710 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

Symbolic Crosschecking of Data-Parallel
Floating-Point Code

Peter Collingbourne, Cristian Cadar, Member, IEEE, and Paul H.J. Kelly

Abstract—We present a symbolic execution-based technique for cross-checking programs accelerated using SIMD or OpenCL
against an unaccelerated version, as well as a technique for detecting data races in OpenCL programs. Our techniques are
implemented in KLEE-CL, a tool based on the symbolic execution engine KLEE that supports symbolic reasoning on the equivalence
between expressions involving both integer and floating-point operations. While the current generation of constraint solvers provide
effective support for integer arithmetic, the situation is different for floating-point arithmetic, due to the complexity inherent in such
computations. The key insight behind our approach is that floating-point values are only reliably equal if they are essentially built by the
same operations. This allows us to use an algorithm based on symbolic expression matching augmented with canonicalisation rules to
determine path equivalence. Under symbolic execution, we have to verify equivalence along every feasible control-flow path. We
reduce the branching factor of this process by aggressively merging conditionals, if-converting branches into select operations via an
aggressive phi-node folding transformation. To support the Intel Streaming SIMD Extension (SSE) instruction set, we lower SSE
instructions to equivalent generic vector operations, which in turn are interpreted in terms of primitive integer and floating-point
operations. To support OpenCL programs, we symbolically model the OpenCL environment using an OpenCL runtime library targeted
to symbolic execution. We detect data races by keeping track of all memory accesses using a memory log, and reporting a race
whenever we detect that two accesses conflict. By representing the memory log symbolically, we are also able to detect races
associated with symbolically-indexed accesses of memory objects. We used KLEE-CL to prove the bounded equivalence between
scalar and data-parallel versions of floating-point programs and find a number of issues in a variety of open source projects that use
SSE and OpenCL, including mismatches between implementations, memory errors, race conditions and a compiler bug.

Index Terms—Data-parallel code, floating point, symbolic execution, SIMD, OpenCL, KLEE-CL

1 INTRODUCTION

RECENT years have seen the emergence of a number of
programming models that improve program perfor-
mance by exploiting data-level parallelism. Such models
include single instruction multiple data (SIMD) and general
purpose graphics processing unit (GPGPU) computing,
sometimes called single instruction multiple threads
(SIMT).

Today, most commercial CPU designs include SIMD
capabilities, such as the Streaming SIMD Extensions (SSE),
3DNow! and Advanced Vector Extensions (AVX) for x86;
NEON for ARM; and AltiVec for PowerPC. GPGPU com-
puting is another popularly supported model, with AMD,
NVIDIA, ARM, Intel and Imagination Technologies all pro-
viding OpenCL-compliant interfaces to the compute capa-
bilities of their GPUs.

The challenge posed to the developer wishing to take
advantage of one of these programming models is to
develop a correct translation from existing serial code
to SIMD or OpenCL enabled data-parallel code. While
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automatic vectorisation is an active area of research [19],
[38], [46], the difficulty of reasoning about data depen-
dencies and arithmetic precision means that this transla-
tion is still a mostly manual process.

These programming models can be difficult to under-
stand and use correctly. The Intel Instruction Set [30],
[31] is a 1,674 page document describing over 400
machine instructions, over 100 of which are SIMD
instructions. The OpenCL 1.1 specification [34] comprises
385 pages of technical documentation describing more
than 600 individual functions. Any programming error
in the translation may cause the translated code to act
differently from the purportedly equivalent serial ver-
sion. Furthermore, because OpenCL is an open standard,
each vendor has its own implementation. Developers
cannot easily determine that their code is compliant with
the OpenCL specification, because they may unknow-
ingly be using undocumented quirks of their particular
implementation.

In this paper, we present a technique for reasoning about
the correctness of data-parallel optimisations involving
floating point. Our technique is based on symbolic execu-
tion, which provides a systematic way of exploring all feasi-
ble paths in a program for inputs up to a certain size. On
each explored path, our technique works by building the
symbolic expressions associated with the serial and trans-
lated data-parallel versions of the code, and trying to prove
their equivalence. During symbolic execution of OpenCL
kernels, we also maintain a log of all memory accesses for
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use in race detection. In particular, this paper makes the fol-
lowing contributions:

1.  We reason about the equivalence of floating-point
code using expression matching augmented with
canonicalisation rules; as far as we know, this is the
first practical symbolic execution based technique
that can precisely reason about the equivalence of
IEEE 754 floating-point arithmetic.

2. We address the path explosion problem associated
with symbolic execution by statically merging paths
using phi-node folding, a form of if-conversion.

3. We present a technique for symbolically testing for
the presence of concurrency errors in OpenCL ker-
nels which (a) explores a single canonical interleav-
ing that is likely to detect common use-after-free
errors, and (b) is able to detect races associated with
symbolically-indexed accesses of memory objects.

We implemented our techniques in a tool called KLEE-
CL, which we make freely available as open-source. We
evaluate KLEE-CL by applying it to code in the OpenCV
computer vision library, the Parboil benchmark suite, the
Bullet physics library and the OP2 library, and show that it
can prove the bounded equivalence between scalar and
data-parallel versions of floating-point code, as well as find
real bugs, including memory errors, race conditions, and
implementation mismatches.

We emphasise from the start that our technique is tar-
geted toward proving the bounded equivalence of data-par-
allel optimisations involving floating point, and is not
effective for general testing of floating-point programs. In
particular, our technique is prone to false positives and is
typically unable to generate concrete test cases triggering
the errors found.

2 BACKGROUND

This section discusses the relevant background material: we
start by presenting the main concepts related to floating-
point arithmetic (Section 2.1), SIMD (Section 2.2) and
GPGPU (Section 2.3), and then give a brief overview of sym-
bolic execution and the KLEE system (Section 2.4).

2.1 Floating-Point Arithmetic
Floating-point arithmetic is a commonly available facility
for performing imprecise computation over subsets of the
real numbers. The standard for floating-point arithmetic is
IEEE 754-2008 [27], which defines five floating-point for-
mats, of which the two most frequently used are binary32
(commonly known as single precision) and binary64 (com-
monly known as double precision). The binary32 format is a
32-bit format which allows for the representation of values
between —2'28 (exclusive) and —27'26 (inclusive), and
between 271% (inclusive) and 2'?® (exclusive) with 23 bits of
precision, while binary64 is a 64-bit format which allows for
representation of values between —2!0%' (exclusive) and
—271022 (ipclusive), and between 271922 (inclusive) and
21024 (exclusive) with 52 bits of precision [27], Section 3.2].
IEEE 754 also contains support for the representation of
zeros (both positive and negative—while negative zero is
not a real number, it may be obtained, for example, by
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Fig. 1. The SSE MULPS instruction.

multiplying a negative number by zero), infinities (both
positive and negative), NaNs (i.e., uncomputable results)
and denormalised numbers, which are used to represent
small numbers: for single precision, multiples of 2149
between —27 126 (exclusive) and —27 ' (inclusive), and
between 27'* (inclusive) and 27'%0 (exclusive) and for dou-
ble precision, multiples of 2717 between —27102? (exclu-
sive) and —2"19 (inclusive), and between 27107
(inclusive) and 271922 (exclusive).

2.2 SIMD

The single instruction multiple data capabilities of a proces-
sor may be used to perform the same operation on multiple
data items using a single machine instruction. Because the
processor typically carries out these operations in parallel,
data-level parallelism is achieved. Common applications of
SIMD include image processing, signal processing, com-
puter vision and multimedia. In one experiment [53], a
speedup of up to 5.5x has been observed for SIMD versions
of various signal processing and multimedia algorithms on
a three-way superscalar out-of-order execution machine
resembling the Intel Pentium II.

SIMD processors operate on one-dimensional arrays of
data known as vectors, and provide several vector registers
for this purpose. A typical SIMD instruction will take one or
more input vector register operands, and perform an opera-
tion element-wise on each operand element, storing the
result in an output vector register. For example, Fig. 1 shows
the operation of the Intel SSE multiplication instruction
MULPS.

2.3 The GPGPU Architecture and OpenCL
General-purpose graphics processing units offer a new com-
monly available facility for highly-parallel computing.
GPGPU architectures are most commonly single program
multiple data (SPMD) in nature, an evolution of the GPU’s
ability to perform multiple 3D rendering calculations in
parallel.

Open Computing Language (OpenCL) is an open stan-
dard for general-purpose parallel programming. OpenCL is
designed for heterogeneous architectures, with existing
implementations targeting CPUs, GPGPUs, dedicated accel-
erators and other processors. In order to utilise the comput-
ing power of GPGPUs most effectively, OpenCL is based on
the SPMD model.
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Fig. 2. Using a two-dimensional NDRange iteration space to vary the
data items accessed. The get_global_id function returns the unique
global work-item ID value for the specified dimension.

The fundamental unit of execution in OpenCL is the
work-item, which represents a single invocation of a speci-
fied kernel function. A kernel invocation constitutes the par-
allel execution of a set of work-items, optionally organised
into work-groups, which can share common resources such
as local memory. Each work-item conceptually resides at a
point in the kernel invocation’s iteration space, referred to
as the n-dimensional range, or NDRange. Data parallelism is
achieved by having the kernel function vary the data items
accessed depending on the position of the work-item in the
iteration space. Fig. 2, where each square represents a work-
item, shows an example of how work-item functions can be
used for this purpose.

2.4 Symbolic Execution and KLEE

At a high level, symbolic execution [35] is a technique that
allows the automatic exploration of paths in a program. It
works by executing the program on symbolic input, which is
initially unconstrained. As the program runs, any opera-
tions that depend on the symbolic input add constraints on
the input. For example, if the program input is represented
by variable x, than the statement y = x+3 would add the
constraint that y = x + 3. Furthermore, whenever a branch
that depends on the symbolic input is reached, the tech-
nique first checks if both sides are feasible, and if so, it forks
execution and follows each side separately, adding the con-
straint that the branch condition is true on the true side and
false on the other side. For example, given the symbolic
input x, where x is unconstrained, the symbolic execution
of the branch if (x == 3) would result in two paths being
explored, one on which z = 3 and one on which x # 3. The
conjunction of all constraints encountered on a particular
path is referred to as the path condition.

Fig. 3 illustrates the symbolic execution of a simple pro-
gram. On line 2 we assign an unconstrained symbolic value
to the previously declared variable x. On line 4 we branch
based on the condition z > 0. Since x is unconstrained,
both z > 0 and —(z > 0) are feasible, so execution forks
into two paths, one with the constraint « > 0 and the other
with the constraint —(x > 0). Each path executes its own
branch of the if statement, and both paths reach line 10 of
the program, where another if statement is encountered.
The first path forks again into two paths, because both
z > 10and —(z > 10) are feasible given z > 0. But the sec-
ond path does not fork, because = > 10 is infeasible given
=(z > 0).

1 int x; 0

2 mksymbolic (x); / \

3

4 if (x > 0) {

5 x>0 =(z > 0)
6 } else

7

8 1}

9

10 if (x > 10)

11

12} else {

13 .. z>10 —(z>10) x —(z > 10)
14 1}

Fig. 3. Example of symbolic execution.

In our work, we use symbolic execution to explore the
different paths in the serial and data-parallel implementa-
tions being tested, and for each pair of paths, we check
whether (1) there are no memory errors (these checks are by
default performed by KLEE); (2) the outputs computed by
the two implementations are equivalent (Section 6), and (3)
the implementations are race free (Section 7).

One fundamental limitation of symbolic execution is that
it only handles objects of fixed size (i.e., each data structure
in a program usually has to be assigned a concrete size, as
in the normal execution of the program). For OpenCL, this
means that the number of work-items must be concrete; in a
typical OpenCL program, the number of work-items (.e.,
the size of the NDRange) depends on the size of the input
being processed. As a result, we can only verify the bounded
equivalence of serial and data-parallel programs, i.e., we
can verify they are equivalent up to a certain input size.

The symbolic execution tool developed as part of this
work is based on KLEE [11], an open-source symbolic exe-
cution engine that operates on programs in the LLVM [39]
intermediate representation (IR) format. LLVM is a static
single assignment based IR used by a number of compilers,
including the Clang compiler [13], which features robust
support for a number of C family languages including C,
C++ and OpenCL C, making it a practical base for a sym-
bolic execution tool.

3 OvVERVIEW OF KLEE-CL

In this section we give an overview of our techniques for
symbolically executing SIMD and OpenCL code, as well as
our implementation of those techniques in KLEE-CL.

To apply symbolic execution to the verification of SIMD
and OpenCL code, we need to address a series of chal-
lenges. First, we need to model the semantics of both a real
SIMD instruction set and the OpenCL API, which the cur-
rent generation of symbolic execution tools does not handle.
Second, and more importantly, both SIMD and OpenCL
code make intensive use of floating-point operations. Due
to the complexity of floating-point semantics [27], it is
extremely difficult—if not infeasible—to build a constraint
solver for floating point that is capable of solving a wide
variety of real-world problems, and as a result such con-
straint solvers have only recently begun to be developed.
Thus, in this work we take a different approach, in which
we prove the equivalence of two symbolic floating-point
expressions by first applying a series of expression
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Serial Code

for (unsigned i = 0; I= n; ++i) {
r[i] = x[i] » y[i] = z[i];
}
Data-Parallel Code
for (unsigned i = 0; i != n; ++i) {
rv[i] = _mm_mul_ ps(xv[i], _mm_mul_ps(yvI[i], zv([i]));
}
Test Harness
assert (serial(...) == parallel(...));
LLVM C/C++ compiler repare input
(Ilvm-gcc/Clang) prep P
Static path SSE — LLVM IR transformation

merging

(
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Choose (serial path, ] no more paths
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—
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Execute path
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|\ J no
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Report race

Fig. 4. Architecture diagram for KLEE-CL.

canonicalisation rules, and then syntactically matching the
two expressions. The key insight into why our approach
works is that constructing two equivalent values from the
same inputs in floating point can usually only be done reli-
ably by performing the same operations.

To achieve this, the semantics for a substantial portion
of the Intel SSE instruction set are implemented via
translation to an intermediate representation (Sections 4.2
and 4.3), and the semantics for a substantial portion of
OpenCL is implemented using a symbolic OpenCL
model implementing both host-side and device-side
functionality (Section 4.4). We improve the tractability of

our technique by implementing an aggressive variant of
if-conversion using phi-node folding [12], [39], to replace
control-flow forking with predicated select instructions
(which has similar semantics to the C ?: operator), in
order to reduce the number of paths explored by sym-
bolic execution (Section 5).

3.1 Design and Architecture
Crosschecking a data-parallel routine against its serial
equivalent using our technique involves three main stages,
as illustrated graphically in Fig. 4.
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void zlimit (int simd, float =src,
size_t size) {
if (simd) |
_ ml28 zero4 = _mm_setl_ps(0.f);
while (size >= 4) {

_ ml28 srcv _mm_Jloadu_ps(src);

float «dst,

1

2

3

4

5

6 =

7 _ ml28 cmpv = _mm_cmpgt_ps(srcv, zerod);
8 __ml28 dstv = _mm_and_ps (cmpv, srcv);
9 _mm_storeu_ps (dst, dstv);

10 src += 4; dst += 4; size -= 4;
11 }

12 }

13 while (size) {

14 «*dst = *src > 0.f ? xsrc : 0.f;
15 src++; dst++; size——;

16 }

17}

18

19 int main(void) {

20 float src[64], dstv[64], dsts[64];
21 uint32_t *dstvi = (uint32_t «*)dstv;

22 uint32_t xdstsi (uint32_t x)dsts;

23 unsigned i;

24 klee_make_symbolic (src, sizeof (src), "src");
25 zlimit (0, src, dsts, 64);

26 zlimit (1, src, dstv, 64);

27 for (i = 0; 1 < 64; ++1i)

28 assert (dstvi[i] == dstsi[i]);

29 1}

Fig. 5. Simple test benchmark.

First, we write a test harness that invokes the serial and
data-parallel versions of the code on the same symbolic
input and asserts that their results are equal.

Second, we increase the applicability of our technique
by transforming the program’s LLVM intermediate repre-
sentation. We first apply an aggressive version of phi
node folding to statically merge paths (Section 5), which
reduces the number of paths we have to track by an
exponential factor on some benchmarks, and then trans-
form SSE instructions to generic LLVM instructions,
which allows us to analyse programs which use SSE
(Section 4.3).

Third, we use symbolic execution to explore all feasible
paths (potentially including some infeasible ones, see
below) in the code under test, while also checking for
race conditions (Section 7). In order to be able to reason
about OpenCL code, our technique implements a sym-
bolic OpenCL model (Section 4.4). Then, on each explored
path, we try to prove that the symbolic expressions corre-
sponding to the serial and data-parallel variants are
equivalent. To do so, we first canonicalise the expressions
through a series of expression rewrite rules and analyses,
and then use expression matching and constraint solving
to prove that the wresulting expressions are equivalent
(Section 6).

The fact that KLEE-CL can only reason about the
equivalence of floating-point expressions means that we
cannot always determine the feasibility of each side of a
symbolic branch. When this happens, our approach is to
always fork, potentially exploring infeasible paths. This
could result in false positives (as mismatches on infeasi-
ble paths are irrelevant) but no false negatives (we only
claim bounded equivalence when we can prove equiva-
lence on all explored paths, which include all feasible
paths up to the given input size).

3.2 Walkthrough

This section illustrates the main features of our technique by
showing how it can be used to verify the equivalence
between a scalar and an SIMD implementation of a simple
routine. Our code example, shown in Fig. 5, is based on one
of the OpenCV benchmarks we evaluated." The code
defines a routine called zlimit, which takes as input a
floating-point array src of size size, and returns as output
the array dst of the same size. Each element of dst is the
greater of the corresponding elements of src and 0. The
routine consists of both a scalar and an SIMD implementa-
tion; users choose between the two versions via the simd
argument. The SIMD implementation makes use of Intel’s
SSE instruction set.

The first loop of the routine, at lines 5-11, contains the
core of the SIMD implementation, and is a good illustration
of how SIMD code is structured. Each iteration of the loop
processes four elements of array src at a time. The varia-
bles srcv, cmpv and dstv are of type __m128, i.e., 128-bit
vectors consisting of four floats each. The code first loads
four values from src into srcv by using the SIMD instruc-
tion _mm_loadu_ps () (line 6). It then compares each ele-
ment of srcv to the corresponding element of zero4,
which was initialised on line 4 to a vector of four 0 values
(line 7). The output vector cmpv contains the result of each
comparison as a vector of four 32-bit bitmasks each consist-
ing of all-ones (if the srcv element was >0) or all-zeros
(otherwise). Next it applies the cmpv bitmask to srcv by
performing a bitwise AND of cmpv and srcv to produce
dstv, a copy of srcv with values <0 replaced by 0 (line 8).
Finally, it stores dstv into dst (line 9).

The second loop of the z1imit routine, at lines 13-16, is
the scalar implementation, which is also used by the SIMD
version to process the last few elements of src when the
size is not an exact multiple of 4.

The main function constitutes the test harness. In order
to use KLEE-CL, developers have to identify the scalar and
the data-parallel versions of the code being checked, and
the inputs and outputs to these routines. In our example,
we have one input, namely the array src. Thus, the first
step is to mark this array as symbolic, meaning that its ele-
ments could initially have any value (see Section 2.4 for
more details). This is accomplished on line 24 by calling the
function klee_make_symbolic () provided by KLEE,
which takes three arguments: the address of the memory
region to be made symbolic, its size in bytes, and a name
used for debugging purposes only. Then, on line 25 we call
the scalar version of the code and store the result in dsts,
and on line 26 we call the data-parallel version and store the
result in dstv. Finally, on lines 27-28 each element of dstv
is compared against the corresponding element of dsts.
Note that we use bitcasting to integers via the pointers
dstvi and dstsi for a bitwise comparison. As we will fur-
ther discuss in Section 4, this is necessary because in the
presence of NaN (Not a Number) values, the C floating-point
comparison operator == does not always return true if its
floating-point operands are the same, as distinguished from
a bitwise comparison.

1. Specifically thresh(BINARY_INV, f32); see Section 8.1.
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srcv cmpv dstvi[0]
Concat Concat And
— /" N\ T— VRN RN
ReadLSB ReadLSB ReadLSB ReadLSB SExt SExt SExt SExt SExt ReadLSB
/\ /\ /\ /\ | \ \ \ \ / N\
0 src 4 src 8 src 12 src FOgt FOgt FOgt FOgt FOgt 0 src
/ N\ / N\ / N\ / N\ / N\
ReadLSB0O ReadLSB0O ReadLSB(O ReadLSB(0 ReadLSBO
/ N\ / N\ / N\ / N\ / N\
0 src 4 src 8 src 12 src 0 src
dstv dstsi[0]
Concat Select
L N ]
And And And And FOgt ReadLSB 0
VEERN VEERN VEERN VRN / N\ /N
SExt ReadLSB SExt ReadLSB SExt ReadLSB SExt ReadLSB ReadLSB 0 O src
\ / N\ | / \ \ / N\ \ / N\ / N\
FOgt 0 src FOgt 4 src FOgt 8 src FOgt 12 src 0 src
/ N\ / N\ / N\ / N\
ReadLsSB0 ReadLsSB0 ReadLsSB0 ReadLSB0
/ \ / \ / \ / N\
0 src 4 src 8 src 12 src

Fig. 6. Symbolic expressions assigned to variables srcv, cmpv, dstv and to the array elements dstvi[0] and dstsi[0] of Fig. 5. src repre-
sents the symbolic array src. The ReadLSB (read least significant byte first) node represents a 4-byte little-endian array read, FOgt floating-point
greater-than comparison, SExt sign extension, Select the equivalent of the C ternary operator and Concat bitwise concatenation.

Before KLEE-CL begins executing the program, it first
carries out a number of transformations. One of these is a
lowering pass that replaces instruction-set specific SIMD
operations with standard, instruction-set neutral instruc-
tions. Section 4.3 discusses this pass in more detail.

KLEE-CL interprets a program by evaluating the trans-
formed IR instructions sequentially. During symbolic execu-
tion, values representing variables and intermediate
expressions are manipulated. Both vector and scalar values
are represented as bitvectors: concrete values by bitvector
constants and symbolic ones by bitvector expressions. Vec-
tors have bitwidth s x n, where s is the bitwidth of the
underlying scalar and n is the number of elements in the vec-
tor. Section 4 gives more details on our modelling approach.

For example, during the first iteration of the zlimit
SIMD loop, the variables srcv, cmpv and dstv defined at
lines 6-8 in Fig. 5 are represented by the three expressions
shown on the left-hand side of Fig. 6. Similarly, the results
dstvi[0] and dstsi[0] are represented by the two
expressions shown on the right side of Fig. 6.

When KLEE-CL reaches an assert statement, it tries to
prove that the associated expression is always true. For
example, during the first iteration of the loop at lines 27-28
the expressions dstvi[0] and dstsi[0] are compared.
To this end, KLEE-CL applies a series of expression rewrite
rules, whose goal is to bring the expressions to a canonical
normal form. As discussed in Section 6.2, one of our canon-
icalisation rules (#14 in Table 3) transforms an expression
tree of the form And(SExt(P), X) into Select(P, X,0), where
P is an arbitrary boolean predicate and X an arbitrary
expression. For our example, this rule transforms the
expression corresponding to dstvi[0] shown in Fig. 6 to
be identical to expression dstsi[0], shown in the same
figure. Once both expressions are canonicalised, we attempt
to prove their equivalence by (1) using a simple syntactical
matching for the floating-point subtrees, and (2) using a

constraint solver for the integer subtrees. As highlighted in
the introduction, the reason we are able to prove the equiva-
lence of floating-point expressions by bringing them to
canonical form and then syntactically matching them is that
constructing two equivalent values from the same inputs in
floating point can usually only be done reliably in a limited
number of ways. As a consequence, we found that in prac-
tice we only need a relatively small number of expression
canonicalisation rules in order to apply our technique to
real code.

One concern not covered by this simple example, which
has a single execution path, is the number of proofs that are
needed: during symbolic execution, every feasible program
path (and some infeasible ones) is explored, and we have to
conduct the proof on every path. Thus, an important optimi-
sation is to reduce the number of paths explored by merging
multiple ones together. This optimisation is discussed in
detail in Section 5.

4 MODELLING DATA-PARALLEL OPERATIONS

This section discusses our approach to modelling floating
point arithmetic, SIMD and OpenCL in KLEE-CL. In Sec-
tion 4.1 we start by presenting our floating point extension
to KLEE. Then, in Section 4.2 we describe our modelling of
SIMD vector operations, and in Section 4.3 we present our
lowering pass that translates SSE intrinsics into standard
LLVM operations. Finally, in Sections 4.4 and 4.5 we discuss
our approach to modelling the OpenCL environment and
runtime library.

4.1 Floating-Point Operations

In order to add support for floating-point arithmetic, we
extended KLEE's constraint language to include floating-
point types and operations. Floating-point operation seman-
tics are derived from those presented by LLVM, which are
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TABLE 1
Floating-Point Predicate Shorthand Semantics False and True
Are Always Simplified

FCmp operation Shorthand | Meaning
FCmp(X,Y, () 1 False
FCmp(X,Y, {=}) FOeq(X,Y) | Ord =
Femp(X,Y, {<}) FO1t(X,Y) | Ord <
Femp(X,Y, {<,=}) FO0le(X,Y) | Ord <
FCmp(X,Y, {>}) FOgt(X,Y) | Ord >
FCmp(X,Y, {=,>}) FOge(X7 Y) | Ord >
FCmp(X,Y, {<,>}) FOne(X,Y) | Ord #
FCmp(X,Y, {<,=,>}) FOrd(X,Y) | Ord test
FCmp(X, Y, {UNO}) FUno(X,Y) | Unord test
FCmp(X,Y, {UNO, =}) FUeq(X,Y) | Unord =
FCmp(X,Y, {UNO, <}) FU1t(X,Y) | Unord <
FCmp(X, Y, {UNO, <,=}) | FUle(X,Y) | Unord <
FCmp(X,Y, {UNO, >}) FUgt(X,Y) | Unord >
FCmp(X,Y, {UNO,=,>}) | FUge(X,Y) | Unord >
FCmp(X,Y, {UNO,<,>}) | FUne(X,Y) | Unord #
FCmp(X,Y, {UNO, <, =, >}) T True

themselves derived from the semantics defined in the IEEE
754-2008 standard [27]. The set of operations includes +, —,
x, <+, remainder, conversion to and from signed or unsigned
integer values (FPToSI, FPToUI, UIToFP, SITOFP),
conversion between floating-point precisions (FPExt,
FPTrunc) and the relational operators <, =, >, <, > and
#. We support the two most common floating-point types
specified by IEEE 754-2008, namely single precision
(binary32) and double precision (binary64), together with
half precision, 80-bit double extended precision and qua-
druple precision. Because all symbolic expressions are
untyped bitvectors, type information is associated with
operations, rather than operands.

Of particular importance for our crosschecking algorithm
is the fact that relational operators can occur in both ordered
and unordered form. Ordered and unordered operators differ
in the way they treat NaN values: if any operand is a NaN,
ordered comparisons always evaluate to false while unor-
dered ones to true. C implementations that comply with
Annex F of the ISO C standard [32] are required to provide
ordered relational operators, except for !=, which is unor-
dered # [27, Section 5.7], however unordered variants of all
operators are accessible using the ! and || operators (for
example, ! (x <y | | x>y) is equivalent to unordered =).

A comparison of two floating-point values x and y must
have one of four mutually exclusive outcomes: z < y,
x =y, x > yor x UNO y (unordered, i.e., either or both of x
and y are NaN). We establish a set O = { <,=, >,UNO} of
these outcomes. Then, any floating-point relational operator
may be represented by a subset of O: e.g., ordered < (FOle)
is represented by { <,=}.

In KLEE-CL, all floating-point relational operators are
represented using a generic FCmp expression. The first two
operands to FCmp are the comparison operands, whereas
the third operand is a subset of O, known as the outcome set
(represented internally using a vector of four bits, based on
the floating-point predicate representation used by LLVM
[39]). In this paper, we normally refer to predicate opera-
tions using shorthand names rather than using FCmp.

Table 1 gives a list of mappings between shorthand names
and FCmp operations. In Section 6.2 we show how outcome
sets can be used to simplify expressions involving floating-
point comparisons.

In floating-point arithmetic, each non-relational floating-
point operation uses a rounding mode to round the infinitely
precise result to one that can be represented as a floating-
point value, or in the case of a floating-point to integer con-
version, an integer value. The default rounding mode is
round to nearest, ties to even which rounds results to the near-
est representable value but in the case that the result is equi-
distant from two representable values, chooses the
representation in which the least significant bit of the man-
tissa is 0. Another rounding mode, which is used for float-
ing-point to integer conversions in C and C++, is round to
zero, which always discards the fractional component,
rounding values towards 0. Because none of the code we
worked with changes the rounding mode, we did not find it
necessary to model the current rounding mode. However,
SSE provides a floating-point to integer conversion which
uses the current rounding mode. Therefore, all operations
use round to nearest, ties to even, except for float to int con-
versions, which have an associated rounding mode of either
round to nearest or round to zero.

In the LLVM intermediate representation, floating-point
operations which are permitted to be inaccurate may be
marked with special metadata which indicates the maxi-
mum relative error of the result of that operation, in ulps
(units in the last place). The Clang compiler that we use to
compile OpenCL C kernels will add this metadata to single
precision floating-point division operations.” When KLEE-
CL encounters this metadata on an LLVM floating-point
instruction it will build an unconstrained symbolic value,
rather than the expression that would normally be created.
Note that the value is unconstrained because any con-
straints we may impose on it (for example, to bring it within
the required range of the correct result) would not be recog-
nised by our expression matching technique (Section 6),
which is based on subexpression matching rather than con-
straints, and is only designed to work with exact equality
tests rather than inequalities formed from ranged equiva-
lence tests.

Note also that we return a fresh unconstrained value
wherever we encounter an inaccurate floating-point
operation, regardless of whether the same operation may
have been encountered before with the same operands
(which may, for example, occur when cross-checking
two independent OpenCL based implementations of an
algorithm). This is weaker than our normal uninter-
preted-function treatment of floating-point operations,
and is necessary because the OpenCL C compiler is free
to use any implementation of the floating-point operation
at any given program point (provided that it fulfills
the accuracy requirements), and is not required to be

2. This is the only instance of a floating-point operator which is per-
mitted by the OpenCL C standard to be inaccurate. All other potentially
inaccurate operations, such as sqrt, are provided as builtin functions.
The necessary support does not currently exist in Clang for builtin
functions to receive this metadata, and as such we do not model this
aspect of sqrt and other OpenCL C builtin functions correctly.
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consistent between program points. For example, the
compiler may choose to use an exact floating-point divi-
sion at one program point in a first implementation of
an algorithm, and an inexact floating-point division at
another program point in a second implementation.

4.2 SIMD Operations

KLEE-CL’s implementations of SSE and of OpenCL C’s
SIMD capabilities are based on generic support for SIMD
vector operations.

Intel’s Streaming SIMD Extension operates on a set of
eight 128-bit vector registers, called XMM registers. Each of
these registers can be used to pack together either four
32-bit single-precision floats, two 64-bit double-precision
floats, or various combinations of integer values (e.g., four
32-bit ints, or eight 16-bit shorts).

The OpenCL C language provides a wider range of vec-
tor types. The base type of a vector may be an integer type
of width between 8 and 64 bits or a floating-point type of
width between 16 and 64 bits. The number of vector ele-
ments may range between 2 and 16. Thus, OpenCL C vec-
tors may be between 16 and 1,024 bits.

Since a vector may be bit-cast to another vector of the
same size but of a different data type (for example, by using
the as_type<N> operator in OpenCL C), it is possible to
perform an operation of a certain type on the result of an
operation of a different type: e.g., one could perform a sin-
gle-precision computation on the result of a double-preci-
sion, or even integer, computation. As a consequence, in
order to capture the precise semantics of SIMD vector oper-
ations, it is important to model SIMD vectors at the bit level.
Fortunately, KLEE already models its constraints with bit-
level accuracy [11] by using the bitvector data type provided
by its underlying constraint solver, STP [21]. Thus, we
model each vector as an STP bitvector that can be treated as
storing different data types, depending on the instruction
that uses the vector.

At the LLVM intermediate language level, SIMD vectors
are represented as typed arrays. There are three generic
operations that operate on these vectors: insertelement,
extractelement and shufflevector. Many other
LLVM instructions, such as add, perform element-wise
operations on vectors. Some SSE instructions, together with
all of the OpenCL C builtin functions that we implemented,
are implemented in terms of these instructions. All other
SSE instructions are implemented as LLVM intrinsics, as
discussed in the next section.

The extractelement operation takes as arguments a
vector (e.g., an eight element vector of 16-bit integers) and
an offset into this vector, and returns the element at that off-
set. For example,

$res = extractelement <8xil6> %a, i32 3

extracts the fourth element of the vector $a (which contains
eight 16-bit shorts) and stores it in $res.

The insertelement instruction takes a vector, a value
and an offset, and returns a vector identical to the supplied
vector except with the value at the given offset replaced
with the given value. For example,

%res = insertelement <8 xil6> %a, 116 10, i322

returns in $res a vector with all values equal to those of the
vector %a except for the third element which receives the
value 10.

The shufflevector instruction takes two vectors of the
same type and returns a permutation of elements from
those two vectors. The permutation is specified using an
immediate vector argument whose elements represent off-
sets into the vectors. For example,

%res = shufflevector <4 xfloat> %a, <4 x float> %b,
<4xi32><i320, i321, i324, i325>

returns in $res a vector with its two lower order elements
taken from the two lower order elements of %a and its two
higher order elements from the two lower order elements
of %b.

In our implementation, we model these three opera-
tions, together with the element-wise LLVM instructions,
using the bitvector extraction and concatenation primi-
tives provided by STP. The modelling is straightforward.
For example, if A is the 128-bit bitvector representing the
vector %a, Extract!f(A4,48) is the bitvector expression
encoding the extractelement operation above, where
Extract' (BV, k) extracts a bitvector of size W starting at
offset k of bitvector BV

4.3 SSE Intrinsic Lowering

Not all SSE instructions are implemented in terms of vector
operations; most of them are represented using LLVM
intrinsics. To enable comparison with scalar code, we imple-
mented a pass that translates them into standard LLVM
instructions by making use of the extractelement and
insertelement operations.

We added support for the 37 SSE intrinsics, which were
sufficient to handle the benchmarks with which we evalu-
ated our technique (Section 8). An example of a call to an
SSE-specific intrinsic is shown below:

$res = call <8 x 116> Q@llvm.x86.sse2.pslli.w(
<8 x il6> %arg, i32 1)

This instruction shifts every element of $arg left by 1 yield-
ing $res. The lowering pass transforms this call into the
following sequence of instructions:

%1 = extractelement <8 x il6> %arg, i32 0

%2 = shl il6 %1, 1

%$3 = insertelement <8 x il6> undef, il6 %2, i32 0
%4 = extractelement <8 x il6> %arg, i32 1

%5 = shl il6 %4, 1

%6 = insertelement <8 x il6> %3, il6é %5, i32 1
%22 = extractelement <8 x il6é> %arg, i32 7

%23 = shl il6é %22, 1

o

%$res = insertelement <8 x il6> %21, ilé %23, i32 7

These instructions carry out the same task as the intrinsic
but are expressed in terms of the standard LLVM instruc-
tions insertelement, extractelement and shl

4.4 OpenCL C Environment

Our OpenCL model is a partial implementation of the Khro-
nos OpenCL 1.1 Specification [34], which has been devel-
oped to meet the needs of a wide range of OpenCL client
programs, including those we evaluated (Section 8). It
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focuses on the general-purpose computation features of
OpenCL, rather than its graphical functionality such as tex-
tures, samplers and OpenGL interoperability.

The OpenCL model is made up of two distinct parts: the
OpenCL C environment, which models the execution of a
kernel on the device, and which we discuss in this section,
and the runtime library, which is used by the host to man-
age the execution of OpenCL kernels, and which will be dis-
cussed in the next section.

In this section, we describe our modelling of the execu-
tion of an entire NDRange, including the facilities presented
to the OpenCL C program. In our model, each work-item in
the NDRange is modelled using a single POSIX thread. We
use the POSIX threading model added to KLEE by Cloud9
[10]. This threading model sequentialises thread execution
using a run-until-yield scheduling strategy, meaning that a
thread will run until it explicitly yields its execution to other
threads. An OpenCL work-item can only yield using an exe-
cution barrier (i.e., a call to the barrier function) or when
the kernel function returns, so if the kernel does not contain
any execution barriers each work-item will run to comple-
tion sequentially.

To implement barrier, we use the wait list synchroni-
sation primitive provided by Cloud9. Waiting on a wait list
causes a thread to block until another thread notifies the
wait list. To support barrier, we implemented an addi-
tional synchronisation function, klee_thread_barrier,
which causes the thread to wait on the wait list unless the
number of threads waiting on the wait list (plus the thread
that called klee_thread_barrier) has reached a speci-
fied size. If that is the case, klee_thread_barrier will
notify the wait list, unblocking the other threads, and
then reset the memory access records (MARs) associated
with the data race detector (explained in further detail in
Section 7).

There is one wait list per work-group (the local wait list),
plus a wait list for the entire NDRange (the global wait list).
When a kernel function calls barrier, we call klee_
thread_barrier on the work-group’s local wait list with
a size equal to that of the work-group, and once a kernel
function returns, we call klee_thread_barrier on the
global wait list with a size equal to that of the NDRange.

The vector data types provided by OpenCL are used to
exploit the SIMD capabilities common among GPUs. For
example, float4 is the name of a data type referring to a
vector of four float values. Vector types are implemented
via the SIMD support discussed in Section 4.2.

The four disjoint address spaces provided by OpenCL
are named _ global, _ local, _ _constant and
__private. Globally available data resides in __global,
data local to a work-group in __local, read-only data in
__constant and function arguments and local variables in
__private.

Three of these address spaces (__global, __constant
and __private) can be modelled using the generic
address space used by regular C code, which is shared
across all work-items. The __constant address space is
protected from modification by the language [[34], Section
6.5.3]], so there is no need to use a separate address space in
KLEE-CL. It may seem unintuitive to model __private
using a shared memory space, however it is not normally

possible for two work-items to legally share pointers to each
other’s __private variables, so it is generally safe to do
this.> The __local address space, however, needs special
attention because __local data must be shared between
work-items in the same work-group, and each work-group
must have its own __local data. To model __local, we
added a group-local address space, which is an address
space shared between user-created thread groups. Each
thread belongs to a single thread group. Before beginning
kernel execution, we create one thread group for each work-
group, and set each thread’s group to match its work-group.

We found that most OpenCL C programs use very few of
the available built-in functions. Thus, our model imple-
ments 18 of the over 500 built-in functions specified by the
OpenCL 1.1 specification, which are enough to run our
benchmarks. These include various work-item functions,
math functions and the barrier synchronisation function.

4.5 The OpenCL Runtime Library

The OpenCL runtime library is specified by two sections of
the OpenCL specification: the OpenCL Platform Layer [34,
Section 4], and the OpenCL Runtime [[34], Section 5]. The
Platform Layer is used to query the set of available OpenCL
devices, while the Runtime is used to query and manipulate
objects on a specific device or set of devices such as device-
side memory buffers and compiled OpenCL programs. In
total, our model implements 30 of the 98 runtime library
functions specified as part of the Platform Layer and Run-
time; we discuss some of the more interesting ones below.

Platform layer. The Platform Layer implementation
presents a single OpenCL device to the client program. This
device presents itself as a CPU-based device with support
for the c1_khr_fp64 extension, which allows the kernel to
use double-precision floating-point arithmetic.

Command queues. An OpenCL command queue represents a
queue of operations to be performed on the device. Com-
mand queues are created using the clCreateCommand-
Queue function.

A client program may create an unlimited number of
command queues per OpenCL device, and schedule work
on them independently of one another. Client programs
may also create out-of-order command queues, which permit
the implementation to schedule commands out of order,
by supplying the CL_QUEUE_OUT_OF_ORDER_EXEC_MO-
DE_ENABLE flag at command queue creation time. By
scheduling multiple kernel invocations on an out-of-order
command queue, or by scheduling kernel invocations
across multiple command queues, a client program may
cause kernel NDRanges to run in parallel such that races
may occur between NDRanges. Because this would compli-
cate race detection (Section 7), in this work, we concern our-
selves only with the more common in-order case where
only one NDRange is executing at a time. Therefore, we do
not correctly model programs which create multiple com-
mand queues or which use the CL_QUEUE_OUT_OF_
ORDER_EXEC_MODE_ENABLE ﬂag.

3. A trick with barrier synchronisation can be used to share pointers
to __private memory, but such pointers are unusable in other work-
items. Because this is quite an esoteric trick, we did not find it necessary
to model it.
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Event objects. An OpenCL event object refers to a specific
pending command on a command queue, such as a kernel
invocation or a memory access, however in our model, we
only model kernel invocation events (all other commands
are performed synchronously). An event is modelled as a
reference to a set of POSIX threads, and in the case of a ker-
nel invocation the set encompasses all work-items in the
kernel invocation’s NDRange.

The clWaitForEvents function is used to wait for a
given set of events to complete. If clWaitForEvents is
called we wait for each thread in the set to terminate using
pthread_join.

Flush and finish. The c1Finish function is used to wait
for all commands in a given command queue to terminate.
Our implementation uses clWaitForEvents to wait for
each pending event in the command queue.

Buffer objects. An OpenCL buffer represents a block of
device accessible memory. Buffers may be created using the
clCreateBuffer function and destroyed using the c1Re-
leaseMemObject function. Buffers may reside either on
the host or on the device, and the implementation is respon-
sible for copying data between the host and the device as
necessary. KLEE-CL models all memory buffers as dynami-
cally allocated blocks of memory in the generic address
space, except for memory buffers allocated using the
CL_MEM_USE_HOST_PTR flag, which causes the implemen-
tation to use a user supplied block of memory directly.

Program objects. An OpenCL program object refers to a
compiled OpenCL C translation unit. Program objects may
be created using source code (using clCreateProgram-
WithSource) or precompiled binaries (using clCreate-
ProgramWithBinary). Our model only supports creation
from source code.

OpenCL program objects created using clCreate-
ProgramWithSource must be compiled using the
clBuildProgram function before they can be used. Our
implementation of clBuildProgram invokes a compiler
based on the OpenCL C front-end provided by the Clang
[13] compiler. Clang is designed to be used as a library,
which made it easy to integrate into KLEE-CL.

LLVM modules built using Clang are then dynamically
loaded by KLEE-CL. To implement this, we added dynamic
multiple LLVM module support to KLEE-CL, which allows
for new LLVM modules to be dynamically introduced into
a running instance of KLEE-CL, and for globals to be
dynamically looked up by name using a new special func-
tion, klee_lookup_module_global.

Kernel objects. An OpenCL kernel object refers to an indi-
vidual kernel function (a function marked with the __ker-
nel attribute) within an OpenCL C translation unit. The
clCreateKernel function is used to look up a kernel with
a specified name given a reference to an OpenCL C program
object. The klee_lookup_module_global discussed
above was used to implement this function.

The clEnqueueNDRangeKernel function discussed
in Section 2.3 is implemented by creating a local thread
group for each work-group and the local and global wait
lists mentioned in Section 4.4, and then starting one mod-
elled POSIX thread for each work-item in the NDRange.
Each thread sets its thread group to the thread group
assigned for its work-group, initialises thread-local

1 cl_mem bufl = clCreateBuffer (context, ...);

2 cl_mem buf2 = clCreateBuffer (context, ...);

3 clEnqueueWriteBuffer (cmd_queue, bufl,

4 /#+blocking writex/ CL_TRUE, ...);
5 clSetKernelArg(kernel, 0, sizeof (cl_mem), &bufl);
6 clSetKernelArg(kernel, 1, sizeof (cl_mem), &buf2);
7 clEnqueueNDRangeKernel (cmd_queue, kernel, ...);

8 clReleaseMemObject (bufl);

9 clEnqueueReadBuffer (cmd_gueue, buf2,
10 /+blocking_read+/ CL_TRUE, ...);
1 ...
12 __kernel void k(__global int xbufl,
13 __global int *buf2) {
14 buf2[get_global_id(0)] =
15 bufl[get_global_id(0)]x2;
16}

Fig. 7. OpenCL code containing a use-after-free error.

variables indicating the local work-item identifier, and
then calls the kernel function.

Because kernel invocations must occur in the correct
order (assuming an ordered command queue), our imple-
mentation of clEnqueueNDRangeKernel waits for all
previous kernel invocations to terminate using clFinish
before starting threads for the current kernel invocation. In
practice, this implies that at most one event may reside on a
command queue at a time, and that that event must be a
kernel invocation. In the next section, we discuss the conse-
quences of this with regard to memory error detection.

4.6 Detecting Use-After-Free Errors in OpenCL
Code

While use-after-free errors are traditionally detected by
examining memory usage in a serial fashion, OpenCL C
introduces a more insidious class of such errors, due to the
asynchronous nature of kernel invocation. For example,
consider the host program fragment shown in Fig. 7 (simpli-
fied from our Parboil mri-g benchmark, see Section 8.4).
On lines 1 and 2 we create two memory buffer objects buf1l
and buf2, and on line 3 we perform a blocking write of
input data to bufl. On lines 5 and 6 we set the first and sec-
ond arguments to kernel k (shown on lines 12-16) to bufl
and buf2, and on line 7 we enqueue an invocation of k, a
kernel which accesses memory from both of its arguments.
Then on line 8, we free the memory buffer bufl, and this is
where the error lies. Because k was invoked asynchro-
nously, it may not have completed execution before the host
reaches line 8, and a read of buf1l in k, such as that on line
15, would result in a memory error. (We can fix the error by
simply swapping lines 8 and 9.)

Compounding the difficulty of avoiding use-after-free
errors in OpenCL, it is easy to imagine how such errors may
be obscured. In the original mri-g benchmark, the calls
to clReleaseMemObject and clEnqueueReadBuffer
were in different functions in the source code. Furthermore,
it is not always clear to the untrained eye that functions such
as clEnqueueReadBuffer or clEnqueueWriteBuffer
will have the desired effect if invoked in blocking mode.

Our strategy for detecting use-after-free errors is to cause
the main thread (i.e., the thread hosting the OpenCL host
program) to continue running after an event is scheduled
on the command queue until it explicitly yields. Because the
clFinish, clwWaitForEvents, clEnqueueReadBuffer
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A
B| . Cl.
srl = ... %r2 =
[$rl, $B], [%r2, 3C]

D |%r = phi

Fig. 8. Diamond control flow pattern.

and clEnqueueWriteBuffer functions in our model will
all yield until their respective events have completed, the
host program is given the opportunity to cause an error by
freeing memory until it yields using one of these methods,
and in this way we are able to detect the majority of use-
after-free errors. However, due to deficiencies in our model,
as outlined below, we are unable to detect all use-after-free
erTOTS.

As mentioned in Section 4.5, we only allow a command
queue to hold one event at a time, and that event must be
a kernel invocation event. If an asynchronous memory
operation or a second kernel invocation is enqueued while
a kernel invocation event is already in the queue, a false
negative may result, as our model will empty the com-
mand queue in this case, invoking any kernels which may
have otherwise caused a use-after-free error to be detected
later. Furthermore, this technique would not work as is for
an OpenCL program which uses multiple command
queues, as a yield resulting from a wait for a first com-
mand queue may result in work-items from a second com-
mand queue being run.

5 STATIC PATH MERGING

With the data-parallel modeling of Section 4, KLEE-CL is
ready to start executing the program symbolically. One limi-
tation of symbolic execution is that the number of paths in a
program is exponential in the number of symbolic branches
encountered during execution. The worst case for data-par-
allel programs is that a symbolic branch is encountered
within a tight loop iterating over the input elements, causing
the number of paths to become an exponential factor of the
input size. Since KLEE attempts to execute every path to
completion, this behaviour may often prevent the (bounded)
verification of the correctness of data-parallel optimisations
in a practical amount of time even for small input sizes.

To alleviate this problem, we have designed a static path
merging pass that we apply before symbolic execution takes
place. We have found this pass to be highly effective in our
equivalence checking context (leading to a dramatic reduc-
tion in the number of explored paths on several bench-
marks), although in general the pass can lead to more
complex constraints that can put excessive strain on the con-
straint solver.

Our merging pass is an aggressive variant of phi-node
folding, also known as if-conversion [12], [39]. Phi-node fold-
ing usually operates on the static single-assignment (SSA)
form of a program [3] and targets branches with a control-
flow structure matching the diamond pattern shown in

TABLE 2

Phi Node Folding Instruction Costs
Instruction Cost | Unsafe?
Load, GetElementPtr, Add, 1
Sub, And, Or, Xor, Shl,
LShr, AShr, ICmp, Trunc,
ZExt, SExt
Select 2
FAdd, FSub, FMul, FDiv, 1 v
FAdd, FCmp

Fig. 8, commonly associated with 1f statements and the C
ternary operator. The beginning of block D contains one or
more phi nodes, which select the correct register values (in
our example, that of $r) depending on what block was pre-
viously executed.

Phi-node folding reduces the amount of forking in a pro-
gram by merging all four basic blocks in a diamond pattern
into a single block. This is accomplished by unconditionally
executing blocks B and C and using the branch predicate p
to select the result via select instructions. The select
instruction has similar behaviour to the C ternary operator,
but can be represented directly at the constraint solver level
without need for forking.

The traditional application of phi-node folding in com-
pilers has both safety and performance restrictions. Because
blocks B and C are executed unconditionally, it is only safe
to perform the transformation if neither block contains an
instruction that may throw an exception or cause any other
side effects. Most arithmetic instructions satisfy these con-
straints. However, floating-point instructions do not,
because they may throw an exception if either operand is a
NaN. Furthermore, the transformation is only performed
when folding is cheap enough, in order to minimise the
amount of unnecessary work done by the CPU.

Since KLEE-CL does not model floating-point excep-
tions, the behaviour of code which speculates evaluation
of the sides of an if statement involving floating-point
expressions is modeled identically to code which branches.
Therefore it is always safe to fold floating-point instruc-
tions in KLEE-CL. Furthermore, due to forking, the cost of
not applying the optimisation in the context of symboli-
cally executing data-parallel code is usually greater than
that of applying it.

As a result, we have adapted phi-node folding to aggres-
sively merge paths when we encounter the diamond pattern
shown in Fig. 8. Our implementation is built on top of
LLVM'’s SimplifyCFG pass, which contained a default
implementation of phi node folding. The existing pass was
highly conservative in that it was only triggered if each of
the basic blocks B and C contained at most one computation
instruction.

We enhanced the pass in two ways. First, we introduced
the concept of a phi node folding threshold, a value such that
the sum of the costs of LLVM instructions that are evaluated
to compute the unused operand of the select instruction
is never more than the given threshold (the costs we
assigned to various LLVM instructions are shown in
Table 2). Second, we added an option to enable unsafe phi
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result = 0;
for (unsigned i = 0;
result += temp[i];

i < size; ++1)

Fig. 9. Serial reduction.

node folding, which allowed the optimisation to be applied to
floating-point instructions despite the side effects described
above.” In our experiments (Section 8) we set a very high
cost threshold (1,000) and enable unsafe phi-node folding.
Practically, this allows the optimisation to be applied in all
possible circumstances.

To evaluate our static path merging technique, we per-
formed two types of experiments. First, we measured the
number of times it was applied to an LLVM bitcode file con-
taining the entire OpenCV library (a popular computer
vision library discussed in Section 8). Second, we measured
the number of execution paths explored for our OpenCV
benchmarks both with and without phi-node folding
enabled.

Using 1,000 as the threshold value and enabling unsafe
folding, the optimisation was applied 2,321 times. Of course,
not all these merged locations are executed by our bench-
marks, or are executed only with concrete inputs. Therefore,
this data is best interpreted together with dynamic measure-
ments which reveal the reduction in number of executed
paths. For each of our OpenCV benchmarks, we measured
the number of paths explored both with and without phi-
node folding enabled. Three of our benchmarks benefited
from phi-node folding—silhouette, transcf.43 and
transsf.43—by an exponential factor on the number of
elements in the input image. For these benchmarks, our tech-
nique was able to merge all program branches into a single
large select expression. For example, for the largest image
we tested in the silhouette benchmarks, sized 16 x 16,
the number of paths decreased from approximately 2%
paths (according to our theoretical calculations) to 1.

6 EQUIVALENCE TESTING

On every path explored via symbolic execution, KLEE-CL
tries to prove that the symbolic floating-point expressions
associated with the scalar and the data-parallel implementa-
tions are equivalent.

Proving that two floating-point expressions are equiva-
lent involves two main steps. First, KLEE-CL applies a
series of expression rewrite rules that aim to bring each
expression to a simple canonical form. These transforma-
tions include, among others, category analysis, identity
reduction, folding of bitwise operations, and concat merg-
ing, and are discussed in detail in Section 6.2.

After these canonicalisation rules are applied, KLEE-CL
determines if the two normalised expressions are equivalent
by using a simple expression matching algorithm. Starting
at the root of each expression, KLEE-CL recursively com-
pares pairs of subtrees from the two expressions. For integer
subtrees, the STP constraint solver is used to determine the

4. Our modifications to SimplifyCFG were subsequently contrib-
uted back to LLVM, and have turned out to have potential applications
outside of symbolic execution; for example, LLVM developers have
considered adjusting the default threshold to allow additional optimi-
sations to be applied [42].

__kernel void reduce(__global float xout,
__global float «in,
__local float *temp) {
size_t tid = get_local_id(0);
size_t size = get_local_size(0);
in[get_global_id(0)1];

temp[tid] =

size_t d =1;

for (; d<size; d<<=1) {
barrier (CLK_LOCAL_MEM_FENCE) ;
if (tid & (dx2) == 0)

temp[tid] += temp[tid+d];
}
out [get_group_1id(0)] = temp[0];

}
Fig. 10. OpenCL parallel reduction.

equivalence of the two subtrees. On the other hand, for
floating-point subtrees, the algorithm does not use the
semantics of the floating-point expressions themselves,
which are instead treated as uninterpreted functions. While
this may not work very well for integers, it is a good fit for
floating point—unlike integer arithmetic, constructing two
equivalent values from the same inputs in floating point can
usually only be done reliably in a limited number of ways.

If the matching algorithm fails to prove expression equiv-
alence, we try to substitute rewritten constraints that are
implied by the original constraints (i.e., they impose fewer
constraints on the input). This has the important property
that no false negatives are produced, i.e., that there are no
undetected errors. Any input that invalidates the original
equivalence will also invalidate the less constrained rewrit-
ten one. Our technique for building implied constraints is
discussed further in Section 6.3.

6.1 Assumptions

In floating-point arithmetic, it is unsound to perform certain
expression simplifications that are valid under ordinary real
number arithmetic. For example, it is unsound to simplify
z + 0 to z in floating point because if x is negative zero, the
result is positive zero. However, developers are often not
interested in such edge cases, and therefore we added the
option to allow the expression simplifier to make certain
normally unsound assumptions about the floating-point
model. Many of these assumptions were primarily moti-
vated by the different computational structure inherent in
parallel programming.

For example, a reduction operation in a serial program is
typically computed using an O(n) for loop which main-
tains an accumulated result based on the data elements
processed thus far, an example of which is shown in Fig. 9.
This implementation technique is inefficient for a data-par-
allel program, as it does not permit the exploitation of paral-
lel resources. By exploiting parallelism we can implement a
reduction algorithm that operates in O(logn) time. An
example of a parallel algorithm in OpenCL is shown in
Fig. 10. When executing this code symbolically using KLEE-
CL, we may obtain expressions of the form:

Serial (((((((04to) +t1) +to) + t3) + t4) +t5) + tg) + t7
Parallel ((to + tl) —+ (tQ + tg)) —+ ((t4 + t5) —+ (t(; —+ t7)).
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Suppose that we now wish to show equivalence between
these two expressions. While it is unsound in general to
treat them equivalently (0 + ¢, cannot be simplified to ¢,
and the + operator is not associative), the developer may
decide that these differences are acceptable and enable
assumptions that allow KLEE-CL to simplify one expression
into the form of the other.

We implemented a total of four assumptions, which can
be enabled via individual command line arguments:

1. The positive zero assumption allows the simplifier to
disregard the difference between positive and nega-
tive zero, which is usually inconsequential.

2. The finite assumption allows the simplifier to assume
all results are finite (i.e., not =00 or NaN).

3. The ordered assumption allows the simplifier to
assume all results are ordered (i.e., not NaN).

4. The associativity assumption allows the simplifier to
assume that floating-point operations are associative.

Each of these assumptions is implemented through addi-

tional expression simplification rules which are enabled by
the assumption. Further details on each simplification rules
are found in the next section.

6.2 Expression Transformations

The expression canonicalisation rules presented in this
section are essential to the success of our expression
matching approach. Their main goal is to bring expres-
sions to a simplified normal form, in which they are eas-
ier to compare.

Table 3 lists the main rewrite rules we implemented. The
first 10 are specifically targeted toward floating-point
expressions, while the next eight are applicable to both
floating-point and integer ones. We note that not all rules
preserve floating-point exception behaviour. For example,
rule 19 may postpone or even eliminate an exception if X is
NaN; such rules are typically applied by compilers, but if a
stricter form of equivalence is required, they should be
disabled:

1. Floating-point relational operators. As explained in Sec-
tion 4.1, each floating-point relational operator has
an associated outcome set. Rules 1-3 apply simplifi-
cations to boolean And, Or and Not operators
by manipulating the outcome set. For example,
0r(FO1t(X,Y),FOeq(X,Y)) simplifies to FOle(X,Y).
Rules 4-6 implement similar simplifications, making
use of the swap function defined below:

If on{<,>}={>}, swap(o)=(\{>}HU{<}
Ifon{<,>}={<}, swap(o)=(o\{<}HU{>}
Otherwise  swap(o) = o.

2. Category analysis. Category analysis, a simplified
form of interval analysis [45], affords us a crude
means of expression optimisation using a simple
abstract interpretation of the semantics of certain
floating-point expressions. We establish a category
set C = {NaN, —o0, —, 0, +, 400} which covers all cat-
egories of floating-point values (NaN values, negative
infinity, negative values except negative zero/infin-
ity, positive or negative zero, positive values except

positive zero/infinity, and positive infinity). The cat-
egory set cat(z) C C of an expression z is defined as
the set of categories the expression = may be in. We
define cat(z) recursively based on the category sets
of subexpressions of x. For example, if + € cat(z)
and + € cat(y) then {4, +oo} C cat(z +y). Our sys-
tem is capable of computing an accurate category set
for most floating-point expressions.

Category sets are used to simplify and normalise

floating-point relational operations. For example, if
cat(z) = {0, —} and cat(y) = {0, +} then both z > y
and x UNO y are infeasible. Therefore x > y is simpli-
fied to false, z <y to true and —(z < y) (unor-
dered >) is normalised to x = v.
Floating-point equality comparison. SSE code some-
times performs integer comparisons by first con-
verting to floating-point format. This may be due to
combining floating-point and integer comparisons
in a single expression. An example of this is found
in the OpenCV routine cvUpdateMotionHistory
in the silhouette benchmark, which converts an
integer vector to a floating-point vector s0, com-
pares the elements to 0 and performs a logical AND
with another vector:

_ ml28 s0 = _mm_cvtepi32_ps(...);
_ ml28 fz = _mm_setzero_ps();
_ ml28 m0 = _mm_and_ps (_mm_xor_ps (v0, ts4),

_mm_cmpned_ps (s0, fz));

The corresponding scalar code performs a straight-
forward integer comparison of the values loaded
here to s0. Rewrite rules 8 and 9 support such cases
by providing a normalisation of floating-point com-
parisons to integer comparisons. It is not sound to
perform this normalisation unless two conditions
are met. First, C' must be representable in X’s type.
This means that C' must not have a fractional compo-
nent and must satisfy —2""!<C < 2"°! (for
signed conversion) or 0 < C < 2" (for unsigned
conversion) where W = width(X). If C' does not
meet these requirements, the comparison will
always yield false.

Second, X must not be subject to rounding if
it is to match C. If X could be rounded, the com-
parison would match multiple values of X. For
example, using the IEEE single precision format,
with a 23-bit mantissa, the values 2?* and 2** + 2
have adjacent representations. If X were 22 4+ 1 it
would be rounded to 22! +2 during integer to
floating-point conversion and would match a C of
that value. We must therefore require that
|C| < 2M*1 where M is the mantissa bitwidth of
C’s type.

Removing unnecessary FPExt operations. Transforma-
tion rule 10 eliminates redundant floating-point
extensions (e.g., from float to double) where the
result is coerced to integer.

Folding Concat sequences. Rule 11 performs constant
folding on sequences of Concat operations. For
example, Concat(11,Concat(00,X)) gets simplified
to Concat (1100, X).
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6.  Partial constant folding with equality. Given an expres-
sion of the form Eq(C,Concat(X,Y)) where C is a
constant, if either X or Y is constant then we com-
pare the higher-order bits of C' to X (or the lower-
order bits to Y). If the bits are not equal, we can
safely replace the entire expression with false. If
the bits are equal, we replace the expression with an
equality comparison of either the lower order bits of
C with Y (if X constant) or the higher-order bits of C
with X (if Y constant).

7. Simple normalisation rules. Rules 13-16 implement
simple expression transformations via which certain
bit-level operations are rewritten using Concat,
Extract and Select. For example, a shift left
on W bits by a constant amount C' can be rewritten
as an extract of length W —C from offset C
concatenated with C' zero bits.

8. Folding and unfolding of bitwise operations. Rewrite
rule 17 implements folding of bitwise operations
through Concat to take advantage of partial constant
folding. For example, if f = And and X, = 0 then X,
can be completely eliminated since And(0,X;)
reduces to 0.

Note that this rewrite rule can also be applied if
any of the operands to the bitwise operation is a con-
stant expression, by treating the constant as a Con-
cat of two smaller constants.

Rewrite rule 18 implements a similar transfor-
mation that unfolds the Extract of a bitwise
operation to take advantage of partial constant
folding. For example, if W =2, N =0, f =0r and
Y = 1,100, then the rule will simplify the entire
expression to bitvector 00.

9.  Arithmetic equivalences for floating point. These rules
implement a set of straightforward arithmetic equiv-
alences. Rules 19 and 20 always hold under floating-
point arithmetic, regardless of the value of z. It is
therefore safe to always apply this rule.

Rules 21 and 22 do not hold universally under
floating-point arithmetic. In the case where z is a
negative zero, the expression « + 0 evaluates to posi-
tive zero. These two values are distinct at the bit
level, which prevents us from applying the simplifi-
cation in the general case. We therefore only enable
this rule if the positive zero assumption is enabled.

Rules 23 and 24 do not hold universally either. If =
is negative, x x 0 evaluates to negative zero. If x is
infinite or NaN, z x 0 evaluates to NaN. Therefore,
this rule is only applied if the positive zero and finite
assumptions are enabled.

10.  Floating-point associativity. These rules implement
associativity for the floating-point + and x operators
by re-arranging right associative operations into left
associative ones. This rule is only applied if the asso-
ciativity assumption is enabled.

6.3 Building Implied Constraints

If the matching algorithm fails to prove expression equiva-
lence, we try to use rewritten expressions that are implied
by the original constraints. In this way, no false negatives

are produced, i.e., that there are no undetected errors. Any
input that invalidates the original equivalence will also
invalidate the (less constrained) rewritten one. For example,
one important way in which we use this idea is in handling
expressions of the form FPToSI(X) and FPToUI(X) (conver-
sion from floating point to integer). Each expression of this
form is substituted by an unconstrained symbolic integer
variable. While a new variable is created for each unique
expression of this type, identical expressions are substituted
with references to the same variable. After the substitution,
we can use our constraint solver STP to determine if the
rewritten integer expressions are equivalent. If this is the
case, then we know the original expressions are also equiva-
lent. However, if the constraint solver cannot prove the
equivalence, the mismatch could be a false positive.

Another example are chains of min and max operations.
Our technique recognises the expression idiom representing
the floating-point min and max operations:

min(X,Y) = Select(F0lt(X,Y), X,Y)
max(X,Y) = Select(FOlt(Y, X), X,Y)

and attempts to match the operands of a chain of min and
max operations where it is safe to do so. Because floating-
point min and max are not commutative, and are in general
not associative, it is usually unsafe to do this. The root cause
for min and max not being commutative or associative is
that FO1t, the ordered floating point < operator, is not a
total order in the presence of NaNs.

To see why the operations are not commutative, consider
the evaluation of min(X,Y) where one of the operands is
NaN and the other is not NaN. In this case, the condition
would always evaluate to false and Y is always returned
regardless of which operand is NaN. A similar result can be
drawn for max.

To see why the operations are not associative, consider
the expressions min(min(X,NaN),}Y) and min(X,min(NaN,
Y)). As we have seen min(X,NaN) evaluates to NaN and
min(NaN,Y) to Y so the expressions reduce to Y and
min(X,Y) respectively.

There are two cases in which it is safe to match oper-
ands. One possibility is that if the ordered assumption is
enabled, we are allowed to assume that the operands to
the FOlt operation are ordered, and that therefore FOlt
is a total order. The other possibility is if the min/max
chain is of the form:

nin(X,min(Y,min(Z, +00)))
or max(X,max(Y,max(Z, —0))).

If any of the operands X, Y or Z are NaN, that operand
will effectively be excluded from the computation, because
the second operand (the remainder of the min/max chain)
will be selected.

While the FPToSI/FPToUI and the min/max examples
below provide a feel for the type of implied constraints that
we generate, we formalize the process below, for the more
technical reader. Each constraint C' in the constraint set is
replaced with rw(C'), where rw is defined in Fig. 11 together
with two helper functions, rw’ and ce. rw'’ takes an argument
representing the sense (positive or negative) of the current
expression, such that for any KLEE-CL expression F,
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rw(E)

rw'(And(X1, Y1), n)
rw’ (0r(X*1, Y1), n)
rw'(Eq(X, false),n)
rw'(Eq(X,Y), n)
rw’(FUeq(X,Y),n)
w'(FOne(X,Y),n)

w'(E,n)

ce(E,E)

CB(E(), 1)

ce(FAdd(XO, YQ) FAdd(Xl, Yl))
ce(FMul(XO,YO) FMul(Xl,Yl))
ce(f(Xo,Yo), f(X1,Y1))

Ce(chp(XOa Yo, O)a chp(le Yla O))

ce(f(Xo), f(X1))
ce(f(X§V), F(X))
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w'(E, 1)

wnd(rw' (X, n), rw (Y,m)))

or (ru (X, n), v/ (Y, m))

Eq(rw'(X,—m), false)

ce(X,Y) 1f n

ce(X,Y)if n

Eq(ce(X,Y), false) if —n
true  if hasFP(E)A—n
false if hasFP(E)An
E otherwise

true

Eq(EO, El) if _\hG,SFP(Eo) A _‘hQSFP(E1)

Or(And(ce(Xo, X1), ce(Yo, Y1)), And(ce(Xo, Y1), ce(Yo, X1)))

Or(And(ce(Xo, X1), ce(Yo, Y1)), And(ce(Xo, Y1), ce(Yo, X1)))

And(ce(Xo, X1),ce(Yo, Y1)) if f € {FSub,FDiv,FRem}
Or(And(ce(Xo, X1),ce(Yp, V1)), fON{<,>}=0vV

And(C@(Xo,}/l),Ce(Yo,Xl))) Oﬂ{<,>} = {<,>}

And(ce(Xo, X1), ce(Yy, Y1)) otherwise

ce(Xo, X1) if f € {FSqrt,FCos,FSin}

ce(Xo, X7) if f € {FPExt,FPTrunc}

Ct’i(Z]‘E‘.X'tVV1 (Xo),Xl) if Wy < Wq
ce(UIToFP(X,'°), UIToFP(X ")) = e(Xo, ZExtWo (X)) if Wy > W)
ce(Xo, X1) otherwise
ce(SExth (Xo),Xl) if Wy < Wy
ce(SIToFP(X,"°), SIToFP(X|")) = ce(Xo, SExtWo(X1)) if Wy > W)
ce(Xo, X1) otherwise
ce(So@Select(Py, Xo, Yo), true %f Po-: Eq(Pl,false.) ANXo=YV1A"NX1=Y,
S1@Select(Py. X1, 1)) true }f minOps(Sy) = minOps(St)
! LA A true if maxOps(Sy) = maxOps(Sy)
ce(Eg,E1) = false

Fig. 11. The rw rewriting function, and its helper functions rw' and ce.

E — ru/(E, 1) and ruw/(E, T) — E. ce builds an expression
such that for any pair of KLEE-CL expressions X,Y,
ce(X,Y) — X =Y. ruw' and ce are evaluated in a top-down
pattern matching fashion, whereby the first rule whose pat-
tern matches and whose conditions are satisfied is used,
regardless of whether any other rule matches.

rw' and ce use the following functions:

e hasFP(z), which is true iff z contains any floating-
point subexpressions other than expressions of the
form FPToSI(X) and FPToUI(X) (conversion from
floating point to integer) and subexpressions thereof,
which are handled separately;

e minOps(z) and mazOps(x) which, if the given
expression is an idiomatic min (resp. max) opera-
tion whose operands are safe to match according
to the rules given above and the current set of
enabled assumptions, returns the operand set, else
returns {z}.

After applying these rewrite rules, each expression of the
form FPToSI(X) and FPToUI(X) is substituted by an uncon-
strained symbolic integer variable, as discussed at the
beginning of the section. We can now use our constraint
solver STP to determine if the rewritten integer constraints
are satisfiable. If not, then we know that the original

constraints are also unsatisfiable. If we were on the false
branch of an equivalence checking assert statement, we
have shown the two expressions to be equivalent. However,
if the constraint solver finds our rewritten constraints to be
satisfiable, the mismatch could be a false positive.

We show below an example of a constraint that may be
encountered during the evaluation of an assert statement
of the form:

assert (bitwise_eg(x+y, vy +X));

where z and y are unconstrained symbolic expressions, and
bitwise_eq is a function that tests for bitwise equality
over floats. The false branch constraint will be of the form:

Eq(Eq(FAdd(X,Y),FAdd(Y, X)), false).

The application of the rw function to the expression is
shown in Fig. 12 (each function application or expression
simplification step is shown on a separate line).

6.4 Integrating a Precise Floating-Point Solver

Because our equivalence checking algorithm is based on
expression matching augmented by canonicalisation rules,
it is prone to false positives, i.e., it can say that two expres-
sions are not equivalent when in fact they are. (However,
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rw(Eq(Eq(FAdd(X,Y),FAdd(Y, X))
rw’(Eq(Eq(FAd4(X,Y),FAdd(Y, X)

(
Eq(ce(FAAA(X,Y),FAAd(Y, X)), false)
Eq(0Or(And

Eq(Or(And
Eq(Or(false, true),false)
Eq(true,false)

false

O RN U W

,false))
),false), 1)
Eq(rw’(Eq(FAAA(X,Y),FAdd(Y, X)), T), false)

(ce(X,Y),ce(Y, X)), And(ce(X, X),ce(Y,Y))), false)
(false,false), And(true, true)), false)

(rw application

(rw application

(rw" application

(ce application

(ce application

(And constant folding
(Or constant folding
(Eq constant folding

—_—— e o OO

Fig. 12. Application of rw to expression Eq(Eq(FAdd(X,Y),FAdd(Y, X)), false).

remember that KLEE-CL has no false negatives, i.e., when it
says that two expressions are equivalent, this is guaranteed
to be true.)

To better understand the nature of these false positives,
we integrated a bit-precise floating-point constraint solver
recently made available in CBMC [36]. We report in Sec-
tion 8.7 our experience using this solver to resolve some of
the mismatches reported by KLEE-CL, as well as discuss its
performance limitations.

7 DATA RACE DETECTION FOR OPENCL

Data race detection is used when executing OpenCL C ker-
nels to detect conflicts between memory accesses carried
out by different work-items. Our analysis is able to detect
races involving both concrete and symbolic memory
addresses. In this section we give a description of our analy-
sis and illustrate it using a number of case studies.

Our model implements race detection capable of detect-
ing, on each path explored, read-write and write-write races
across work-items. Note that as mentioned in Section 4.5,
our analysis is targeted towards detecting races between
work-items in the same NDRange, and not between multi-
ple NDRanges running concurrently, as may occur when
using multiple or out-of-order command queues. Neither is
our analysis intended to detect data races between a work-
item and the host program—for the purposes of our analy-
sis, all memory accesses performed by the host program are
ignored.

To detect data races, we keep for each byte in the generic
and group-local address spaces a memory access record of
accesses to that byte by a work-item thread. Each item in
the MAR consists of:

1. the thread identifier of the most recent work-item to
access the byte without an intervening execution bar-
rier (thread-id);

2. the work-group identifier of the most recent work-
group to access the byte (wg-id);

3. four flags indicating whether the byte was:

a. written by one or more work-items (write),
read by one or more work-items (read),
c. read by multiple work-items without an inter-
vening barrier (many-read),
d. read by multiple work-groups (wg-many-read).
The purpose of storing many-read and wg-many-read sepa-
rately is to correctly model the behaviour of execution bar-
riers—the analysis needs to be able to preserve the fact that

a byte has been read by multiple work-groups across execu-
tion barriers, because execution barriers do not prevent
inter-work-group accesses from racing.

The MAR for each byte is initialised such that each iden-
tifier is set to zero, and each flag is cleared. The work-item
identifier zero is treated specially by our analysis, and is
used to indicate that no work-item has accessed that byte
since the previous execution barrier, or since the start of the
program, if no execution barrier has been encountered yet.
It is for this reason that no work-item may use zero as its
identifier if it is to participate in the analysis (in KLEE-CL,
the host program uses identifier zero, and as mentioned is
ignored by our analysis).

The MAR may be stored concretely or symbolically. The
concrete representation of the MAR is an array of structs,
each holding the MAR for one byte in the array. The sym-
bolic representation of the MAR is a set of six symbolic
arrays, each as large as the underlying array, and each rep-
resenting one of the MAR attributes. For efficiency we store
the MARs concretely by default, but if a symbolically
indexed memory access is performed, the array’s MARs are
converted to the symbolic representation.

Whenever a memory access occurs, the MAR is
inspected for any race conditions, and then updated. A
race condition can be a read-after-write, a write-after-write
or a write-after-read performed by a work-item or work-
group other than that identified by the corresponding
entry in the MAR, or any write-after-read if either of the
many-read or wg-many-read flags are set.

For our race detection technique to be sound, we must
correctly handle both execution barriers and the end of ker-
nel function execution. Specifically, we must ensure that
intra-work-group memory accesses on either side of an exe-
cution barrier are not considered to race, but that inter-
work-group accesses are considered to race. We must also
ensure that all memory accesses performed by the present
kernel invocation are not considered to race with memory
accesses performed by future kernel invocations.

This is implemented by causing the klee_thread_
barrier function, which we use to implement barrier
and which is also called once the kernel function returns (see
Section 4.4), to reset certain fields of the MAR before it
returns.

When klee_thread_barrier iscalled from barrier,
we locally reset the MAR by setting the work-item identifier
to zero and clearing the many-read flag of each MAR whose
work-group identifier matches the work-group performing
thebarrier.
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Read

write[index] A (wg-id[index] # wg-id V (thread-id[index] # 0 A thread-id[index] # thread-id))

many-readfindex] <

many-read[index] V (read[index] A thread-id[index] # 0 A

thread-id[index] # thread-id)

wg-many-readfindex] <
thread-id[index] < thread-id
wg-id[index] <+ wg-id
readfindex] < T

wg-many-read|index] V (readlindex] A\ wg-id[index] # wg-id)

Write

many-read[index] V wg-many-read[index] V ((read[index] V write[index]) N
(wg-id[index]| # wg-id V (thread-id[index] # 0 A thread-id[index] # thread-id))

thread-id[index] < thread-id
wg-id[index] <+ wg-id
writelindex] <+ T

Fig. 13. Race condition test and MAR updates.

The barrier function takes an argument in the form of
a combination of flags, indicating which memory address
spaces are to be fenced. Our model uses this argument to
control which MARs are locally reset. If the CLK_LOCAL_ -
MEM_FENCE flag is set, which requests a memory fence over
local memory, the MARs for the group-local address space
are reset. Similarly, if the CLK_GLOBAL_MEM_FENCE flag is
set, which requests a memory fence over global memory,
the MARs for the generic address space are reset. Note that
as well as resetting the MARs for __global, as intended,
this also resets the MARs for _ constant and _ pri-
vate. Because ___constant is read-only, and __private
is local to a work-item, neither of these address spaces can
be used to cause a data race, so there is no harm in also
resetting them.

When klee_thread_barrier is called after the kernel
function returns, we globally reset MARs for both the generic
and group-local address spaces by setting all identifiers to
zero and clearing all flags.

7.1 Race Condition Test and MAR Updates
The race condition test, together with the required MAR
updates, are shown in Fig. 13. If the MAR is being stored
concretely, we perform the test and the MAR updates
directly. If the MAR is being stored symbolically, the test is
performed by querying the constraint solver as to whether
the symbolic expression representing the race condition test
is satisfiable, and the MAR updates are performed by
appending an update to the symbolic arrays.

The (thread-id[index], wg-id[index]) pair for a given array
index index will be in one of three states:

1. (0,0), indicating that the memory location has yet to
be accessed by any work-item or has been globally
reset,

2. (0,n), n #0, indicating that the location has been
accessed by a work-item in work-group n but has
been subsequently locally reset by an execution bar-
rier (i.e., we are only concerned with memory
accesses in work-groups other than n) or

3. (m,n), m#0, n#0, indicating that the location has
been accessed by work-item m in work-group n

without an intervening reset (i.e., we are concerned

with memory accesses in work-items other than m,

including work-items in work-groups other than n).
In cases (2) and (3), read[index] and/or write[index] may be
set, but in case (1), neither read[index] nor writelindex] will
be set.

The first conjunct of the race condition test for reads is
writelindex]. This excludes case (1), as required. The second
conjunct is wg-id[index] # wg-id V (thread-id[index] # 0 A
thread-id[index] # thread-id). For case (2), wg-id[index| #
wg-id will hold in the case where the work-group identifier
differs from the stored work-group identifier, and
thread-idfindex] # 0 A thread-id[index] # thread-id does not
hold because thread-id[index] # 0 does not hold by defini-
tion. So the entire race condition test holds for (2) only if a
previous write occurred and the work-group identifiers dif-
fer. For case (3), thread-id[index] # thread-id will hold in
the case where the work-item identifier differs from the
stored work-item, and thread-id[index] # 0 always holds by
definition. If the work-group identifiers differ then the
work-item identifiers will also differ, so wg-id[index] #
wg-id does not affect the satisfiability of its disjunction. So
the entire race condition test holds for (3) only if a previous
write occurred and the work-item identifiers differ.

Upon a memory read, in the case where all memory
reads for a particular memory location are performed by
the same work-group during the execution of a kernel, the
many-read[indez] flag is set iff the memory location has
been read by multiple work-items without an intervening
execution barrier. This is true in case (3) when the work-
item identifier differs from the stored work-item identifier,
hence the conjunct thread-idjindex] # thread-id. However,
it is not true in case (2) because of the intervening execution
barrier, nor is it true in case (1), hence the conjunct
thread-id[index] # 0. many-read[index] remains set until the
execution barrier for that work-group, hence the disjunct
many-read[index]. The value of many-read|[index] is indeter-
minate if multiple work-groups have accessed the memory
location—in such a case, the value of many-readfindex| at
any program point depends on the scheduling of the work-
group relative to other work-groups because it uses
thread-id[index], which may be set and cleared by other
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work-item 1, work-group 1
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work-item 2, work-group 1

1 _ kernel void avg (__global float =xa) { Tid Wid R | W | MR | Con Tz‘d Wid R | W | MR | Con
2 size_t 1id = get_local_id(0), 0 0 1 1 v IV
3 lsize = get_local_size(0); 0 0 1 1 Ve Ve
4 float r0 = lid > 0 ? a[lid-1] : 0; 0 0 2 1 v IV v | w/r
5 float rl = a[lid]; 1 1 v 2 1 vV IV v
6 float r2 = lid+l < lsize ? a[lid+1l] : 0; 1 1 v 2 1 v |V v
7 aflid] = (x0 + rl + r2) / 3; 1 1 vV IV 2 1 V|V v
8 }
work-item 1, work-group 1 work-item 2, work-group 1
1 __kernel void avg2(__global float xa) { Tig | Wig | R | W | MR | Con Tig | Weg | R | W | MR | Con
2 size_t 1id = get_local_id(0), 0 0 1 1 v
3 lsize = get_local_size(0); 0 0 1 1 v
4 float r0 = 1id > 0 ? a[lid-1] : 0; 0 0 2 1 v v
5 float rl = a[lid]; 1 1 v 2 1 v v
6 float r2 = 1id+l < lsize ? a[lid+1] : 0; 1 1 v 2 1 v v
7 barrier (CLK_GLOBAL_MEM_FENCE) ; 0 1 v 1 1 VIV
8 aflid] = (r0 + rl + r2) / 3; 1 1 VIV 1 1 V|V
9 1}

Fig. 14. Intermediate MARs for the memory location at a[0] during execution of work-items 1 and 2. Column T,; shows the byte’s work-item identi-
fier, W, its work-group identifier, R the read flag, W the write flag, MR the many-read flag, and Con (if present) the nature of the conflict detected at

that line. The WMR (wg-many-read) flag is not shown as it is never set.

work-groups independently of the current work-group.
However, this does not affect the results of our analysis, as
we shall see later.

Upon a memory read, the wg-many-readfindez] flag is set
iff the memory location has been read by multiple work-
groups, and remains set until the kernel terminates execu-
tion. The analysis is similar to many-read, except that wg-
many-read is not affected by execution barriers, and thus
cases (2) and (3) are treated identically, hence the conjunct
wg-id[index] # wg-id.

The race condition test for writes uses three disjuncts.
The first two, many-read[indez] and wg-many-read[index],
are used to test whether a data race has been caused by mul-
tiple preceding memory reads, either (in the case where all
reads are performed by the same work-group) multiple
reads within the same work-group (many-read[indez]) or
(in the case where reads are performed by multiple
work-groups) multiple reads by multiple work-groups
(wg-many-readfindex]). Recall that many-read[indez] is inde-
terminate in the latter case—because wg-many-read[indez)
will also be set in this case, the satisfiability of its disjunction
is not affected. The final disjunct is used to detect conflicts in
the case where only one work-item has accessed the mem-
ory location, and the analysis is similar to that for the race
condition test for reads, except that read[index]V write
[index] is used, because writes conflict with both earlier
writes and earlier reads.

7.2 Examples

To illustrate the race detection technique described above,
we use the code in Fig. 14. This code contains two simple
kernels, avg and avg2, the purpose of which is to store in
each element of array a the mean of that element and the
two adjacent elements.

The avg kernel contains a race condition, while avg2
uses an execution barrier to avoid the race. For each state-
ment in the kernels, we show alongside it the state of the
MAR for the first element of array a (i.e., for a[0]) after

execution of that statement. Note that in KLEE-CL we exe-
cute each work-item in its entirety until it reaches an execu-
tion barrier or terminates; however, our race detection
algorithm would work with any other execution schedule.
Thus, for avg the entirety of work-item 1 is executed
before work-item 2, and the MAR persists from the end of
execution of work-item 1 to the beginning of execution of
work-item 2. For avg2 the first five lines of work-item 1 are
executed (up to the barrier), then the first five lines of work-
item 2, the memory access records are locally reset, the last
two lines of work-item 1 are executed and finally the last
two lines of work-item 2.

Thus, in the case of avg, we start by running work-
item 1 on the entire kernel. The first four lines do not
access a[0], so no flags are set. Line 5 reads a[0], and
so the read flag is set. Line 6 does not access a[0] so the
flags remain unchanged. Then, line 7 writes to a[0] so
the write flag is set.

Then, work-item 2 starts executing with the read and
write flags set. Lines 1-3 do not access a[0], so the flags
remain unchanged. Line 4 reads a[0] so we report a read-
after-write race. This is due to the earlier write of work-
item 1 on line 7 causing the write flag to be set. This race
does not exist in avg2 because when line 4 is executed by
work-item 2, work-item 1 had not executed line 8, because it
was preempted by the barrier on line 7.

Our second example, shown in Fig. 15, illustrates data
races across memory barriers, as well as the purpose of the
many-read and wg-many-read flags. A data race exists and
is reported due to the write on line 4 in work-item 2 conflict-
ing with the read on line 2 in work-item 1. Because the
work-items are in different work-groups, the execution bar-
rier on line 3 does not protect against the race (recall that
execution barriers are local to work-groups). Neither does
the execution barrier affect the execution order (assuming a
single work-item per work-group) so the entirety of work-
item 1 is executed followed by work-item 2 (though, as
before, scheduling does not affect race detection). The
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work-item 1, work-group 1 work-item 2, work-group 2
1 _ kernel void copy (__global int =xa) { Tid Wid R | W MR Tid Wz‘d R | W | MR | WMR | Con
2 int x = a[2]; 1 1 v 2 2 v v v
3 barrier (CLK_GLOBAL_MEM_FENCE) ; 0 1 v 0 2 v v
4 alget_group_id(0)] = x*2; 0 1 v 0 2 vV |V v r/w
5 }

Fig. 15. Intermediate MARs for a[2] during execution of work-items 1 and 2.

read on line 2 in work-item 1 sets the work-item identifier,
work-group identifier and the read flag. The same read in
work-item 2 also sets the many-read and wg-many-read
flags due to the work-group identifier stored in the MAR
differing from work-item 2’s work-group identifier.

When execution reaches line 3 in work-item 2, the
many-read flag is cleared, but the wg-many-read flag
remains set. Therefore, a race is reported at line 4. This
demonstrates the purpose of the many-read and wg-
many-read flags—because the work-item and work-group
identifiers in the MAR are equal to the work-item’s identi-
fiers, there is no other way to determine that another
work-item has read the byte. Note that if work-items 1
and 2 were in the same work-group, only the many-read
flag would have been set at line 2, which would be cleared
at line 3, so no race would be reported at line 4. In this sce-
nario, if a write were to occur between lines 2 and 3, this
would result in a data race being reported due to the
many-read flag being set.

8 [EVALUATION

We evaluated our techniques on a set of benchmarks that
compare serial and data-parallel variants of code devel-
oped independently by third parties. The codebases that
we selected were the OpenCV computer vision library
[9], [29], the Parboil benchmark suite [28], the Bullet
physics library [17] and the OP2 library [22]. KLEE-CL
was configured to use KLEE’s default strategy, which
interleaves, in a round-robin fashion, random path
search with a heuristic that tries to minimise the distance
to uncovered code [11].

8.1 SSE Acceleration in OpenCV

We evaluated a selection of computer vision algorithms
from OpenCV 2.1.0, a popular C++ open source computer
vision library initially developed by Intel, and now by Wil-
low Garage.

TABLE 3
Symbolic Expression Canonicalisation Rules Where Necessary, Bitwidths of Expressions are Denoted by Superscripts
| # [ Condition/Assumption | Expression \ Result | Section
1 - And(FCmp(X,Y, 01),FCmp(X,Y, O2)) FCmp(X,Y,01 N Os)
2 - Or(FCmp(X,Y, O1),FCmp(X,Y, O3)) FCmp(X,Y,0; U Os)
3 - Eq(FCmp(X, Y, 0), false) FCmp(X,Y,0\ O) §6.2(1)
4 on{<,>}={>} FCmp(X,Y,0) FCmp(Y, X, swap(O)) )
5 - And(FCmp(X,Y, 01),FCmp(Y, X, 02)) FCmp(X,Y, 01 N swap(02))
6 - Or(FCmp(X, Y, O1),FCmp(Y, X, O3)) FCmp(X, Y, O U swap(O3))
7 - Category analysis §6.2(2)
8 | C constant, see §6.2(3) FOeq(SIToFP(X), () Eq(X,FPToSI(C)) §6.2(3)
9 | C constant, see §6.2(3) FOeq(UIToFP(X), () Eq(X,FPToUI(C)) ’
10 | f € {FPToSI,FPToUI} F(FPExt(X)) 7(X) §6.2(4)
11 C4, Cy constants Concat(C1, Concat(Cs, X)) Concat(Concat(Cy, Cs), X) §6.2(5)
12 - Partial constant folding with equality §6.2(6)
13 - ZExt(X) Concat (0, X)
14 - And(SExt(P1), X) Select(P!, X,0) 6.2(7
15 C constant sn1" (X, 0) Concat(Extract ~¢(X, C),09) §6.2(7)
16 C' constant Lshr' (X, O) Concat(0¢, ExtractV~¢(X,0))
17 f € {0r, And, Xor}, f(Concat(Xy, Yp), Concat(Xy,Y7)) Concat(f(Xo, X1), f(Yo,Y1))
18 f € {0r, And, Xor} Extract (f(X,Y),N) f(Extract™ (X, N), ’
Extract (Y, N))
19 - FMul(X,1) X
20 - FMul(1, X) X
21 positive zero FAd4(X,0) X §6.2(9)
22 positive zero FAdd(0, X) X )
23 finite, positive zero FMul(X,0) 0
24 finite, positive zero FMul(0, X) 0
25 associativity FAdd(X,FAdd(Y, Z)) FAdd(FAdd(X,Y), Z) §6.2(10)
26 associativity FMul(X,FMul(Y, Z)) FMul(FMul(X,Y), Z) ’
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TABLE 4
OpenCV Code We Tested with KLEE-CL
Source File (src/) Benchmarks # Cov
eigenval o
cv/cvcorner.cpp harris 44 | 100%
cv/cvfilter.cpp filter 1332 0%
remap
cv/cvimgwarp.cpp resize 1070 | 74.6%
warpaff
cv/cvmoments.cpp moments 35 | 100%
cv/cvmorph.cpp morph 1220 | 43.6%
cv/cvmotempl . cpp silhouette 43 | 100%
cv/cvpyramids.cpp pyramid 125 | 44.0%
cv/cvstereobm. cpp stereobm 270 | 53.3%
cv/cvthresh.cpp thresh 238 | 100%
transcf.43
transsf.43 o
cxcore/cxmatmul . cpp fransff. 43 352 | 100%
transff.44

The third column shows the number of SIMD instructions, where an
SIMD instruction is any instruction of vector type, any extractele-
ment instruction, stores of vector operand type, casts from vector type
and SSE intrinsics (name begins 11vm.x86.mmx, 11vm.x86.sse or
1lvm.x86.ssse). Coverage data refers to coverage of SIMD
instructions.

Although we had to make some changes to OpenCV for
compatibility with KLEE-CL, these were minimal—they
either replaced inline assembly code, which KLEE does not
support, or disabled some functionality unrelated to the
SSE code under test, but which KLEE had trouble executing.

Our benchmarks test a substantial amount of SSE code in
OpenCV. Out of the 20 OpenCV source code files containing
SSE code, we arbitrarily selected 10 files for testing with
KLEE-CL. To build benchmarks, we had to acquire a (brief)
understanding of how to invoke each OpenCV algorithm in
order to build a test harness similar to that in Fig. 5.

Table 4 presents the 10 files we tested, together with a
list of benchmarks for that code and coverage data. Each of
our benchmarks tests one of the algorithms provided by
OpenCV. For example, harris tests the Harris corner
detection algorithm, which finds a corner in a given image,
intuitively a window that produces large variations when
moved in any direction [9]. Each benchmark takes a num-
ber of parameters, including the size and format of the
input and output images (represented by matrices) and the
specific algorithm to test (for example, the morph bench-
mark can test an erodealgorithm, which returns in each
cell of the output matrix the minimum value of the corre-
sponding cell in the input matrix and its neighbours, and a
dilate algorithm which instead takes the maximum).

Since we are unable to use symbolically sized images (see
Section 2.4), our methodology was instead to test each
benchmark on all possible image sizes up to 16 x 16 pixels.
More precisely, we start with the minimum size for which
an SSE variant of the algorithm under test exists (usually
4 x 1 pixels), and test all possible sizes until we reach
images of 16 x 16 pixels or are unable to test any further
due to the high complexity of the generated queries.

The SIMD instruction count for each source file gives a
rough approximation of the overall complexity of the SSE
code tested by our benchmarks. While it does not necessar-
ily follow that the equivalent scalar code or the surrounding
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control flow is of similar complexity, we found the SIMD
instruction count to be a good metric for the complexity of
the computational routines of interest to us.

Some coverage numbers do not reach 100 percent. We
found that this was generally caused by the presence of
unrolled SSE code that was unreachable due to query com-
plexity. The filter benchmark has 0 percent coverage
because we weren’t able to run it at all. We discuss the rea-
sons in Section 8.7.

We constructed a total of 58 benchmarks to cover the
functions in these 10 files. KLEE-CL was able to successfully
verify 41 benchmarks up to a certain image size (Section 8.2)
and find mismatches in 10 benchmarks (Section 8.3). In
addition, three benchmarks triggered false positives (Sec-
tion 8.7(3)) and four benchmarks couldn’t be run at all by
KLEE-CL (Section 8.7(4)).

8.2 OpenCV Benchmarks Verified up to a Certain
Image Size

Table 5 presents the list of benchmarks and associated
parameters that we were able to verify using KLEE-CL up
to a certain image size. The Format column shows the for-
mat of the input and output images in terms of the data
type (£ = floating point, s = signed integer, u = unsigned
integer) and the bitwidth of the format. The Maximum Size
column shows the maximum image size we tested using
our methodology. Sizes of the form X — Y indicate that the
benchmark’s input and output images are of different sizes:
X is the maximum input image size, and Y the maximum
output image size that we tested.

The transff, transsf and transcf benchmarks use
fixed size matrices. The .43 variants take a three-channel
source array of size 4 x 4 and a one-channel transforma-
tion matrix of size 3 x4 and produce a three-channel
array of size 4 x 4, while the .44 variants take a four-
channel source array of size 4 x 4 and a one-channel trans-
formation matrix of size 4 x 4 and produce a four-channel
array of size 4 x 4.

The remap benchmark tests the cvRemap routine, which
performs symbolic conditional branching over the data con-
tained in two of its three input matrices. Because the phi
node folding pass is unable to simplify this branching struc-
ture, exponential forking results. Our compromise for this
benchmark is to supply two concrete matrices and one sym-
bolic matrix to cvRemap.

Two benchmarks—namely resize (linear, ul6) and
resize (cubic, ul6)—used query expressions of the form
FPToSI(X) or FPToUI(X), which were converted to uncon-
strained variables when using the implied constraint
builder (see Section 6.3). While the variable was uncon-
strained, the underlying floating-point expression X was
limited in its range, and STP produced counterexamples for
the unconstrained variables outside of their feasible range.
To test these benchmarks, we used the CBMC solver and
the smallest image size that would trigger the execution of
SIMD code, in order to produce constraint solver queries of
a reasonable complexity.

As mentioned before, we ran each benchmark on matri-
ces of up to 16 x 16 pixels or until we were unable to test
any further due to the high complexity of the generated
queries. While these are relatively small matrices, our
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TABLE 5
OpenCV Benchmarks Verified Up to a Certain Size
[# [Bench [ Algo [K | Format | Maximum Size ]

1 u8 5x5H

2 R sl6 16 x 16

3 ulo 16 x 16

4 dilate u8 8x3

5 sl6 16 x 16

g | morph NR w16 [ 16x16

7 £32 15 x 15

8 us 4 x4

9 R sl6 16 x 16

10 erode ulé 16 x 16

11 sl6 16 x 16

12 NR ulo 16 X 16

13 | pyramid u8 8x2—=4x1
14 us 16 x 16

15 nearest sl6 16 x 16

16 neighbor ulé 16 x 16

17 £32 16 x 16

18 us 16 x 16

19 i sl6 16 x 16

20 | TeMep | Hnear ul6 | 16 x 16

21 £32 16 x 16

22 us 16 x 16

23 bi sl6 16 x 16

24 cubre ul6 | 16 x16

25 £32 16 x 16

26 s16 8Xx8—=-8x8
27 linear ulé 4x1—>8x2
28 , £32 88X 8 —=8X8
29 | TestEe s16 | 8x858x8
30 cubic ulé 4x1—8x2
31 £32 88X 8 —=8X8
32 | silhouette u8 £32 | 16 x 16

33 us 16 x 16

31 BINARY £32 | 16 x 16

35 u8 16 x 16

36 BINARY_INV 55— 16 x 16

37 | thresh | TRUNC us8 16 x 16

38 u8 16 x 16

39 TOZERO F32 | 16 x 16

40 u8 16 x 16

7y TOZERO_INV 57— 16 x 16

42 | transff.43 £32 See §8.2

43 | transff.44 £32 See §8.2

results should be viewed in combination with the SIMD
coverage data which shows that the image sizes we tested
cover most SIMD code.

We measured the execution time taken by KLEE-CL for
all of our experiments. However, because we ran our

benchmarks on a heterogeneous cluster of machines (the
cxl cluster described at http://www3.imperial.ac.uk/
ict/services/hpc/highperformancecomputing/services/
hardware), these times are mainly intended to give a rough
idea of the computational cost involved in using our tool.
The runtime of individual experiments (i.e., one benchmark
run with a single matrix size) varied between less than 1 sec-
ond to more than 40 hours. The total cumulative execution
time per benchmark (i.e., for all matrix sizes) ranged from
only a few seconds (for the transff benchmarks, which
only work with a fixed matrix size) up to 27 days for morph
(dilate, R, ul6). Approximately 21.1 percent of benchmarks
had cumulative execution times of under 10 minutes, 34.2
percent between 10 minutes and one hour, 18.4 percent
between 1 and 12 hours, and 26.3 percent over 12 hours.

8.3 Invalidated OpenCV Benchmarks
Table 6 presents the list of benchmarks in which we found
mismatches between the scalar and SSE implementations.
Each mismatch was detected by KLEE-CL in less than 30
seconds.

We discuss each of the mismatches found below:

1. eigenval and harris. Both the eigenval and harris
benchmarks compute certain values in double preci-
sion in the scalar implementation, which are com-
puted in single precision in the SSE implementation.
To determine whether this was the only difference
between the implementations, we modified the sca-
lar implementation to use single precision by replac-
ing double with float and casting to single
precision where appropriate (in C, a binary opera-
tion taking two floating-point values promotes the
lower precision operand to the type of the higher
precision operand [32], Section 6.3.1.8]).

This modification caused eigenval to pass our
tests, but there was a further issue with harris
regarding associativity. The scalar implementation
of eigenval computes the expression:

((float)k) " (a+c) (a+c),
which the SSE code computes as:
_mm_mul_ps(_mm mul_ps(t, t), k4),

where the variable t initially holds the four a + ¢ val-
ues, and k4 holds four copies of k.

TABLE 6
OpenCV Benchmarks in Which We Found Mismatches between the Scalar and the SSE Versions
[ # [ Benchmark | Algorithm [ K [ Format [ Size | Description

1 eigenval £32 4x4 Precision
2 harris £32 4 x4 Precision, associativity
3 dilate R £32 4x1
4 morph NR £32 Ax1 Order of min/max operations
5 erode R £32 4x1 P
6 thresh TRUNC £32 4 x4
7 | pyramid £32 16 x 2 — 8 x 1 | Associativity, distributivity
8 . linear u8 4x4—->8x%x8 Precision
9 resize cubic us8 4x1—8x%x2 Integer /FP differences
10 | transsf.43 sl6 £32 | See §8.2 Rounding issue
11 | transcf.43 u8 £32 | See §8.2 Integer /FP differences




The IEEE floating-point operations + and x are
not associative, so these two expressions are not
equivalent. The associativity issue may not be
immediately obvious, but because * in C is left
associative [32], Section 6.5.5], the scalar multipli-
cation is implicitly bracketed as (((float)k)x
(a+c)) * (a+ c), which is clearly not equivalent to
the SSE version. The discrepancy is also revealed
by KLEE-CL, which is capable of printing the sym-
bolic expressions involved. In this case, KLEE-CL
outputs the following expressions, where N, and
Ngs are complex subexpressions shared between
the two expressions:

SIMD : ]V() — ((N65 X Nﬁ5) X 004),
Scalar : NQ — ((004 X NGS) X NGB)-

As it can be seen, the KLEE-CL encoding of the oper-
ation, which provides explicit bracketing, makes
associativity errors such as this much easier to spot.
morph (f32) and thresh (TRUNC, f32). Both benchmarks
involve floating-point min and/or max operations.
The SSE and scalar variants of the implementa-
tions apply min and max to the same operands
but in a different order. We cannot consider the
two expressions to be equivalent because the min
and max operations used are idiomatic and there-
fore, as we saw in Section 6.3, neither associative
nor commutative.

The SSE instructions MINPS and MAXPS imple-
ment the min and max operations using the idiom
directly:

ssemin(X,Y) =min(X,Y) = Select(FOlt(X,Y), X,Y)
ssemax(X,Y) = max(X,Y) = Select(FO1t(Y, X), X,Y).

The STL functions std: :min and std: :max used
by the scalar variants of the benchmarks are not
required by the C++ 2003 standard [33] to be imple-
mented in any specific way (the result is undefined if
either of the operands is NaN, because the < opera-
tor for floating-point numbers is not a strict weak
ordering [33], Section 25.3] in the presence of NaNs).
The GNU STL implements them idiomatically, but
with the operand order reversed:

stlmin(X,Y) =mnin(Y, X)
stlmax(X,Y) = max(Y, X).

pyramid (f32). The SIMD variant of this code produ-
ces radically different symbolic expressions than the
scalar variant. To give an example, we show below
an expression extracted from the scalar variant of the
algorithm:

((No + No) + (No + No)) + (N3 + No) x 4.0).
The corresponding SSE expression is:

Ny and N3 are complex subexpressions shared
between the two expressions. To rearrange the first
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form into the second would require not only associa-
tivity but distributivity properties. Because the IEEE
floating-point + and x are neither associative nor
distributive, the equality does not hold.

resize (linear, u8). The scalar variant of this code pro-
duces expressions of the form (simplified to remove
irrelevant saturation checks):

(((1536 x Ny) + (512 x Np)) + 2097152) > 22,

whereas the SIMD variant produces expressions of
the form:

(24 (((1536 x (Ny > 4)) > 16)
+((512 x (Np > 4)) > 16))) > 2.

All intermediate values are 32 bits. The SIMD variant
loses 11 bits of precision through right shifts before
the addition operation, while the scalar variant
retains all precision until the final right shift. This
leads to differences where the lower 11 bits of N
affect the upper 10 bits of the addition result.

resize (cubic, u8). The SSE variant of resize (cubic, u8)
performed floating-point calculations whereas the
scalar variant performed integer calculations. Analy-
sis of such expressions would require reasoning
about floating-point semantics, so we used the
CBMC floating-point solver for this benchmark.
KLEE-CL reported a mismatch; we ran the bench-
mark concretely with the generated counterexample,
and found this to be a true mismatch.

transsf.43. The scalar variant of this code performs a
rounds-to-nearest floating-point to unsigned 16-bit
integer conversion. Because of the CPU’s lack of sup-
port for floating-point to unsigned integer conver-
sion, the conversion is performed by converting to a
signed 32-bit integer and downcasting. On the other
hand, the SIMD variant performs the conversion by
first subtracting 32,768 from the floating-point num-
ber, performing a conversion directly to a 16-bit
signed integer and adding 32,768 to the result. While
this may appear correct, it will produce different
results in certain edge cases.

For example, consider the value 0.5 4 ¢, where € is a
value sufficient to shift 0.5 to the next higher float-
ing-point representation. If this value is converted
directly to an integer, as in the scalar version of the
code, the value is rounded up to the nearest integer
value, this being 1. On the other hand if we subtract
32,768 from the floating-point value, as in the SIMD
variant of this code, ¢ will be lost during rounding
and the result is —32,767.5. When this value is con-
verted to an integer, it is rounded down to —32,768
(under this rounding mode, ties are rounded to the
nearest even value), and the result is 0 after adding
32,768 back.

transcf43. The scalar variant of this code performs
floating-point calculations whereas the SIMD variant
operates over 32-bit fixed point values with 10 bits of
precision below the radix point. When the SIMD var-
iant converts the floating-point input values into this
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format, precision can be lost if the floating-point
exponent is less than 13. This leads to different
results where the lower order bits of the floating-
point input values affect the final result.
We reported the mismatches we found to the
OpenCV developers. At the time of this writing, we
have received an answer for five out of the 10 mis-
matches listed in Table 6. The developers confirmed
the precision and associativity mismatches in the
eigenval and harris benchmarks as real issues
and informed us of their intention to fix them. In
response to the mismatches in morph caused by the
different order of min/max operations, we received
the following answer:
“I wonder, if your tool can be told to ignore the NaN'’s in the cer-
tain function? Because we never assumed that NaN’s are possible
in the morphological functions” input data and do not see any rea-
son for such assumption.” (Vadim Pisarevsky, personal
communication)

In response, we added the ordered assumption discussed
in Section 6.1, and made it apply to min/max rewrite rules
presented in Section 6.3. With this in place, KLEE-CL was
able to prove the equivalence of the respective benchmarks
on images up to 15 x 15. The tool reported another mis-
match on an image of 16 x 16, which we haven’t investi-
gated yet.

8.4 OpenCL Acceleration in Parboil

Parboil [28] is a popular GPU benchmark suite, which con-
tains C and CUDA [48] implementations of various algo-
rithms. In order to be able to run Parboil benchmarks
using KLEE-CL, we used Grewe and O’Boyle [24] transla-
tion of certain Parboil 1 benchmarks from CUDA to
OpenCL. The translation comprised four benchmarks in
total, and we tested three of these: Coulombic Potential
(cp), Magnetic Resonance Imaging - Q (mri-g) and Mag-
netic Resonance Imaging - FHD (mri-fhd). We were
unable to test the fourth benchmark, Rys Polynomial Equa-
tion Solver (rpes) for reasons discussed in Section 8.7. The
three benchmarks have 66 (cp), 118 (mri-£fhd) and respec-
tively 90 (mri-g) lines of code, based on a line count of
each of the .cl files that are compiled.

We modified the code for each benchmark to incorporate
the C and OpenCL versions of the benchmarks into the
same executable. This allowed us to construct simple test
harnesses similar to the one in Fig. 5 which invoke both ver-
sions of the benchmarks with the same symbolic arguments.

By running these benchmark programs using KLEE-CL,
we detected three mismatches between the C and OpenCL
implementations of cp. We also found three memory errors
in mri-g and mri-fhd as a result of the memory bounds
checking performed during symbolic execution.

Mismatches. The cp benchmark computes the Coulombic
potential for a set of points on a grid. The computation of a
Coulombic potential at a grid point involves the calculation
of the Euclidean distance of the form +/8z2 + 8y? + 822
between an electrically charged particle and that point.

The first mismatch for cp is due to an associativity issue.
The OpenCL implementation uses an unrolled loop in
which a set of adjacent grid points are computed during

each iteration. Because only the = coordinate varies during
an iteration, the values of 8y and §z remain constant, allow-
ing 8y + §2% to be precomputed at the start of each iteration.
So the expression is evaluated as /822 + (8y> + 8z2). In the
C implementation, the inner expression is left unbracketed
and normal C associativity rules apply. Because + is left-
associative in C [32], the expression is evaluated as
/(822 + 8y?) + 822. Since + in floating point is not associa-
tive, the two expressions do not match.

The second mismatch arises in the context of computing
Sz in the two implementations. In the C implementation,
this is done by subtracting the atom’s = coordinate from the
grid’s x coordinate. In the OpenCL implementation, 8z for
the iteration’s first grid point is computed in the same way.
However, for subsequent points in the iteration, éz is com-
puted by adding the grid’s spacing to the value of éz for the
previous point. Since floating-point + and x are neither
associative nor distributive, the expressions do not match.

Whether these mismatches are important or not
depends on the specific application. KLEE-CL’s job is to
flag such mismatches, but it is up to the developer to assess
whether strict equivalence should be enforced. Further-
more, developers can use the assumptions discussed in
Section 6 to ignore the cause of different mismatches. For
the current example, developers could add the assumption
that floating-point operations are associative and rerun
KLEE-CL to find other problems. With this assumption
enabled, KLEE-CL verifies a variant of this benchmark in
which the second mismatch, but not the first, has been
fixed.

Memory errors. A non-obvious use-after-free error was
found in mri-q. After the OpenCL kernel is invoked, mri-
a deallocates some OpenCL memory buffers and then cop-
ies some data from the GPU to the host. Because OpenCL
kernel invocation is asynchronous, the memory buffers may
be deallocated by the time that the kernel accesses them.
Using the technique described in Section 4.6, KLEE-CL was
able to detect this error, which we fixed by moving the data
copies before the memory deallocations. Since the data cop-
ies were synchronous, they caused execution of the main
thread to be preempted until after kernel execution.

A memory error found in both mri-gand mri-fhd was
caused by a read beyond the end of a memory buffer used to
store (z,y, z) coordinates. This memory buffer was indexed
using the work-item identifier, which ranged between 0 and
a multiple of the work-group size. This error was never
caught, perhaps due to the fact that all benchmark data pro-
vided with Parboil had a size that was a multiple of the
work-group size. We fixed these errors by enclosing the rele-
vant part of the kernel inside an 1 f statement.

A memory error found in mri-fhd is related to the use
of uninitialised memory. This benchmark allocates a
buffer of output data using memalign, which was
assumed to be zero initialised. Since memalign buffers
are uninitialised, and KLEE-CL models this, incorrect
results were produced. The fix was simply to initialise the
buffer using memset.

8.5 OpenCL Acceleration in Bullet
Bullet [17] is a physics library primarily used in gaming
and 3D applications. It incorporates a number of physics
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simulation algorithms, including a soft body simulation.
This can be used to simulate objects such as cloths which
are freely deformable within the environment. Bullet
provides a C++ and an OpenCL implementation of the
soft body simulation.

We implemented two benchmark programs which create
a simulation with two soft body objects, each containing
three vertices connected by three edges. The coordinates of
the vertices are concrete values, but all other simulation
parameters are symbolic. The program runs a single simula-
tion step using both the C++ and the OpenCL implementa-
tions, and compares the results.

The first of our benchmarks (softbody) tests the soft
body simulation in isolation, while the second benchmark
(dynworld) tests the simulation using a soft rigid dynamics
world, which exercises more of the soft body code. The two
benchmarks share the same OpenCL code, which consists
of 1,187 lines.

We used our benchmark programs to test SVN revision
2,357 of Bullet. For the softbody benchmark, KLEE-CL
verified that the C++ and OpenCL code produce the same
results. For dynwor1d, KLEE-CL was able to verify equiva-
lence under the finite and positive zero assumptions, i.e.,
the assumption that 2 x 0 = 0 in floating point.

At the time that we initially performed this test, the LLVM
IR generated by the Clang compiler did not provide the accu-
racy of each individual operation, and therefore we did not
model the single precision floating-point division operation
correctly. To diagnose this issue, we ran a test using both a
CPU and real GPU hardware (an NVIDIA Tesla C1060),
and found that discrepancies between the CPU and GPU
results were introduced by such an operation. After adding
floating-point accuracy support we re-ran the benchmark
in KLEE-CL, which correctly reported a mismatch. We
attempted to rectify the issue in the OpenCL code by casting
the operands of the division operator to double precision
([34], Section 9.3.9] requires double precision division to be
correctly rounded). With this change, KLEE-CL claimed that
the two pieces of code were equivalent.

OpenCL compiler bug. Of course, these equivalence results
hold under the additional assumption that all the compo-
nents involved in running the code—from compilers to
hardware—are correct. The bug discussed below illustrates
this point.

After fixing the single precision issue mentioned
above, we were surprised to see that the test run on real
GPU hardware still showed discrepancies between the
OpenCL and C++ implementations, despite the fact that
we were able to verify their equivalence. After further
investigation, we found that the PTX assembly code pro-
duced by NVIDIA’s OpenCL compiler continued to use a
single precision division instruction (div.full.£f32),
despite the cast to double precision. If we disabled com-
piler optimisations, using the -cl-opt-disable flag to
the OpenCL compiler, the double precision division
instruction (div.rn.f64) was used. This suggested that
the problem may lie in the optimiser.

We worked around this issue by postprocessing the PTX
code toreplace div. full. £32 with div.rn. f64 together
with appropriate conversions, similar to the unoptimised
code. After doing this, the results obtained were identical.

int tid = get_local_id(0),
d = get_local_size(0)>>1;
__local volatile float *vtemp = temp;

1

2

3

4 ...
5 for (; d>0; d>>=1) { /% d is at most 16 here %/
6 if
7

8

9

0

1

(tid<d) |

vtemp[tid] = vtemp[tid] + vtemp[tid+d];
1 }
1 }

Fig. 16. OP2’s unsynchronised loop (slightly modified for formatting
purposes).

We reported the issue to NVIDIA who confirmed our
bug report, and as of this writing had fixed the bug, but had
not yet released a version of their OpenCL implementation
with the fix.

8.6 OpenCL Acceleration in OP2

OP2 [22] is a library for generating parallel executables of
applications using unstructured grids. OP2 enables users to
write a single program targeting multiple platforms. OP2
has four implementations: a serial reference (library) imple-
mentation and source-to-source transformations to CUDA,
OpenCL and OpenMP.

Among the operations offered by OP2 is the global reduc-
tion operation, which is used to reduce a set of results com-
puted across a set of grid nodes to a single result. We used
KLEE-CL to test the correctness of the OpenCL implementa-
tion of the global reduction operation by extracting the rele-
vant kernel from the OP2 source code and constructing a
benchmark program which uses this kernel to perform a
global reduction on an array of symbolic data. The bench-
mark (the . c1 file) has 75 lines of code.

KLEE-CL detected a race condition in this kernel, and the
problematic code is shown in Fig. 16. Each iteration of the
for loop on lines 5-11 uses a result computed in an earlier
iteration by another work-item (specifically, work-item tid
uses a result computed by work-item tid+d) without using
an execution barrier beforehand. Because of the lack of syn-
chronisation, the behaviour of the kernel is undefined by
the OpenCL specification.

To understand why this loop was written in this way,
one must consider the history of the code. The OpenCL
implementation was heavily based on the CUDA imple-
mentation and was in many places developed by replacing
CUDA constructs with the relevant OpenCL constructs. In
CUDA (and the NVIDIA GPU architecture), each group of
32 work-items within a work-group (referred to as a warp) is
executed in lockstep with implicit synchronisation between
work-items [48]. However, no such feature is present in
OpenCL, and OpenCL code relying on warps has imple-
mentation-defined behaviour. In the case of the NVIDIA
implementation of OpenCL this happens to function cor-
rectly, however there is no requirement that it do so on
other architectures.

We modified the kernel to introduce a local execution
barrier using the barrier function before each iteration of
the loop (between lines 5 and 6). With this modification in
place, KLEE-CL does not report a race condition.
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8.7 Applicability and Limitations

Our experimental evaluation has helped us better under-
stand the applicability of our tool, and its main limitations.
We have identified four main aspects that developers
should be aware of when using KLEE-CL:

1.  KLEE-CL as a development tool. Manually translating
serial code into an equivalent data-parallel version is
a difficult process. Due to the restrictions of floating-
point arithmetic, constructing two equivalent float-
ing-point expressions usually requires the same
sequence of operations, and as a result, we found
that in writing parallel code, developers tend to
closely imitate the operations performed by the sca-
lar code. Unfortunately, the process is error-prone,
and developers often make invalid assumptions
about the properties of floating-point arithmetic,
such as those related to associativity, distributivity,
precision, and rounding. We believe that KLEE-CL
could be effectively applied as a development-time
tool that would assist programmers with the paralle-
lisation process, or with any other optimisation task
that requires the equivalence of two different code
fragments. We believe the initial feedback we
received from the OpenCV developers is consistent
with our envisioned use of KLEE-CL as a develop-
ment tool. Developers would incrementally apply
our technique on increasingly bigger inputs until no
more mismatches are found and/or they gain
enough confidence in their translation. Once a mis-
match is found, they would either fix the code and
look for more problems, or they would improve the
precision of the tool by adding additional expression
rewrite rules. To improve the usability of KLEE-CL
for the latter scenario, the tool would benefit from
the ability to specify additional rules in a higher-
level language like the one we use to describe the
rules in Table 3.

2. Manual effort: To use our tool, developers have to
write a test harness, similar to the one implemented
by the main () function in Fig. 5. This requires the
ability to construct the input data structures
required to invoke the function under testing, and
to identify the output structures that should be
compared for equivalence. In the case of code oper-
ating on complex, application-specific data struc-
tures, this can be a difficult task, especially for
people not familiar with the codebase under testing.
This is a problem shared with testing in general,
and unit testing in particular, and represents the
main reason for which we did not have time to test
all the SIMD code in OpenCV. However, KLEE-CL
is designed as a developer tool, and the software
developers familiar with the API of the code under
testing would be in a better position to rapidly
develop this kind of test harnesses.

3. Symbolic execution and constraint solving limitations.
There were also five benchmarks that we were
unable to run at all using KLEE-CL. For OpenCV,
the filter benchmark invoked malloc with a sym-
bolic argument. While KLEE is normally able to

recover from a symbolic memory allocation using
STP to determine the maximum value of the argu-
ment, in this case the argument was built from a
floating-point expression and KLEE-CL was unable
to find a maximum, resulting in an error. The other
three benchmarks (stereobm, moments and war-
paff) presented queries to STP that were too com-
plex to handle, meaning that they caused STP to run
for an unbounded amount of time or consume all
available memory.

For Parboil, the rpes benchmark could not be
executed because it created a very large number of
work-items (>30,000) even for small problems,
which KLEE-CL could not execute in a reasonable
amount of time.

4. Experience using a bit-precise FP solver. As discussed in

Section 6.4, we integrated into KLEE-CL a bit-precise
floating-point solver recently made available in
CBMC. Using this solver, we were able to verify two
out of the three suspected false positives in the
OpenCV benchmarks and produce a counterexam-
ple for the other one.
There are two important drawbacks of using such a
solver by itself. The first one is that without support
for quantifiers, it is not possible to add assumptions
(Section 6.1), so the benchmarks which rely on float-
ing-point assumptions cannot be verified. The sec-
ond drawback is performance. While we were able
to verify some of the benchmarks not relying on
assumptions using the CBMC solver by itself, some
of them (e.g., harris and eigenval) exceeded our
one-hour timeout (on an Intel Core i7-3667U at
2 GHz with 8 GB of RAM). As another example, it
took over 46 minutes to verify one of the false posi-
tives mentioned above for only the small image sizes
given (on a dual core Intel Core 2 Duo E6850 at
3 GHz with 8 GB of RAM).

Instead, we believe that in the context of verifying
the correctness of optimisations that involve floating
point, bit-precise floating-point solvers should be
used in conjunction with our technique: our sym-
bolic expression transformation and rewriting algo-
rithm should be applied first, with a floating-point
solver being used to validate any (non-obvious)
mismatches.

9 RELATED WORK

Previous work on formally verifying floating-point pro-
grams has used theorem proving [5], [25], constraint solving
based on approximation with rationals or reals [26] and
symbolic execution using projection functions over floating-
point intervals [7], [44]. While promising, these techniques
have only been shown to work on very small hand-crafted
programs.

An alternative to formal verification is testing. For
example, [1] uses randomized testing coupled with cover-
age requirements to test floating-point programs. Random
testing can easily be applied to large applications, but
misses corner-case bugs that are common in floating-point
programs.
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Our approach of using symbolic execution combined
with Expression matching and canonicalisation rules have
been successfully used in the past to verify code equiva-
lence, e.g., in the context of hardware verification [14],
embedded software [18], compiler optimizations [47],
block cipher implementations [52], and parallel numerical
programs [51]. We extend this line of research in the con-
text of SIMD vectorizations and GPGPU optimisations,
which requires techniques for handling floating-point
arithmetic, the modelling of SIMD and OpenCL operations
(which includes support for the OpenCL runtime, OpenCL
address spaces, and runtime compilation of kernels), as
well as support for concurrency and race detection.

Our application of phi-node folding [12], [39] aims at
reducing the state space explored by symbolic execution
by statically merging paths, in the context of data-parallel
code. Recent work in the area [37] has investigated more
sophisticated strategies for merging paths in symbolic exe-
cution in a more general context. Alternative approaches
that we could apply to reduce the number of paths
explored include using compositional dynamic test gener-
ation to create function summaries [23], using read-write
sets to track the values accessed by the program [6], or
using information partitions to track information flow
between inputs [43].

Automatic vectorization techniques provide an alterna-
tive to verifying the correctness of manually-written SIMD
code [19], [38], [46]. However, even as these techniques will
start to be more widely adopted, the approach presented in
this paper can be applied to verify these automatically gen-
erated SIMD-vectorizations.

Despite the growing popularity of GPU languages, there
has been relatively little work on testing and verification
techniques for code written in these languages. Most previ-
ous work in this space has focused on race detection. Li
et al. [40], Tripakis et al. [54] and Betts et al. [4] propose
static race-detection techniques based on translating CUDA
or OpenCL code into SMT constraints. The main advantage
of a static analysis approach is coverage: our dynamic
approach depends on the number of paths explored by
symbolic execution in a given time budget and can only rea-
son about a fixed number of threads and objects with con-
crete bounds. On the other hand, static analysis suffers from
false positives, due to various approximations resulting
from, e.g., analysing kernels in isolation and loop unrolling.

Aiken and Gay [2] describe a technique for detecting exe-
cution barrier divergence errors in SPMD programs by defin-
ing a single-valuedness property for each expression within a
program (intuitively, the notion that the expression will eval-
uate to the same value in each SPMD thread). The single-val-
uedness of an if statement’s controlling expression is used
to determine whether the same path is guaranteed to be fol-
lowed in each thread. Because the single-valuedness analysis
is conservative, the technique is prone to false positives.

GKLEE [41], developed concurrently and independently
with our work, is an extension of KLEE which includes a
CUDA model and support for detecting a range of errors in
CUDA programs, including data races and execution barrier
divergence, and efficiency issues such as control flow diver-
gence within thread warps, bank conflicts and non-coalesced
memory accesses. Like KLEE-CL, GKLEE can check

functional correctness (via cross-checking, or by other
means). However, it lacks support for symbolic floating-
point arithmetic, and as such it cannot be used to analyse the
functional correctness of CUDA floating-point programs.

A dynamic race detection approach similar to our tech-
nique is introduced by Boyer et al. in the context of CUDA
programs [8]. A more recent technique [55] combines
dynamic race detection with a static analysis pass that
removes accesses that can be statically proven to be safe or
unsafe, resulting in a system with a relatively small runtime
overhead. The main weakness of these techniques is that
they depend on the concrete inputs with which the program
is run. Instead, our approach can check for symbolic race
conditions on all the different paths explored via symbolic
execution.

Our approach is also similar in spirit to previous
dynamic race detection approaches for CPU code [20], [49],
[50], although the barrier-based synchronisation model
used in OpenCL allows for a simpler algorithm than in the
case of traditional synchronisation primitives such as locks
and semaphores.

10 CONCLUSION AND FUTURE WORK

Manually translating scalar code into an equivalent data-
parallel version is a difficult task, because any programming
error may cause the hand-optimised code to act differently
from the original scalar version. In this paper, we intro-
duced an effective technique for symbolic crosschecking of
data-parallel floating-point code, and for detecting race con-
ditions in OpenCL code. We implemented our approach in
the KLEE-CL tool, and applied it to several real code bases,
in which it was able to check the bounded equivalence
between scalar and data-parallel code, as well as detect
memory errors, semantic mismatches and data races in the
optimised code.

KLEE-CL is freely available from our website at http://
www.pcc.me.uk/~peter/klee-cl/.
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