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ABSTRACT
New technologies have recently emerged to challenge the
very nature of computing: multicore processors, virtualiz ed
operating systems and networks, and data-center clouds.
One can view these technologies as forming levels within a
new, global computing platform. We aim to open a new area
of research, calledmultiplicity computing , that takes a radi-
cally di�erent approach to the engineering of applications for
this platform. Unlike other e�orts, which are largely focus ed
on innovations within speci�c levels, multiplicity comput ing
embraces the platform as a virtually unlimited space of es-
sentially redundant resources. This space is formed as a
whole from the cross product of resources available at each
level in the platform, o�ering a \multiplicity" of end-to-e nd
resources. We seek to discover fundamentally new ways of
exploiting the combinatorial multiplicity of computation al,
communication, and storage resources to obtain scalable ap-
plications exhibiting improved quality, dependability, a nd
security that are both predictable and measurable.

Categories and Subject Descriptors
C.2.0 [Computer-Communications Networks ]: Gen-
eral; D.2.0 [Software Engineering ]: General; D.4.0
[Operating Systems ]: General

General Terms
Design, Experimentation, Measurement, Performance, Reli -
ability, Security

1. WHY MULTIPLICITY COMPUTING?
The �rst decade of the 21 st century has seen the emergence
of several new computing technologies: multicore processors,
virtualized operating systems and networks, and data-cent er
clouds. Simplifying a bit, one can view these technologies as
forming levels within a new, global computing platform for
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application software systems, the \Internet computer". Ap -
plication developers are looking to this platform to provid e
the computational, communication, and storage resources
they need in order to o�er services to unlimited numbers of
users around the globe in a cost-e�ective and e�cient man-
ner [19]. The dream of computing as a utility much like the
electric power grid would seem to be approaching reality.

Many current applications can take immediate bene�t
from the new computing platform, and this simple fact ex-
plains the rapidity with which the various platform technol o-
gies have gained such wide acceptance. With their early suc-
cess, signi�cant interest is building in drastically expan ding
the capabilities of the platform technologies. Indeed, the
growth trends predicted for them are staggering, with es-
timates of orders of magnitude more computing resources
becoming available within the next decade [2, 12, 15].

It is a critical time, therefore, to ask the following di�-
cult questions: How can applications take advantage of this
exponential growth in power? Is it enough to continue using
the current methods for developing applications? What new
approaches to application development are made possible in
the context of the new computing platform?

Any given application in existence today, bound by the
limits of its structure and semantics, is unlikely to satura te
the resources provided. In fact, there are already techniques
being developed to avoid the use of some portion of the cores
in a processor simply because they consume energy without
necessarily providing increased performance [16].

What we see is an approaching plateau, where applica-
tions will no longer bene�t from the growing power of the
computing platform unless those applications undergo a fun-
damental reconceptualization. This e�ect will be mirrored
in the software engineering techniques intended to develop
and support these applications; the utility and viability o f
current techniques are threatened by the sheer scale to which
the platform is expected to evolve.

The currently popular idea is to seek greater parallelism
within the various levels of the platform. This has led to
a renewed interest in parallelizing compilers and function al
languages, and to the development of large-scale, coarse-
grained parallel data-processing systems, such as MapRe-
duce [7], Hadoop,1 and Dryad [13]. These e�orts are pro-
ducing important results, and continued work on them is
well justi�ed. But simply concentrating on level-speci�c i m-
provements does not constitute a comprehensive strategy for
fully exploiting tomorrow's vastly richer computing envir on-

1http://hadoop.apache.org/



Figure 1: Multiplicity of Computational Resources used by N ext-Generation Applications

ment. We will get techniques that are merely e�ective within
a given level, but not necessarily e�ective when placed in
concert with techniques employed at other levels.

We envision a new area of research that takes a radi-
cally di�erent approach to investigating the opportunitie s
presented by the next-generation computing platform. We
refer to this new area as multiplicity computing , embracing
the platform as a virtually unlimited space of essentially r e-
dundant resources. This space is formed as a whole from
the cross product of resources available at each level in the
platform, o�ering a \multiplicity" of end-to-end resource s.
The concept is illustrated in Figure 1, which shows the var-
ious layers of platform technologies underlying multiplic ity
computing. In particular, the �gure shows the coming multi-
plicity of computational resources. Not shown, but similarly
abundant, will be communication and storage resources; any
given application will require resources of all three kinds .
Applications are depicted as shaded cones that have allo-
cated to them, within the cones, some subset of the avail-
able resources. Notice that applications can be deployed at
any level, such as in a data center across multiple machines
or simply within an individual machine. And, although not
illustrated in the �gure, the allocated subsets of di�erent ap-
plications may in fact overlap. Of course, virtualization a nd
multi-tenancy technologies also play vital roles, abstrac ting
the resources in such a way that they can be shared and
reallocated without disturbing the applications using the m.

A concept related to, but distinct from, multiplicity com-
puting is multi-scale computing, which seeks an integration
of computing at di�erent scales, from the �ne-grained pro-
cessing of environmental data in sensor nodes to context-
driven applications running on mobile devices to bulk pro-
cessing of data on supercomputers or in data centers. For
example, the University of California's Multiscale System s
Center2 is looking at this problem from the perspective of
\distributed sense and control". The research questions be-
ing asked are therefore quite di�erent.

2http://www.musyc.org/

2. A SIMPLE SCENARIO
The following scenario gives a concrete example of the chal-
lenges and potential of multiplicity computing. Consider a
global social-networking service that provides an infrast ruc-
ture for hundreds of millions of users world wide to commu-
nicate, collaborate, and interact. As a platform for third-
party applications, it enables an ecosystem of new social,
business, and entertainment applications to be sold through
a digital marketplace on the site.

The immense resource requirements of such an infrastruc-
ture are satis�ed by hundreds of cloud data centers located
around the world. The infrastructure operator extensively
uses virtualization for resource isolation and must manage
this global infrastructure e�ciently. This involves balan c-
ing the requirements of individual applications in terms of
performance, availability, and reliability with its own go als
as an operator regarding e�ciency and utilization of the
platform as a whole. For example, the operator's desire to
reduce energy costs may mean that underutilized racks of
thousands of computers should be switched o� at times and
components reallocated to other racks perhaps in other data
centers, thereby accepting a small reduction in applicatio n
performance for improved energy e�ciency.

Software engineers must be given the right abstractions
to design, build, and deploy applications in this complex
environment. They must understand what computational,
communication, and storage resources they require when de-
ploying, for example, a new graphics-intensive, multi-pla yer,
virtual-reality game. The game may require redundant re-
sources in multiple data centers to guarantee its availabil -
ity, but must also dynamically acquire additional resource s
to handle 
ash crowds in parts of the virtual game world.
Guaranteeing the availability of such an application does
not only mean guarding against resource failures, but also
protecting against software bugs and security attacks. For
instance, when rolling out updates of applications on this
infrastructure, there is a risk that new software 
aws may
lead to catastrophic application failures.



3. OPPORTUNITIES
Multiplicity computing o�ers new ways to deal with the is-
sues highlighted in the scenario described above. To give a

avor of our vision, we outline several new ideas that could
be explored through multiplicity computing.

Resiliency through diversity. Rather than thinking of an
application, even a highly distributed application consis ting
of many components, as a single entity to be deployed and
executed on the computing platform, what if we could de-
ploy and execute hundreds or thousands of instances of the
application simultaneously? If those instances were actually
slight variants of each other, perhaps generated automati-
cally (e.g., through genetic programming [9]), then there i s
a statistical likelihood that their performance and/or qua l-
ity properties di�er in some interesting way, such as freedo m
from some bug or security vulnerability.

Staged deployment. The current processes for upgrading
an application, especially a \non-stop" application, typi cally
require a complex and coordinated e�ort among develop-
ers, operators, and users, and usually involve some amount
of service interruption. Many such processes have proven
disastrous (e.g., the recent incidents involving Skype and
Google's GMail), either because of con�guration problems o r
simply low quality in the new versions. What if multiple up-
grade candidates could be brought into service and allowed
to execute in parallel with old versions? Users could then
select the best candidate according to their needs, and in-
crementally migrate to that version as con�dence in it grew.

Intelligent parameter-space exploration. Large-scale
distributed applications exhibit emergent behaviors that are
typically not amenable to formal reasoning. This is due to
the extremely large, highly dimensional, and somewhat un-
controllable space of parameters that a�ect and determine
the execution of an application. These parameters include
the basic functional parameters of the application (i.e., \ in-
puts") as well as those that describe the platform (e.g., net -
work latency and machine failure rates). What if we could
explore that space experimentally by choosing a series of
trial runs relative to some hypothesis (e.g., the relations hip
among some set of parameter values), and simultaneously
deploy and execute hundreds or thousands of trials to prove
or disprove that hypothesis? This would allow a substantial
increase in the predictability of application behavior.

Cross-boundary resource optimization. The increas-
ing abundance of computing resources will almost certainly
be accompanied by a sharp drop in the unit cost of comput-
ing. Over time, however, applications tend to use more units
rather than the same number of units at lower cost (typically
because their functionality increases, disciplined use of re-
sources decreases, or both). In the end, operating costs will
remain a critical issue. For example, an application may giv e
up locally available cores for a larger number of cores in a
remote data center, accepting the incurred increase in com-
munication latency. What if we could freely optimize cost
both horizontally and vertically across the platform, taki ng
into account the di�erent properties of each platform level
when allocating resources to applications?

Notice that some of these ideas have to do with the design
of applications, some with the validation of those designs,
and some with the operation of applications. Thus, mul-
tiplicity computing would have an impact on nearly every
aspect of how we go about the engineering of applications.

4. SOME RESEARCH THEMES
Our vision for multiplicity computing begins a process of
thinking that should be expected to broadly in
uence a num-
ber of core computing disciplines, speci�cally software engi-
neering, distributed systems, operating systems, and net-
working. It should also in
uence the development of soft-
ware in a broad range of application areas. We now sketch
just a few of the many research themes that could be inves-
tigated under the rubric of multiplicity computing.

Multi-level platform management. Current solutions
for resource management only focus on speci�c platform
levels, such as the scheduling of processes on cores in Bar-
rel�sh [3] or the migration of virtual machines [22]. The
lack of coordinated decision making at di�erent levels hide s
the trade o� between horizontal and vertical scaling [19] an d
leads to fragmented resource allocation. It also makes it dif-
�cult to guarantee high-level policies for e�ciency, elast icity,
and availability. An example of a policy that is currently
hard to implement is to power down automatically an entire
cluster within a data center when the application workload
can be handled by the remaining clusters. Without support
for such high-level management policies, multiplicity com -
puting risks wasting physical resources and thereby provide
poor service to applications.

To address this problem, we argue that resource manage-
ment should take a holistic view of resources across multiple
platform levels. This enables resource management deci-
sions to trade o� resources at di�erent levels, as suggested
by our earlier example of trading the location of cores against
communication latency. By providing a uni�ed model of re-
sources in multiplicity computing, we can enable better man -
agement approaches that guarantee long-term goals, such as
those relating to power consumption.

Multi-level platform management opens several new re-
search challenges: (1) scalable and dynamic resource dis-
covery and monitoring [17]; (2) decentralized algorithms f or
holistic resource allocation that guarantee global proper ties;
(3) techniques for cross-level optimization of resource man-
agement; and (4) approaches for speci�cation and enforce-
ment of high-level management policies [8].

Speculative execution. The next-generation platform
creates new opportunities for exploiting vast computing re -
sources. Current approaches have mainly focused on im-
provements to application performance. Unfortunately, th is
works well only for applications with a great amount of in-
herent parallelism, that is, those that can be divided into
multiple computations that can be solved concurrently.

Multiplicity computing could allow us to broaden our
attention from simple performance to additionally address
concerns of reliability, availability, and security. This would
allow us to improve a much larger class of applications, in-
cluding those with limited or no inherent parallelism. The
key observation is that we can use the extra available com-
puting power to create di�erent variants of the same appli-
cation, execute those variants in parallel, and dynamicall y
choose the best one available for the task at hand. We refer
to this as speculative execution. Examples of where spec-
ulative execution should have immediate bene�t include:
avoiding erroneous order dependencies in distributed mes-
sage queues by executing variants that process the queues
in di�erent orders; avoiding vulnerable portions of memory
by executing variants having di�erent memory layouts [4];



avoiding pathological behaviors in heuristic algorithms b y
executing variants having di�erent non-deterministic pro p-
erties [11]; and avoiding regression in bug �xing by executi ng
variants with di�erent patch sets, which could be generated
by genetic programming [9] or symbolic execution [5]. This
is a much broader set of goals than that of the prior work of
Cledat et al. [6] or Forrest et al. [9].

The process of applying speculative execution would con-
sist of three main tasks. First we generate large numbers of
multiple variants of an application whose quality we wish to
improve, thus forming what we term an\application family".
These variants are then allocated physical resources accord-
ing to certain semantic constraints and the resources avail-
able. Finally, the execution of the application family is co or-
dinated via an orchestration strategy that will involve com -
plex state synchronization across the variants. Thus, thre e
research challenges of speculative execution are: (1) gener-
ating large application families automatically; (2) manag ing
the resources allocated to an application family; and (3) co-
ordinating the execution of an application family.

Application design principles. Multiplicity computing
has enormous potential to enable new classes of applications
at an unprecedented scale. But it also bears the risk that ap-
plication developers will be overwhelmed by the complexity
of designing and implementing applications. The sheer num-
ber of resources require new software architectures to take
advantage of them. Applications must be tailored towards
this environment by building them from a large number of
independent software components. These components must
communicate, coordinate, and interact with each other ef-
�ciently. If developers are not given the right abstraction s
and programming primitives to achieve this, they will be
unable to leverage the bene�ts of multiplicity computing.

Based on existing application success stories in cloud data
centers, we can infer simple design principles for suitable
software architectures. Parallel computation frameworks ,
such as MapReduce, Hadoop, and Dryad, require algorithms
to be expressed in simple functional terms, making them ex-
tremely parallelizable. Data storage in wide-area distrib uted
�le systems, as in GFS [10] and WheelFS [20], relies heav-
ily on redundant copies of data to provide fault tolerance,
and on eventual consistency for scalability and availabili ty.
Group communication mechanisms using publish/subscribe
and epidemic gossip-style dissemination have been shown to
scale to a large number of components [14, 18].

We argue that it is necessary to provide design princi-
ples for multiplicity computing applications . These princi-
ples will enable application developers to adopt architect ures
that can take advantage of parallelism, elasticity, and iso la-
tion. In addition, new primitives and abstractions for com-
munication, orchestration, and storage are needed. Thus,
we can see �ve research challenges related to application de-
sign principles: (1) software architectures for multiplic ity
computing; (2) group communication mechanisms for vast
numbers of components; (3) primitives for generating large
application families; (4) abstractions for e�cient orches tra-
tion and synchronization of components; and (5) support for
scalable persistence of static and dynamic data.

Guided experimentation. Experimental exploration of
an application's parameter space|that is, the setting of in -
dependent variables leading to measurable e�ects on depen-
dent variables of interest|is today largely a manual pro-
cess: relying on experience and intuition, engineers select a

sequence of sample points to test some hypothesis about the
relationship among the variables. Correspondingly, the st ate
of the art in distributed-system experimentation is based o n
the general notion of a network testbed whose support tools
(e.g., Plush [1] for PlanetLab or our own general-purpose
tool Weevil [21]) only provide what amount to a sophis-
ticated deployment and execution environment for a dis-
tributed system and its experimental workload. The tasks
of experimental design and, particularly, parameter-spac e
exploration are left to the engineer.

Multiplicity computing o�ers a fresh perspective: the
same abundance of resources available for the normal op-
eration of applications can be exploited to carry out a riche r
experimentation process. Moreover, multiplicity comput-
ing's multi-level platform management can provide a so-
phisticated means to control the allocation of experimen-
tal resources, while its speculative execution can provide
novel ways of generating and orchestrating experimental tr i-
als. But with all this richness comes added complexity and,
therefore, a need to provide substantial help to the engineer
as they go about designing experiments in this new context.

We see experimentation asguided exploration: performing
experiments by providing guidance to an integrated frame-
work of automation tools for constructing experimental tri -
als from a speci�cation of experimental hypotheses and para-
meter-space dimensions, executing trials and feeding their
results back into the trial construction process, and discov-
ering the interplay of parameters and deriving new experi-
mental hypotheses. While prior research has looked at au-
tomating parameter-space exploration for limited kinds of
parameters, for limited kinds of behaviors, for centralize d
systems, or for degenerate, server-centered distributed sys-
tems, never before has the problem been attempted for large-
scale distributed systems in their full richness and complex-
ity. Thus, several fundamental advances will be required to
support our broader vision, summarized as the following set
of research challenges: (1) models and modeling formalisms
capable of capturing experimental hypotheses, the elements
and boundaries of a highly dimensional parameter space,
key performance indicators, and an overall cost model for
the experimentation process; (2) parameter-space sampling
techniques based on sound theoretical foundations and em-
pirically justi�ed heuristics, and suited to the wide varie ty
of parameters in the distributed-system domain; and (3) hy-
pothesis inference techniques e�ective at discovering useful
new experimental questions and parameter relationships.

5. CONCLUSION
We are witnessing a step change in the basic computing
platform, characterized fundamentally by the abundance of
computational, communication, and storage resources on of-
fer to any and all application systems. Multiplicity com-
puting represents a radical rethink of how those resources
can be leveraged by software engineers, not merely to in-
crease performance or decrease cost, but to obtain scalable
applications exhibiting improved quality, dependability , and
security that are both predictable and measurable.
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