each user
input. launch issues around 20Ki system calls, tree issues 6Ki, and
filtered issues between 13Ki–18Ki. Considering an average of Sr eq =
13Ki system calls for each NT = 1 interaction, and a slowdown
of F = 13 for Valgrind (measured by comparing the native and
Valgrind bars in Figure 5), Equation 2 in §3 predicts an SCB size
of 64Ki. Once again, our results confirm the prediction, given the
poor performance for 32Ki and the lack of improvement for 1Mi
over 64Ki. Increasing the size of the SCB only results in better
performance up to a point, after which we need to increase the size
of the file descriptor buffer. In the end, with large enough buffers,
FreeDA is able to mask the overhead of all three analyses running
in the background.

launch jump-tag edit-save auto sr0.000.000.00

0.01
0.02
0.04

0.10
0.20
0.40

1.00
2.00
4.00

R
es

po
ns

e
tim

e
(s

ec
)

Native
Valgrind

FreeDA 1Ki
FreeDA 4Ki

Figure 6: Response times for various tasks in Vim. The num-
bers in the legend refer to the size of the SCB.

Vim is a screen-oriented text editor.We designed a realistic scenario
for a user editing a file containing C code: the user launches Vim
(launch); jumps to a line by number, which has a function call,
and jumps to that function definition through a tag (jump-tag);
adds an extra argument to the function and saves the file (edit-
save); renames the function using the auto-complete feature in
Vim (auto); and, finally, performs a document-wide search-and-
replace, saving the document afterwards (s&r). Our scripts wait
for one second between each action to simulate user latency. We
measured the number of system calls issued for each command,
and used Equation 2 in §3 to predict a buffer size of 4Ki. Our results
are shown in Figure 6. As in previous experiments, with a large
enough buffer, the overhead of the analyses run in the background,
particularly Valgrind, is masked by FreeDA.

5.2 Server Programs
We tested FreeDA with three high-performance widely-used net-
work servers. Nginx [9] is a popular reverse proxy server, often
used as an HTTP web server, load balancer, or cache. We bench-
marked Nginx 1.11.2 with wrk2 [16] 4.0.0. Redis [13] and Mem-
cached [6] are high-performance in-memory key-value data stores,
used by many well-known services. We benchmarked Redis 3.0.7
and Memcached 1.4.36 with memtier [8] 1.2.10. We also used load
balancers HAProxy [4] 1.6.7 and Twemproxy [15] 0.4.1.

We conducted our experiments on a cluster of three machines
(M1, M2, and M3), all located on the same rack and connected by
a 1Gb Ethernet link. M1 is the machine described in §5.1. M2 and
M3 are two identical machines, each with a 3.50 GHz Intel Xeon
E3-1280 CPU (4 physical cores, 8 logical) and 16 GB RAM running
64-bit Ubuntu 14.04 LTS (kernel version 3.13.0-88).

5.2.1 Direct connection. We tested Nginx with a single analysis,
ASan, over a direct connection (i.e. no load balancing) with three
deployments: native, ASan, and FreeDA with ASan. M2 runs the
Nginx server configured to serve a 2KiB file, containing random
data, with protocol-level compression enabled. M1 runs wrk2, trans-
ferring the served file for 50 seconds using 4 threads and 80 open
connections.

We saturated the ASan deployment by running wrk2 with in-
creasing throughput, from 7K req/s, with a step of 1K req/s, until
the server could not maintain the throughput. We also measured
the latency reported for each throughput value.

7

CF ’18, May 8–10, 2018, Ischia, Italy Luís Pina, Anastasios Andronidis, and Cristian Cadar

7 8 9 10 11
Throughput (x1K req/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

La
te

nc
y

(m
s)

Direct Connection with Compression

Native ASan FreeDA

(a)

13 14 15 16 17 18
Throughput (x1K req/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

La
te

nc
y

(m
s)

Load Balancing with Compression

Native ASan FreeDA

(b)

11 12 13 14
Throughput (x1K req/s)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

M
ax

La
te

nc
y

(m
s)

Two Nginx instances (Weighted Load Balancing)

Native Valgrind FreeDA

(c)

Figure 7: Results for the Nginx experiments: (a) Latency of Nginx deployed natively, with ASan, andwith ASan through FreeDA
via a direct connection, (b) same experiment with two Nginx instances behind a load balancer, and (c) same experiment redi-
recting 19/20 of the requests to a native instance and 1/20 to an instance deploying either Valgrind or Valgrind through FreeDA.

M2Server

M1

Benchmark

Benchmark

Load Balancer

Load Balancer

.
.. .

..

M3Server

Figure 8: Architecture of the distributed experiments.

Figure 7a shows the results. ASan’s maximum throughput is
10K req/s (the native’s maximum throughput is 14K req/s). ASan
increases the latency significantly, by 61.2% at 10K req/s, while
FreeDA increases the latency by just 3.5% at 10K req/s (and even
less for lower throughputs). The bar for ASan at 11K req/s is missing
because ASan cannot sustain that throughput on this experiment.

We used a buffer size of 128, which we computed with Equation 2
in §3 as follows. Each Nginx request issues an average of Sr eq = 15
system calls. Given that the benchmark uses 4 threads, we should
provision enough buffer space for NT = 4. We can observe that
ASan introduces a slowdown of F = 1.5 at worst (10K req/s in
Figure 7a). We also ran this experiment with a buffer size of 256,
and we observed no improvement over the results we report here.

5.2.2 Load balancing Nginx. We repeated the previous experi-
ment, deploying Nginx behind a load balancer. M1 runs one pair of
wrk2 and the HAProxy load balancer, M2 and M3 run one instance
of Nginx each. Figure 7b presents the results, which are similar to
the previous experiment: FreeDA is able to hide the overhead of
ASan, while maintaining a higher throughput than ASan. We do
not observe a 2x increase in overall throughput as load balancing
itself introduces overhead.

FreeDA achieves a higher throughput, 17K req/s, because the DA
version reads the results of system calls directly from the shared
buffer, saving kernel context switches, as explained in §2.2.2. How-
ever, past this throughput, the buffer becomes full and the latency
of FreeDA increases to that of ASan. Note that there are bars missing
for ASan at 17K req/s and 18K req/s because ASan cannot sustain
these throughputs on this experiment.

20 30 40 50
Throughput (x1K req/s)

0.0

0.1

0.2

0.3

0.4
La

te
nc

y
(m

s)
Two Memcached Instances

Native
ASan

TSan
FreeDA

(a)

45 90 135 180
Throughput (x1K req/s)

0.0

0.1

0.2

0.3

0.4
Two Redis Instances

Native
ASan

TSan
FreeDA

(b)

Figure 9: Two Memcached instances (9a) and two Redis in-
stances (9b) behind a load balancer.

5.2.3 Load balancing Redis and Memcached. We repeated the
previous experiment for Redis and Memcached. We used the setup
shown in Figure 8, with M1 running Twemproxy and the memtier
benchmark, and M2 and M3 running an instance of Redis or Mem-
cached each. This time, Twemproxy became a bottleneck. We sat-
urated the server with multiple pairs of memtier/Twemproxy on
M1, each configured for 10K req/s for Memcached, and 45K req/s
for Redis. Each memtier instance issues the same number of GET
and SET operations with values of 100 bytes. We used a buffer size
of 128 for Redis, predicted using Equation 2 in §3 with NT = 4,
Sr eq = 17, and F = 1.5. For Memcached, we used a buffer size of
256, which was predicted in the same way with: NT = 4, Sr eq = 25,
and F = 2.

For both Redis and Memcached, we deployed two analyses in the
background, ASan and TSan. Figures 9a and 9b show the results for
Memcached and Redis, respectively. We observe a similar behavior
to the Nginx experiment, with FreeDA hiding ASan’s and TSan’s
latency while also achieving a slightly higher throughput.

8

FreeDA: Incompatible Stock Dynamic Analyses in Production CF ’18, May 8–10, 2018, Ischia, Italy

5.2.4 Weighted load balancing. Heavyweight analyses like Val-
grind would require a large amount of server instances to scale. As
discussed in §2.2, an alternative to avoid such a substantial resource
increase is to sample the traffic by configuring the load balancer
to redirect only a portion of the requests to a FreeDA instance. Of
course, sampling traffic means that we may miss bugs, but this is
a useful mechanism to control the trade-off between the analysed
traffic and utilization cost.

In our experiment, we used FreeDAwith Nginx and Valgrind. We
measured that Valgrind maintains a maximum throughput of 1/20
of the native’s, so we configured HAProxy to send 1/20 of the total
traffic to a FreeDA instance with Valgrind, and the remaining 19/20
to a native Nginx instance. We then repeated the previous experi-
ment, serving a 2KiB file of random data with protocol compression
enabled.

Figure 7c shows the maximum latency reported by wrk2. Note
that we report the maximum latency because the 1/20 requests
reaching Valgrind do not influence the average latency visibly.
As expected, Valgrind increases the maximum latency dramati-
cally, while FreeDA results in near-native maximum latency up to a
throughput of 13K req/s.

6 DISCUSSION
FreeDA pays a price in terms of utilization overhead. However,
many cores are left idle, and could be used by FreeDA. Furthermore,
our weighted load balancer approach for server applications allows
one to trade off checking coverage for utilization overhead, and
the decentralized architecture of FreeDA also allows to terminate
the execution of DA versions when resources are needed for other
tasks.

This paper focuses on deploying stock dynamic analyses in pro-
duction, stopping the execution if any of the analyses detects an
error. Still, FreeDA’s ability to deploy incompatible analyses on the
same execution can be useful in a testing context too, by deploying
several analyses on the same test run for the cost of the slowest
analysis (assuming the buffer gets full during testing).

We also note that FreeDA does not change the accuracy of the
analyses, is applicable beyond bug-finding dynamic analyses such
as Valgrind and compiler sanitizers—e.g., it could be equally used
to deploy other types of analyses, e.g., profilers, collecting detailed
trace logs during production runs, and more.

7 RELATEDWORK
Both the research community and industry have put a lot of effort
into designing many types of dynamic analysis techniques [18,
26, 32, 38, 39, 41]. However, many of these analyses are mutually
incompatible and cannot be run together on the same program
execution.

RepFrame [25] enables running incompatible stock analyses,
based on state machine replication via the Paxos consensus protocol
at the level of the POSIX socket API [24]. While RepFrame does
not require rewrite rules, it puts important restrictions both on the
types of applications that it can run (i.e. it targets server programs
only), and on the number of native and lightweight analyses that
have to be run (over half, in order to achieve distributed consensus
on the socket API). FreeDA does not impose any of these restrictions.

Bunshin [46] also uses a multi-version execution approach to
deploy incompatible dynamic analyses, focusing on reducing over-
head by distributing analysis checks across multiple versions. Com-
pared to FreeDA, Bunshin exhibits the following limitations: (1) it
only supports a limited class of analyses, those which instrument
the program with independent runtime checks, so tools such as
Valgrind are out-of-scope; (2) it requires internal knowledge of
the underlying tools, e.g., to know that one could distribute the
analysis checks across functions for ASan and MSan, and across
sub-sanitizers for UBSan [43]; and (3) it reduces the overhead of the
analysis substantially (e.g., from 107% to 47.1% for ASan and from
228% to 94.5% for UBSan), but this is still too high to be acceptable
in most cases in production. We note that the high overhead is
partially due to Bunshin’s focus on preventing attacks at runtime,
which is not what FreeDA aims to achieve.

Tomake an analysis deployable in production, one needs to make
it fast. Some analyses already meet this criterion. Fast, limited-in-
scope analyses such as stack canaries [22] are now enabled by
default in most compilers, while more general analyses such as
address sanitization [38] can already be used in production in some
situations, e.g., for certain interactive applications. Prior work has
looked at designing dynamic analyses with a low overhead through
a variety of means, such as hardware support [34, 48], paralleliza-
tion [33, 45] and trip wires [30]. In contrast, our approach allows
one to use any available analyses, and apply them concurrently on
the same program execution.

The idea of running dynamic analyses in parallel with a na-
tive version of the program is an old one. In particular, Patil and
Fisher [35] were the first ones to propose the use of what they call a
shadow process that runs in parallel with the native application and
performs additional dynamic analysis checks. Speck [33] extends
this idea by running the native application ahead speculatively
and forking multiple analysis instances, and SuperPin [45] by si-
multaneously executing distinct timeslices of the native program
under instrumentation. Aftersight [21] employs a record-replay
strategy similar to FreeDA, but operating at the virtual machine
(VM) level. A VM-based architecture has the advantage of support-
ing the analysis of kernel code, but it makes it harder to deploy
user-level software, such as interactive applications. FreeDA draws
inspiration from all this body of prior work and shares much of their
high-level ideas, but it distinguishes itself by enabling the deploy-
ment of incompatible stock dynamic analysis tools. This separation
of concerns between the experts writing the dynamic analyses and
the runtime platform that allows their concurrent deployment with
low overhead is an important contribution of FreeDA. Although
the analyses implemented by prior work are often as powerful as
those of popular tools like Valgrind, in practice they miss usability
features and optimizations that prevent their adoption in practice.
In contrast, FreeDA does not provide its own implementation of
dynamic analyses, and instead allows the best existing analyses to
be deployed transparently.

FreeDA is a multi-version execution system (MVE) [17, 20, 23, 27,
31, 37, 44, 47] which enables the low-overhead deployment of in-
compatible stock dynamic analysis tools. Unlike prior multi-version
execution systems, in which all versions run at roughly the same
speed, FreeDA has to support versions that run significantly slower
than the native one. Variant-based competitive parallel execution

9

CF ’18, May 8–10, 2018, Ischia, Italy Luís Pina, Anastasios Andronidis, and Cristian Cadar

creates variants of a sequential algorithm with different perfor-
mance characteristics (e.g., using different heuristics), run them in
parallel, and use the results of the algorithm that returns first [42].
As for FreeDA, the different variants have different speeds. But un-
like FreeDA, the approach is not concerned with the slow variants
falling behind, as the different variants run unsynchronized, and as
soon as one variant returns a result, the others are terminated.

Encoding system-call changes in MVE, including those intro-
duced by dynamic analyses, was addressed in previous work using
Haskell [31], BPF filters [28], or domain specific languages [36]. This
paper introduces a detailed taxonomy of the system-call changes
introduced by DA tools, but its main focus is on deploying these
tools efficiently in production.

8 CONCLUSION
While the last decades have seen the design of a diversity of effec-
tive dynamic analysis tools, many of them are incompatible with
one another, and their overhead is often too large for them to be
applied in production. FreeDA is a novel system that can be used
to transparently deploy incompatible stock dynamic analysis tools,
while providing close to native performance to users on realistic
scenarios. In particular, we have shown that FreeDA can be used to
run popular analyses such as those implemented by Valgrind and
Clang’s compiler sanitizers on both high-performance server appli-
cations, such as Memcached and Redis, and interactive applications,
such as Git and OpenSSH. We believe that FreeDA can significantly
increase the impact of dynamic analysis techniques, and thus make
software more reliable.

ACKNOWLEDGEMENTS
We thank Paul-Antoine Arras, Andrea Mattavelli and the anony-
mous reviewers for their useful feedback. This research was gener-
ously sponsored by the EPSRC through the Early-Career Fellowship
EP/L002795/1.

REFERENCES
[1] CMake, the cross-platform, open-source build system. https://github.com/

Kitware/CMake. Accessed: 2017-04-03.
[2] git –local-branching-on-the-cheap. https://git-scm.com/. Accessed: 2017-04-03.
[3] Git Source Code Mirror. https://github.com/git/git. Accessed: 2017-04-03.
[4] HAProxy — The Reliable, High Performance TCP/HTTP Load Balancer. http:

//www.haproxy.org/. Accessed: 2017-04-03.
[5] htop - an interactive process viewer for Unix. http://hisham.hm/htop/. Accessed:

2017-04-03.
[6] memcached — a distributed memory object caching system. http://memcached.

org/. Accessed: 2017-04-03.
[7] memcached development tree. https://github.com/memcached/memcached. Ac-

cessed: 2017-04-03.
[8] memtier — NoSQL Redis and Memcache traffic generation and benchmarking

tool. https://github.com/RedisLabs/memtier_benchmark. Accessed: 2017-04-03.
[9] NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy. https:

//www.nginx.com/. Accessed: 2017-04-03.
[10] OpenSSH homepage. http://www.openssh.com/. Accessed: 2017-04-03.
[11] OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/. Ac-

cessed: 2017-04-03.
[12] OpenSSL FAQ — Why does Valgrind complain about the use of uninitialized

data? https://www.openssl.org/docs/faq.html#PROG14. Accessed: 2017-04-03.
[13] Redis homepage. http://redis.io/. Accessed: 2017-04-03.
[14] The Expect Home Page. http://expect.sourceforge.net/. Accessed: 2017-04-03.
[15] twemproxy — A fast, light-weight proxy for memcached and redis. https://github.

com/twitter/twemproxy. Accessed: 2017-04-03.

[16] wrk2 — A constant throughput, correct latency recording variant of wrk. https:
//github.com/giltene/wrk2. Accessed: 2017-04-03.

[17] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: probabilistic memory
safety for unsafe languages. In PLDI’06.

[18] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with Dr.
Memory. In CGO’11.

[19] Cristian Cadar and Petr Hosek. 2012. Multi-Version Software Updates. In
HotSWUp’12.

[20] Liming Chen and Algirdas Avizienis. 1978. N-version programming: A Fault-
tolerance approach to reliability of software operation. In FTCS’78.

[21] Jim Chow, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling Dynamic Program
Analysis from Execution in Virtual Environments. In USENIX ATC’08.

[22] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow
Attacks. In USENIX Security’98.

[23] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-variant
systems: A secretless framework for security through diversity. In USENIX Secu-
rity’06.

[24] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015. Paxos
Made Transparent. In SOSP’15.

[25] Heming Cui, Rui Gu, Cheng Liu, and Junfeng Yang. 2015. Repframe: An efficient
and transparent framework for dynamic program analysis. In ApSys’15.

[26] Reed Hastings and Bob Joyce. 1992. Purify: Fast Detection of Memory Leaks and
Access Errors. In USENIX Winter’92.

[27] Petr Hosek and Cristian Cadar. 2013. Safe Software Updates via Multi-version
Execution. In ICSE’13.

[28] Petr Hosek and Cristian Cadar. 2015. Varan the Unbelievable: An efficient N-
version execution framework. In ASPLOS’15.

[29] K. Koning, H. Bos, and C. Giuffrida. 2016. Secure and Efficient Multi-Variant
Execution Using Hardware-Assisted Process Virtualization. In DSN’16.

[30] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. DoubleTake: Fast
and Precise Error Detection via Evidence-based Dynamic Analysis. In ICSE’16.

[31] Matthew Maurer and David Brumley. 2012. TACHYON: Tandem Execution for
Efficient Live Patch Testing. In USENIX Security’12.

[32] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program Supervision
Framework. Electronic Notes in Theoretical Computer Science 89, 2 (2003).

[33] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. 2008.
Parallelizing Security Checks on Commodity Hardware. In ASPLOS’08.

[34] Jeffrey Oplinger and Monica S. Lam. 2002. Enhancing Software Reliability with
Speculative Threads. In ASPLOS’02.

[35] Harish Patil and Charles Fischer. 1995. Efficient Run-time Monitoring Using
Shadow Processing. In AADEBUG’95.

[36] Luís Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian Cadar. 2017.
A DSL Approach to Reconcile Equivalent Divergent Program Executions. In
USENIX ATC’17.

[37] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In EuroSys’09.

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC’12.

[39] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer—data
race detection in practice. InWorkshop on Binary Instrumentation and Applica-
tions.

[40] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to detect undefined
value errors with bit-precision. In USENIX ATC’05.

[41] Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In CGO’15.

[42] Oliver Trachsel and Thomas R. Gross. 2010. Variant-based competitive parallel
execution of sequential programs. In CF’10.

[43] UBSan 2017. Undefined Behavior Sanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html. (2017).

[44] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,
Bjorn De Sutter, and Michael Franz. 2016. Secure and Efficient Application
Monitoring and Replication. In USENIX ATC’16.

[45] Steven Wallace and Kim Hazelwood. 2007. SuperPin: Parallelizing Dynamic
Instrumentation for Real-Time Performance. In CGO’07.

[46] Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. 2017. Bunshin: Compositing
Security Mechanisms through Diversification. In USENIX ATC’17.

[47] Hui Xue, Nathan Dautenhahn, and Samuel T. King. 2012. Using Replicated
Execution for a More Secure and Reliable Web Browser. In NDSS’12.

[48] Pin Zhou, Feng Qin,Wei Liu, Yuanyuan Zhou, and Josep Torrellas. 2004. iWatcher:
Efficient Architectural Support for Software Debugging. In ISCA’04.

10

https://github.com/Kitware/CMake
https://github.com/Kitware/CMake
https://git-scm.com/
https://github.com/git/git
http://www.haproxy.org/
http://www.haproxy.org/
http://hisham.hm/htop/
http://memcached.org/
http://memcached.org/
https://github.com/memcached/memcached
https://github.com/RedisLabs/memtier_benchmark
https://www.nginx.com/
https://www.nginx.com/
http://www.openssh.com/
https://www.openssl.org/
https://www.openssl.org/docs/faq.html#PROG14
http://redis.io/
http://expect.sourceforge.net/
https://github.com/twitter/twemproxy
https://github.com/twitter/twemproxy
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

	Abstract
	1 Introduction
	2 Design
	2.1 System-call changes introduced by DA tools
	2.2 Sustaining native performance

	3 Analytical Model
	4 Implementation
	5 Evaluation
	5.1 Interactive Programs
	5.2 Server Programs

	6 Discussion
	7 Related Work
	8 Conclusion
	References

