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ABSTRACT
While developers are aware of the importance of comprehen-
sively testing patches, the large effort involved in coming up
with relevant test cases means that such testing rarely hap-
pens in practice. Furthermore, even when test cases are
written to cover the patch, they often exercise the same be-
haviour in the old and the new version of the code.

In this paper, we present a symbolic execution-based tech-
nique that is designed to generate test inputs that cover the
new program behaviours introduced by a patch. The tech-
nique works by executing both the old and the new version
in the same symbolic execution instance, with the old ver-
sion shadowing the new one. During this combined shadow
execution, whenever a branch point is reached where the
old and the new version diverge, we generate a test case
exercising the divergence and comprehensively test the new
behaviours of the new version.

We evaluate our technique on the Coreutils patches from
the CoREBench suite of regression bugs, and show that it
is able to generate test inputs that exercise newly added
behaviours and expose some of the regression bugs.

CCS Concepts
�Software and its engineering → Software testing
and debugging;

Keywords
Symbolic patch testing, regression bugs, cross-version checks

1. INTRODUCTION
The malleability of software is both a blessing and a curse.

On the one hand, one can easily change software to fix in-
correct behaviour or add new functionality. On the other
hand, software changes are often responsible for introducing
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errors and security vulnerabilities, making users think twice
about whether or not to update to the latest version.

Ideally, software changes, typically referred to as patches,
should be comprehensively tested. At the very minimum,
each line of code affected by the patch should be covered by
at least one test case. While this level of testing is still far
from being achieved in practice [21], automatic techniques
for enabling high-coverage patch testing are becoming more
and more successful [1, 17, 20, 29, 31]. Many of these tech-
niques are based on dynamic symbolic execution [7], a prog-
ram analysis technique that provides the ability to generate
inputs that form high-coverage test suites.

However, achieving full statement or even full branch cov-
erage for the patch code is clearly insufficient. In fact, one
can achieve full statement and branch coverage without test-
ing at all the new behaviour introduced by the patch! To
give a simple example, consider a patch that only changes
the statement if (x > 10) to if (x > 20), with this
statement executed only once by a deterministic program.
Suppose that the developer adds two test cases, x = 0 and
x = 30, to test the patch. A superficial reasoning might
conclude that the change is comprehensively tested, as we
have inputs covering each side of the branch. However, the
execution of these inputs is completely unaffected by the
patch, as the program will behave identically for these in-
puts before and after the patch is applied. Careful analysis
shows that the program behaviour is changed only when x
is between 11 and 20 (inclusive)—causing the two versions
to take different sides of the branch—so one of these values
should be used to test the patch.

In this paper, we present a technique based on dynamic
symbolic execution that can generate test inputs that cover
the new program behaviours introduced by a patch. The
technique works by executing both the old (unpatched) ver-
sion and new (patched) version in the same symbolic execu-
tion instance, with the old version shadowing the new one.
This form of analysis, which we refer to as shadow symbolic
execution, makes it possible to (1) precisely determine when
the two versions exhibit divergent behaviour, and (2) keep
execution time and memory consumption low. Both of these
features are key for effective testing of software patches, and
are difficult to achieve without running both versions in the
same symbolic execution instance.

The main contributions of this paper are:

(1) Shadow symbolic execution, a technique for generating
inputs that trigger new behaviours introduced by a patch.
The technique effectively prunes a large number of irrelevant
execution paths and reduces the program search space.



1 char arr[4];
2

3 int foo(int x) {
4 int y = x - 1;
5 if (y > 7) {
6 int z = x - 8;
7 if (z < 4)
8 arr[z] = ’A’;
9 return 0;

10 }
11 return 1;
12 }

Figure 1: A toy example illustrating symbolic execution.

(2) A way to unify the two program versions and represent
them as a single annotated program, equivalent to executing
both versions in lockstep, which lets us run the analysis in
a single symbolic execution instance. The unified program
could be useful in other dynamic analysis techniques.

(3) A tool called Shadow that implements shadow sym-
bolic execution, and the experience of applying it to the
Coreutils patches in CoREBench, a collection of highly-
complex real-world patches.

The rest of the paper is organised as follows. We introduce
shadow symbolic execution in §2 and then present it in detail
in §3. We then give a brief overview of our prototype tool
Shadow in §4 and describe our experience applying it to
test a suite of complex patches in §5. We finally discuss
related work in §6 and conclude in §7.

2. OVERVIEW
In our approach, we assume that we already have a test

input that touches the patch, i.e. executes at least one patch
statement—if such an input does not exist in the program’s
test suite, it could be generated using previous techniques
such as KATCH [20].

Given such an input, our technique is designed to auto-
matically generate new inputs that exercise the new be-
haviours added by the patch. These inputs can then be
analysed by developers to either uncover bugs (if the new
behaviour is unexpected) or create test cases that witness
and validate the new behaviour (if it is expected).

Our technique is based on dynamic symbolic execution [7],
a popular program analysis technique that runs the prog-
ram on symbolic rather than concrete inputs, with classes
of program paths with the same branching behaviour being
encoded as sets of constraints over those symbolic inputs.
At any point on a path, the symbolic state maintains the
current program location, a symbolic store mapping prog-
ram variables to expressions computed over the symbolic
input (reflecting dynamic runtime information for the non-
symbolic inputs), and a path condition (PC) characterising
the inputs that exercise the path. The PC takes the form
of a conjunction of constraints obtained from the symbolic
branch conditions encountered along the path.

As an example, consider the toy program in Figure 1, and
assume that we want to run function foo on symbolic input
x. When symbolic execution starts, the symbolic store is
{x → x}, meaning that variable x maps to symbolic input
x, and the PC is true. After line 4 is executed, the symbolic
store becomes {x→ x, y→ x−1}. When execution reaches
branch y > 7, we discover that under the current PC both

if (old)
doThen();

else
doElse();

−→
if (new)

doThen();
else

doElse();

if (old −→ new)

¬new new

doElse()

diff

doElse()

same

doThen()

diff

doThen()

same

old ¬old ¬old old

Figure 2: Four-way forking in shadow symbolic execution to
capture divergent executions (the ones shaded in grey).

sides of the branch are feasible, so we fork execution, follow-
ing each path separately. On the then branch we add to
the PC the constraint x− 1 > 7, while on the else branch
its negation x − 1 ≤ 7. The latter path immediately ter-
minates by executing return 1, but the former continues
by executing the assignment z = x - 8, which adds the
mapping z→ x− 8 to the symbolic store.

Then, when execution reaches branch z < 4, we discover
that under the current PC both branches are feasible, and
we fork execution again, adding the constraint x − 8 < 4
on the then side, and the constraint x − 8 ≥ 4 on the
else side. The latter path terminates immediately by ex-
ecuting return 0, while the former executes arr[z] =
’A’. Prior to this array indexing instruction, symbolic ex-
ecution inserts an implicit check asking if the array index
is guaranteed to be in bounds. On this path, the PC is
x − 1 > 7 ∧ x − 8 < 4, which can be used to establish that
z→ x− 8 cannot be out of bounds.

In shadow symbolic execution, our goal is to generate in-
puts that trigger the new behaviours introduced by a patch.
While various definitions of behaviour are possible (espe-
cially if higher-level semantic information about the program
is available), in this paper we use a generally-applicable def-
inition of behaviour at the code-level: the behaviour of the
program on a certain input is represented by the sequence
of edges in the control-flow graph of the program traversed
during execution. We say that two versions diverge on an in-
put if their code-level behaviours are different for that input.
Note that a code-level divergence may or may not result in
an observable output difference.

To find inputs exposing different behaviour across ver-
sions, we start by executing both the old and the new ver-
sion of the program on an input that exercises the patch, and
gather constraints on the side, as in the dynamic symbolic
execution variant called concolic execution [9,27]. Until the
patch is reached, assuming deterministic code, both the sym-
bolic stores and the path conditions are identical for the two
versions (by definition, since they have yet to execute a dif-
ferent instruction). However, once the patch is reached, the
two versions might update their symbolic stores and path
conditions differently. In our approach, we let each version
update its symbolic store as required, sharing the two stores
efficiently (see §3.2).



1 char arr[4];
2

3 int foo(int x) {
4 int y = change(x - 1, x + 1); // y=x-1 -> y=x+1
5 if (y > 7) {
6 int z = x - 8;
7 if (z < 4)
8 arr[z] = ’A’;
9 return 0;

10 }
11 return 1;
12 }

Figure 3: A toy example showing a simple patch that mod-
ifies an if statement.

When a branch condition is reached, we evaluate it under
the symbolic stores of each version, and we explore the en-
tire branch cross product. Figure 2 illustrates the general
case, where we reach a branch condition that evaluates to
semantically-different expressions in the two versions—say,
old in the old version, and new in the new version. Instead
of forking execution into two paths (if possible) based on the
execution of the new version—one adding the condition new
and the other ¬new, we fork into up to four ways. On two
of these cases the two versions behave identically (denoted
by same in the figure): both versions take either the then
(new∧old) or the else (¬new∧¬old) branch. On the other
two, the executions of the two versions diverge (denoted by
diff in the figure): either the new version takes the then
branch and the old version the else branch (new ∧ ¬old),
or the new version takes the else branch and the old version
the then branch (¬new ∧ old).

There are two scenarios of interest whenever the initial
input reaches such a branch:

(1) Concrete executions diverge. That is, the input
makes the two program versions follow different sides at this
branch. This means that developers have already done a
good job exploring at least part of the new behaviour intro-
duced by the patch. However, this one input might not be
sufficient to explore all the new behaviours—for example,
the new version might go on and execute a lot of new code
introduced by the patch. To better test the patch, at this
point we enable a bounded symbolic execution run on the
new version, i.e. we start symbolic execution in a breadth-
first search mode, for a fixed time budget. This also lets us
generate other divergent inputs exhibiting the same branch-
ing behaviour up to that point (but different afterwards).

(2) Concrete executions are identical, but divergences
are possible. That is, the input makes the two programs
take the same side of the branch, but at least one of the diff
paths in Figure 2 is feasible. In this case, we also explore
those paths. For each feasible diff path, we first generate
an input that exercises the divergent behaviour, and then
continue doing bounded symbolic execution in the new ver-
sion in order to systematically and comprehensively explore
additional divergent behaviours.

As long as the concrete executions do not diverge, we con-
tinue running both versions until the end of the program,
exploring any additional possible divergences along the way.

Toy example. As an illustrative example, consider again
the code in Figure 1, and assume that the developers have
written a patch that changes y = x - 1 to y = x + 1.

We repeat for convenience the code in Figure 3, where the
changed code is marked using the annotation change().
Furthermore, suppose that the developers have written three
test cases to exercise the patch: x = 0, x = 9 and x = 15.
These tests achieve full branch coverage in both versions, but
fail to exercise the new behaviour introduced by the patch
and miss a buffer underflow bug introduced for x = 7.

Shadow symbolic execution provides a systematic way of
testing the new behaviours introduced by a patch. Its ef-
fectiveness and performance depend on the starting input
that touches the patch, but in our example, it can find
the bug starting from any of the three inputs, with simi-
lar amount of effort. We illustrate how it works starting
from input x = 0. When function foo is entered, both
symbolic stores are {x → x} and the PC is true. Af-
ter the patched code on line 4 is executed, the symbolic
stores become {x → x, y → x − 1} in the old version and
{x → x, y → x + 1} in the new version. As a result, when
line 5 is reached, the condition y > 7 evaluates to x−1 > 7
in the old version, and to x + 1 > 7 in the new version. At
this four-way fork, our input x = 0 follows one of the same
cases illustrated in Figure 2. However, both diff cases are
also feasible at this point, so shadow symbolic execution first
generates an input that triggers the divergent behaviour in
each case, and then starts from that point a bounded sym-
bolic execution run on the new version.

One diff case, when at line 5 the old version takes the
else side while the new version takes the then side, gen-
erates the condition x − 1 ≤ 7 ∧ x + 1 > 7. At this point,
the constraint solver may return x = 7, which exposes the
buffer underflow bug, but it could also return x = 8, which
does not. In both cases, we start bounded symbolic exe-
cution on the new version, which finds the bug, thanks to
the implicit index-in-bounds check injected by the symbolic
execution engine before each array access. Note that the
bounded symbolic execution phase is started only on the di-
vergent path (in our case when the new version takes the
then side on line 5) and with the path condition that trig-
gers the divergence (in this case x−1 ≤ 7∧x+ 1 > 7). This
significantly constrains the search space, making symbolic
execution explore only paths that expose new behaviours in-
troduced by the patch.

While not relevant for our buffer underflow bug, note
that the patch also introduces a divergence which causes
the old version to take the then side and the new version
the else side at line 5, resulting in a divergence condition
x − 1 > 7 ∧ x + 1 ≤ 7. This divergence is less obvious be-
cause it only occurs when there is an arithmetic underflow
on line 4. For example, when x is −2147483648, y becomes
2147483647 in the old version,1 and −2147483647 in the
new version, causing the unexpected divergence. The subtle
point is that x − 1 > 7 does not imply x > 8 for fixed-
width machine arithmetic, which illustrates the difficulty of
manually reasoning about the new behaviours introduced by
software patches and the need for automatic techniques to
help in the process.

3. SHADOW SYMBOLIC EXECUTION
Figure 4 presents an overview of the process of testing soft-

ware patches with shadow symbolic execution. The inputs
to our technique are: i) the old and the new version of the

1In gcc 4.8.2; signed overflow is undefined in C.



Figure 4: A high-level overview of shadow symbolic execution.

program under test (alternatively, the old version and the
patch), and ii) the program’s test suite. The output is a set
of inputs that expose divergent behaviour between versions,
triggering either regression bugs or expected divergences.
We further divide these divergent behaviours into four sub-
categories. First, divergences that lead to generic errors (e.g.
memory errors) only in the new version are clear regression
bugs that should be fixed. Second, divergences that lead
to generic errors only in the old version are expected diver-
gences that witness the fix of that error. Third, divergences
that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they are
intended changes or regression errors. Finally, divergences
that do not lead to any noticeable differences could still be
of interest to developers, who could add the corresponding
inputs to the application’s test suite.

In the first step of our approach, we annotate the patches
as illustrated in Figure 3, in order to unify the old and the
new version into a single program that incorporates them
both (§3.1). Next, we select from the test suite those test
cases that touch the patch. We then perform shadow sym-
bolic execution and generate inputs that expose divergent
behaviour (§3.2). Finally, we run both versions natively on
all divergent inputs using enhanced cross-version checks and
identify those that trigger errors or output differences (§3.3).

3.1 Unifying versions via patch annotations
Our approach to executing both the old and the new ver-

sion of the program in the same symbolic execution instance
is to enforce them to proceed in lockstep until they diverge
in control flow. This is done by creating a single unified
program in which the two versions are merged via change()

annotations, as we have shown on line 4 in Figure 3. Map-
ping program elements across versions [15] is a difficult task,
as in the extreme, the two versions could be arbitrarily dif-
ferent programs. However, in practice the process can be
made sufficiently precise and furthermore automated using
various heuristics, as shown by recent work [16,23].

We currently add these annotations manually, following
the annotation patterns discussed below; however, we be-
lieve many patterns could be applied automatically, although
we leave this for future work.

Our annotations use the macro change(), which resem-
bles a function call with two arguments: the first argument
represents the code expression from the old version and the
second argument the corresponding expression from the new
version. One key property is the ability to run the old ver-
sion by replacing change() with its first argument, and the
new version by replacing it with its second argument.

Writing these annotations was easier than we initially
expected—we started by targeting very small patches (1-2

lines of code), but ended up annotating large patches of up
to several hundred lines of code. Below, we discuss the main
annotation patterns that we follow, in the order in which we
typically apply them.

1. Modifying an rvalue expression. When an expression E1
is changed to E2, the annotation is simply change(E1,
E2). As a general principle, we always push the change()
annotations as deep inside the expression as possible.
This strategy optimises the sharing between the symbolic
stores of the two versions, and it also allows for various
optimisations, such as constant folding, to be performed
by the symbolic execution engine. Examples include:

(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);

(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);

(c) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches we examined, we observed that developers
often change the control flow in the program by strength-
ening or weakening existing conditional expressions, i.e.
by adding or removing boolean clauses. For instance:

(d) Weakening a condition from A to A || B :

if (A || change(false, B))
... code ...

(e) Strengthening a condition from A to A && B :

if (A && change(true, B))
... code ...

We choose a different style of annotations for strengthen-
ing of a condition from A || B to B and for weakening a
condition from A && B to B:

(f) Strengthening a condition from A || B to B :

if (change(A || B, B))
... code ...

(g) Weakening a condition from A && B to B :

if (change(A && B, B))
... code ...

The reason for using this different style is to avoid the
introduction of spurious divergences. For example, if we
annotated a strengthening of a condition from A || B to
B as if (change(A, false)|| B), then if A is true
and B is also true, a divergence would be reported, even
though the two versions would take the same then side
of the branch. While this annotation might be preferable
when a stronger coverage criterion such as MC/DC [11]
is desired, in our experiments we prioritise divergences
that propagate to the output.



1 x = change(a, b);
2 y = x + 1;
3 z = y / 2;
4 ...
5 if (z) {
6 ... code ...
7 }

Figure 5: A change in an assignment propagating through
the rest of the code.

2. Adding/removing extra assignments or conditionals.
Essentially, we view all changes of this type as modifica-
tions of existing constructs by adding dummy statements
at appropriate points in the program [26]. E.g.:

(a) Adding an extra assignment x = E:

x = change(x, E);

(b) Removing an assignment x = E:

x = change(E, x);

(c) Adding code conditional on an expression. That is,
if the code added in the new version has the form
if (C)... code ... , the annotation is:

if (change(false, C))
... code ...

(d) Removing code conditional on C :

if (change(C, false))
... code ...

3. Adding/removing straightline code fragments. In general,
we first try to annotate any code modifications using rules
1 and 2. However, if the changed code has side effects (e.g.
it writes to a file) or the previous rules are too difficult
to apply, we use the following rules:

(a) Removing straightline code:

if (change(true, false))
... code ...

(b) Adding straightline code:

if (change(false, true))
... code ...

We note that this is the most conservative way of annotat-
ing a change in our framework—the execution of a branch
instruction conditional on a change(true, false) ex-
pression immediately triggers the generation of a diver-
gent test input, terminates shadow execution and pro-
ceeds by running the new version only, losing the ability
to use the old version as an oracle.

4. Adding/removing variable declarations. If a variable dec-
laration is added or removed, we keep it in the merged
program; no annotations are necessary. Uses of that vari-
able are treated using rules 1 to 3 above.

5. Modifying variable declarations. When the type of a vari-
able is changed to include more or fewer values, we keep
the larger type. Due to arithmetic overflow issues, we
reason manually whether this is safe to do; however, in
our benchmarks type changes were a rare occurrence and
quite straightforward: e.g. changing char buf[5] to char

buf[2] or changing a bool to an enum.

/

+

Shadow

a b

1

2

z

y

x

Figure 6: A shared expression tree for the expressions corre-
sponding to the variables x,y and z in Figure 5. Expressions
containing shadow subexpressions are kept in the symbolic
store and lazily evaluated at symbolic branch points, e.g. in
the if condition on line 5, in order to extract the new and
old counterparts.

3.2 Symbolic execution phase
For each input that touches the patch, shadow symbolic

execution operates in two phases:

1. Concolic phase. We start by executing the unified prog-
ram on that input, and gather constraints on the side, as
in concolic execution [9, 27]. As the program executes:

(a) If at a branch point the input exposes a divergence,
we stop shadow execution and add this divergence
point to a queue to be processed in phase 2.

(b) If at a branch point the input follows the same path
in both versions, but divergences are also possible,
we generate a test case exposing each possible diver-
gence and then add these divergence points to the
queue to be processed in phase 2. We then continue
the concolic execution of the unified program.

2. Bounded symbolic execution (BSE) phase. For
each divergence point placed in the queue, we initiate a
BSE run in the new version starting from that divergence
point, to search for additional divergent behaviours.

The concolic phase is computationally cheaper; neverthe-
less, the BSE phase is essential as it is able to propagate the
divergent behaviour down the execution tree and explore
systematically the impact of the divergence.

Efficiently sharing state using shadow expressions.
As in other instances when different software variants or
versions are run together [8, 12–14,22,30], shadow symbolic
execution can substantially increase memory consumption.
As a result, it is important to maximise sharing between the
symbolic state of the two versions. Since the patch typically
affects a relatively small number of symbolic expressions,
everything else can be shared. Furthermore, it is possible to
share those parts of symbolic expressions that are identical
between versions.

To enable sharing, whenever we encounter a change() an-
notation, instead of constructing and maintaining separate
symbolic expressions for the old and the new version, we cre-
ate a shadow expression. A shadow expression contains two
subexpressions, one corresponding to the old version, and
one to the new. Shadow expressions can be used as any other
expressions, without the need to duplicate for each version
entire expression trees that contain modified subexpression



nodes. To illustrate, consider the example in Figure 5, in
which the code is changed to assign into x value b instead
of a. Furthermore, assume that after this change x is used
multiple times in the program, directly or indirectly, e.g. to
derive variables y and z on lines 2 and 3. Without sharing,
both y and z would have to point to different symbolic ex-
pressions in the two versions. However, the use of shadow
expressions unifies the expressions for the two versions and
maximises sharing. In our example—as illustrated in Fig-
ure 6—x will point to a shadow expression with children a

and b. Then, when y is created, its left child is assigned to
this shadow expression, but node y itself remains the same
in both the old and the new versions. Similarly, when z is
created, its children become simply y and 2. This scheme
has the advantage that sharing is maximised, propagation
of changes is implicit, and the creation of expressions can
still be performed in constant time.

In addition, the dynamic nature of symbolic execution
provides opportunities for identifying refactorings on a per-
path basis at run time, which allows for further optimisa-
tions. In particular, if the two candidate children eold and
enew of a shadow expression are equivalent under the current
PC, then the syntactic changes do not introduce semantic
differences and we skip the creation of a shadow expression.

3.3 Enhanced cross-version checks
In order to determine whether an input that exposes a

code-level divergence results in an externally-observable reg-
ression bug or expected behavioural change, we use a series
of enhanced cross-version checks. These checks run the two
versions natively on each input which exposes a divergence
and compare their outputs, including exit codes. They also
check for generic errors, in particular crashes and memory
errors that do not trigger a crash, the latter detectable by
compiling the code with address sanitization [28].

If the outputs of the two versions differ, it is up to de-
velopers to decide whether the difference is expected or a
regression bug. Even though in our evaluation we deter-
mined this automatically (because we also knew the patches
that fixed the introduced bugs), we validated the classifica-
tion manually and often found making this judgement easy
to do, by reading the commit message describing the inten-
tion of each patch. We also had cases in which it was not
immediately obvious whether the change in behaviour was
expected—these are exactly the kind of inputs that devel-
opers should pay attention to, as they could point to bugs
or lack of proper documentation.

We apply these checks both on the inputs in the regression
test suite and on those generated by our technique.

4. IMPLEMENTATION
We implemented our approach in a tool called Shadow,

which is built on top of the KLEE symbolic execution en-
gine [5] and uses the concolic execution functionality from
the ZESTI extension [19]. Our code is based on KLEE re-
vision 02fa9e4d, LLVM 2.9 and STP revision 1668.

To select the test cases in the regression suite that touch
the patch, we run the regression suite on the new version of
the program compiled with coverage instrumentation (gcov2).

To run the concolic phase, we replace the program under
test with a wrapper script that passes the original invocation

2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

parameters to Shadow. Note that a test case may invoke
a given program multiple times. To test the nth invoca-
tion, the script runs the first n− 1 invocations natively, and
forwards the nth to Shadow.

The concolic phase runs each test case touching the patch,
and generates a test input every time it finds a divergence.
The BSE phase repeats the concolic phase (for ease of im-
plementation) and stores all divergence points in a queue.
Then, Shadow performs bounded symbolic execution start-
ing at each divergence point in this queue, in a breadth-first
search manner. We generate an input for each path explored
during BSE. As these paths originate from divergent points,
by definition all generated inputs expose divergences.

In the concolic phase, a single invocation is allowed to run
for a maximum of 600s. The same budget is given for the
BSE phase, which as discussed above, also repeats the con-
colic phase for ease of implementation. The actual symbolic
exploration phase is given 570s, divided equally among all
the divergence points placed in the queue.

For each phase, we set a global timeout of 3600s for run-
ning an entire test case (potentially consisting of multiple
invocations). Also for each phase we set a global timeout of
7200s for running all the test cases that touch the patch.

In order to rerun the generated inputs natively, Shadow
provides a replay functionality that implements the enhanced
checks described in §3.3. This functionality also uses a wrap-
per script that calls the native versions of the application and
substitutes the original parameters with the ones synthesised
for the generated test cases. Shadow runs each test input
twice, once with the old version and once with the new one.
The outputs and exit codes are then compared in order to
discover divergences that propagate to the program output.
For each phase, the replay is bounded by a per-invocation
timeout of 5s, a per-test-case timeout of 60s and a global
timeout of 7200s. Due to some non-determinism in our re-
play infrastructure we retry each replay experiment once if
the first attempt is unsuccessful.

5. EVALUATION
We evaluate Shadow on the software patches from the

GNU Coreutils application suite3 included in the CoREBench
suite of regression bugs.4 Coreutils is a collection of util-
ity programs for file, text and shell manipulation. It is a
mature, well-maintained and widely-used project included
in virtually all Linux distributions. Together, the programs
form a code base of over 60 KLOC.5

The CoREBench patches represent a tough challenge for
test input generation: as the CoREBench authors discuss [4],
the complexity of these regression errors and associated fixes
is significantly higher than those in popular evaluation suites
such as the SIR and Siemens benchmarks.6

CoREBench provides 22 pairs of {bug-introducing, bug-fixing}
patches for Coreutils. However, some patches introduce
multiple bugs, so we are left with 18 unique bug-introducing
patches, which are shown in Table 1. The first column of this
table shows the CoREBench ID for the patch. If the patch is
responsible for multiple bugs, we show all relevant IDs: e.g.,
“5 = 16” means that the bug-introducing patch with ID 5 is

3http://www.gnu.org/software/coreutils/
4http://www.comp.nus.edu.sg/˜release/corebench/
5Measured with the cloc tool, http://cloc.sourceforge.net/
6http://sir.unl.edu/portal/index.php



Table 1: Coreutils patches from CoREBench. We report the
patch size (which takes into account source code only), the
number of test files that touch the patch, and the number
of change() annotations that we used for each patch.

ID Tool Patch Size Test Files
Touching

Anno-
tations

LOC Hunks Files

1 mv, rm 45 17 4 243 12
2 od 141 46 1 – 32
3 cut 294 35 1 17 14
4 tail 21 4 1 4 4
5=16 tail 275 13 1 2 1
6 cut 8 3 1 15 3
7 seq 148 5 1 29 5
8 seq 37 4 1 29 12
9=18=20 seq 324 52 1 – 11
10 cp 16 8 5 42 2
11 cut 2 1 1 14 1
12=17 cut 110 17 1 1 4
13 ls 13 2 1 8 2
14 ls 15 5 1 7 4
15 du 3 1 1 26 1
19 seq 40 9 1 11 6
21 cut 31 10 1 11 6
22 expr 54 6 1 2 4

the same as the one with ID 16. The LOC, Hunks and Files
columns provide information about the size of each patch,
in terms of added/modified lines of code (LOC), hunks and
files. The number of LOC is measured by the diff tool. The
hunks forming a patch are essentially the different areas of
code affected by a patch. More formally, a hunk groups to-
gether all the lines added or modified in a patch which are at
a distance smaller than the context size. We used the unified
diff format with a context size of zero when computing the
hunks. As can be seen, the size of a patch varies between
only 2 LOC and a single hunk and up to 324 LOC and 52
hunks. Most patches change a single file, with two excep-
tions, where 4 and respectively 5 different files are affected.

Finally, the column Test Files Touching gives the num-
ber of test files in the regression test suite that touch the
patch, which are used as starting points by Shadow. Due
to technical problems related to running old revisions, we
could not run the test suites coming with patches #2 and
#9. Therefore, we exclude those two patches from our eval-
uation, although we do report the annotation effort involved
for these patches too.

5.1 Annotations
Column Annotations in Table 1 shows the number of

change() annotations that we added for each patch. In
general, the number of annotations does not depend on the
number of LOC in the patch. For example, patch #5 adds
a call to a new function consisting of over 200 LOC, which
in turn calls other new code. However, while a lot of code
has been added, we need a single change() annotation to
enable it, as discussed in §3.1.

Instead, the number of hunks can give a rough estimate of
the number of required annotations. Nonetheless, there are
exceptions—for example, many hunks do not require any
annotations. E.g., patch #5 discussed earlier includes a
variable renaming from nfiles to n_files which results
in many hunks that do not require any annotations. Hunks
that only change comments are another example.

Table 2 provides a rough overview of the distribution of
annotation patterns as classified in §3.1. The classification

Table 2: Distribution of annotation patterns across the
CoREBench patches. The last two columns refer to chan-
ges that require no explicit annotations despite taking some
effort to reason about. Variables that are added or removed
in a scope accessible only to a single version (e.g., in a newly-
added function), do not contribute toward column 5.

ID Modified Extra Straightline Added/removed Modified
rvalues assign/cond code variables types

1 11 1 - - X
2 24 - 8 X X
3 4 6 4 X -
4 3 1 - - -
5=16 - 1 - X -
6 1 2 - - -
7 2 3 - X -
8 11 1 - - -
9=18=20 9 2 - X X
10 - 2 - X -
11 - 1 - - -
12=17 2 - 2 X X
13 1 - 1 - -
14 3 - 1 X -
15 - 1 - - -
19 2 3 1 - -
21 4 2 - X -
22 3 1 - X -

Total 80 27 17 X X

is approximate—for example, a transformation of a variable
bool neg into int sign can be interpreted as both a change
of type and an addition and a removal of a variable.

In general, there is often more than one way to annotate
a patch. Furthermore, our manual effort is error-prone, al-
though we are confident that the annotations are correct.
We make our annotations publicly available,7 hoping they
will prove valuable in other differential testing projects too.

5.2 Experimental details
Environment. We conducted our experiments on a server
running Ubuntu 14.04, equipped with two Intel(R) Xeon(R)
E5-2450 v2 at 2.5 GHz CPUs (32 cores) and 192GiB of
RAM. The tests were usually run in parallel for all the tested
revisions.

Memory limit. We use KLEE’s default memory limit of
2000 MiB per invocation, which was never exceeded.

Changes to code and test suites. Since some of the
tested Coreutils revisions are several years old, they do
not compile out of the box, and we had to apply several
patches provided by the CoREBench authors. Furthermore,
we had to make other minor modifications for compatibility
with KLEE and our infrastructure.

To consistently compare the program outputs across ver-
sions, we also applied a series of changes to the Coreutils

test suite related to making tests run (more) deterministi-
cally. One example is the creation of temporary files, which
by default have different names across runs.

5.3 Overall results
We conduct three sets of experiments, corresponding to

running (1) the regression test suite, (2) the concolic phase
of Shadow, and (3) the BSE phase of Shadow. We run
all three sets of experiments with our enhanced cross-version
checks of §3.3. Note that for running the regression test suite
with the enhanced checks, we use the same unified programs
employed by the concolic and BSE phases of Shadow. We
take a conservative approach and assume that all invocations

7http://srg.doc.ic.ac.uk/projects/shadow



Table 3: Experimental results for the Coreutils patches in CoREBench, showing the number of code-level divergences detected,
the percentage of these replayed, and the number of observed output differences, divided into expected changes and regression
bugs. The inputs created by Shadow for patch #21, marked with *, also expose an additional bug (an abort) which is
different from the one detected by the regression suite (wrong exit code).

ID

Regression Suite Concolic Phase BSE Phase Total

Divergences Differences Divergences Differences Divergences Differences Divergences Differences

Total Replayed Expected Bug Total Replayed Expected Bug Total Replayed Expected Bug Total Expected Bug

1 2,434 29% 3 - - - - - 37,533 27% - - 39,967 3 -
3 524 51% - - - - - - 15,110 7% - - 15,634 - -
4 6 100% 6 - - - - - 33 100% 30 - 39 36 -
5=16 7 100% - 2 - - - - 7 100% - - 14 - 2
6 232 100% - - 15 100% - - 1,205 59% - 86 1,452 - 86
7 62 100% 5 - - - - - 62 100% - - 124 5 -
8 24 100% - - 18 100% - - 54,800 6% - - 54,842 - -
10 3 100% - 2 - - - - 3 100% - - 6 - 2
11 51 100% 9 - 6 100% - - 865 100% - - 874 9 -
12=17 163 100% - - - - - - 4,069 45% - 78 4,232 - 78
13 7 100% 1 1 - - - - 4 100% - - 11 1 1
14 2 100% - - - - - - - - - - 2 - -
15 1 100% 1 - - - - - - - - - 1 1 -
19 66 100% 7 - 236 100% - - 33,015 27% - - 33,317 7 -
21 115 100% 12 4 348 100% 136 122* 20,745 5 % 3 558* 21,208 151 684
22 - - - - - - - - - - - - - - -

in the regression suite which execute the change() annota-
tions with arguments of different value are divergent. Note
that this is an over-approximation as the two versions might
still have the same branching behaviour.

Regarding run times for the different phases of Shadow,
we observed median values of 1,020s for running the reg-
ression suite; 1,962s for running the concolic phase; and
7,213s for running the BSE phase, all including our enhanced
checks. Note that these values are only meant to give a
rough estimate of the time needed by Shadow—they are
influenced by the different numbers of test cases that touch
the patch, and also by the load on our machine, which we
have not tried to control.

Table 3 gives an overview of our experimental results. For
each phase, we provide the number of test inputs expos-
ing code-level divergences (Divergences–Total) and the per-
centage of those inputs that we manage to replay in the
allotted time frame (Divergences–Replayed). Due to a small
degree of non-determinism in our replay infrastructure, a
few of these divergences might be duplicates. The figures
under Total–Divergences–Total are an over-approximation,
as they reflect our conservative approach of assuming that
all invocations in the regression suite that touch change()

annotations with different value arguments are divergent.
Table 3 also presents how many of the divergent inputs

that we replayed led to output differences. These differ-
ences are further classified into expected differences and bugs.
There are two types of bugs: generic bugs such as memory
errors, and semantic bugs that lead to incorrect results. For
generic bugs, if the old version does not trigger the error and
the new one does, then we report the input as exposing a
regression error. If it is the other way around, we report it
as exposing an expected difference.

As discussed in §3.3, by reading the commit message asso-
ciated with the patch, we can often reason manually whether
an input that leads to different outputs across versions ex-
poses a regression bug or an intended change in behaviour.
We expect this would be even easier for the authors of those
patches. However, in our evaluation we make use of the fact
that the CoREBench regression suite provides the revisions

fixing the introduced bugs. More precisely, we run the in-
put on two additional versions: the version just before the
fix and the version in which the fix was applied. If these two
versions behave the same on this input or the fixed version
behaves the same as the new version, we classify the change
in behaviour as expected. Otherwise, we classify it as a reg-
ression bug. For patches introducing multiple bugs, we run
each fix in turn. This approach is automatic, but is not guar-
anteed to correctly classify changes in behaviour due to: (1)
non-determinism and (2) because the patch fixing the bug
may introduce other changes too. Hence we also perform a
brief manual sanity check of the automatic classification.

5.4 Successful examples
Table 4 gives several examples of actual inputs generated

by Shadow. For each input, we show side-by-side the be-
haviours of the old and the new version. For instance, the
first example shows an expected difference in tail, while
the second example shows a regression bug that triggers a
buffer overflow in the new version of cut.

We discuss in more detail two patches in which we man-
aged to find the introduced regression bug and/or the in-
tended change in behaviour.

CoREBench patch #6. This is a patch in cut, a tool whose
purpose is to delete portions of text (ranges of bytes, charac-
ters or fields) from each line of a file. To do so, the user can
specify both closed ranges, e.g. 3-5, meaning all the bytes
(or characters or fields) from the third to the fifth byte from
the beginning of the line, as well as open ranges, e.g. -5 and
9-, to refer to all the bytes (or characters or fields) from
the beginning of the line up to the fifth byte, and from the
ninth byte until the end of the line, respectively. The aim of
the patch is to prevent unnecessary memory allocation when
only open ranges are specified.

The annotated patch is presented in Figure 7. We added
three annotations, one when an if statement is removed
(line 1), one when an if statement is added (line 4), and
one when an extra conjunct is added to the condition of an
if statement (line 10).



Table 4: Sample inputs generated by Shadow exposing regression bugs and expected differences.

ID Generated Input
Behaviour

Classification
Old New

4
tail --retry ///s\x01\x00g\x00

tail: warning: --retry is useful mainly tail: warning: --retry ignored; --retry
Expected

when following by name. . . is useful only when following. . .

6 cut -c1-3,8- --output-d=: 〈file〉
abc abc + buffer overflow Bug

file contains “abcdefg”

17 cut -c1-7,8- --output-d=: 〈file〉
abcdefg abcdefg + buffer overflow Bug

file contains “abcdefg”

21 cut -b0-2,2- --output-d=: 〈file〉
abc signal abort Bug

file contains “abc”

21 cut -s -d: -f0- 〈file〉
:::\n:1 \n\n Expected

file contains “:::\n:1”

21 cut -d: -f1,0- 〈file〉
a:b:c a Expected

file contains “a:b:c”

1 if (change(max_range_endpoint < eol_range_start,
false))

2 max_range_endpoint = eol_range_start;
3 ...
4 if (change(true, max_range_endpoint))
5 printable_field = xzalloc (max_range_endpoint /

CHAR_BIT + 1);
6 ...
7 if (output_delimiter_specified
8 && !complement
9 && eol_range_start

10 && change(true, max_range_endpoint)
11 && !is_printable_field (eol_range_start))
12 mark_range_start (eol_range_start);

Figure 7: CoREBench bug #6.

Prior to the patch, memory was allocated unconditionally
(line 5), but the patch strengthened the condition guarding
the allocation based on the value of max_range_endpoint,
which represents the maximum end value of an index in a
closed range, and is 0 when the user specifies only open
ranges. The patch introduces a buffer overflow on line 11,
when both closed and open ranges are specified and the
value of max_range_endpoint is greater than 0 but smaller
than the minimum start value of an index in an open range
(eol_range_start). In such cases, max_range_endpoint in
the new version is not set to the value of eol_range_start
(line 2) and on line 5 the printable_field array is allocated
to size max_range_endpoint + 1. Finally, on line 11, func-
tion is_printable_field() accesses the printable_field

array at index eol_range_start which results in an index
out-of-bounds error in the new version.

Table 4 shows a test input generated by Shadow that
exposes this bug. The input was found in the BSE phase.

CoREBench patch #21. This patch intends to make cut

emit an error message when invalid ranges such as 2-0 are
specified.

Our annotated patch is given in Figure 8. We added six
annotations: three of them when an rvalue expression is
changed (lines 3, 4 and 15), one which adds a new if state-
ment (line 9), one which removes an if statement (line 17),
and one which modifies an if statement (line 12).

The test cases in the regression suite already detect 12
expected output differences exposing the same behaviour in
which the new version prints out one of the two error mes-
sages on lines 10 and 15. However, Shadow generated fur-

1 @@ set_fields (const char *fieldstr)
2 ...
3 initial = change(value, lhs_specified) ? value : 1;
4 value = change(value, true) ? 0 : value;
5 }
6 else if (*fieldstr == ’,’ || isblank (*fieldstr) ||

*fieldstr == ’\0’) {
7 ...
8 dash_found = false;
9 if (change(false,!lhs_specified && !rhs_specified))

10 FATAL_ERROR (_("invalid range with no endpoint: -
"));

11 ...
12 if (change(value == 0, !rhs_specified)) {
13 ...
14 if (value < initial)
15 FATAL_ERROR (_(change("invalid byte or field

list", "invalid decreasing range")));
16 ...
17 else if (change(value != 0, true)) {
18 ...

Figure 8: CoREBench bug #21.

ther inputs for which the output differences do not involve
error messages. The last two rows of Table 4 show two such
inputs. Using the bug-fixing revision, we classified these
changes as expected, and we think the generated inputs are
good candidates for being added to the regression suite.

Shadow also found unexplored divergences just off the
paths executed by the test suite, which revealed an abort
failure. A sample such input generated by Shadow dur-
ing the concolic phase is -b0-2,2- --output-d=: file.
In the BSE phase, Shadow detected a buffer overflow bug
similar to the one discussed in patch #6. Note that these
are separate bugs from the one recorded in CoREBench.

5.5 Unsuccessful executions
For several patches Shadow failed to synthesise inputs

that trigger either expected divergences or bugs. Regard-
ing expected divergences, we note that several patches seem
to be refactorings, so it would be impossible to trigger an
expected output difference (any difference would be a bug).

In terms of the missed regression bugs, as mentioned be-
fore, the CoREBench patches are very challenging, and signifi-
cantly more complex than those typically considered by prior
research studies—see the CoREBench paper for details [4]. To
get a feel for the challenges involved in analysing these pat-
ches, consider the following bugs missed by Shadow: finding



bug #1 requires reasoning about file access rights, bug #8
requires floating point support, bug #14 requires support
for symbolic directories, and the bug report for #19 is not
reproducible on our recent distribution of Linux. Finally,
our relatively short timeout values may have prevented us
from successfully detecting some of the bugs and expected
divergences; we chose these values to keep the turnaround
time for running all experiments within a nightly run.

More generally, some of these patches require a precise en-
vironmental model (KLEE’s model is incomplete, e.g., lacks
the ability to handle symbolic directories), and at least one
requires support for symbolic floating-point values (which
KLEE does not provide). We also depend on the quality of
the inputs in the test suites from which we start exploration.

Our mechanism for detecting changes is also limited, fo-
cusing solely on output differences. However, some patches
change non-functional properties such as improving memory
consumption in #6 or performance in #7.

Finally, note that with one exception, we always have in-
puts that expose divergences at the code level, which could
prove useful to developers to reason about their patches.
However, in many cases the number of divergent inputs is
simply too large, and in future work we plan to investi-
gate clustering and ranking techniques to help developers
sift through these divergences.

5.6 Reflections on regression testing process
Our experience with the CoREBench patches revealed sev-

eral insights into the regression testing process. First, we be-
lieve that cross-version checks could be easily incorporated
into existing regression test suites. We envision a process in
which developers would examine divergent inputs and con-
firm whether the change in behaviour is expected or not.
Such a lightweight process would have detected some of the
complex regression bugs in CoREBench. Second, generating
inputs that trigger externally-visible differences is valuable
both for the possibility of finding regression bugs, as well
as for documentation—regarding the latter, we found that
such inputs are often the best “explanation” of the patch.

6. RELATED WORK
We introduced the high-level idea behind shadow sym-

bolic execution in a short idea paper [6], but without any
implementation or evaluation.

Recent years have seen a lot of work on automatic tech-
niques for testing software patches, with many of these tech-
niques based on symbolic execution [1,3,17,18,20,25,29,31].
However, most research efforts have looked at the problem
of generating test inputs that cover a patch. By contrast,
input generation targeting behavioural changes introduced
by a patch has received much less attention.

Differential symbolic execution [24] is a general framework
that can reason about program differences, but its reliance
on summaries raises significant scalability issues.

Directed incremental symbolic execution [25] combines
symbolic execution with static program slicing to determine
the statements affected by the patch. While this can lead
to significant savings, static analysis of the program differ-
ences is often imprecise, and can miss important pruning and
prioritisation opportunities, particularly those which exploit
dynamic value information.

Partition-based verification (PRV) [2] uses random test-
ing and concolic execution to infer differential partitions, i.e.

input partitions that propagate the same differential state
to the output. PRV separately runs both program versions
using concolic execution, and uses static and dynamic slic-
ing to infer differential partitions. In contrast to PRV, by
running the two versions in a synchronised fashion, shadow
symbolic execution does not need to re-execute potentially
expensive path prefixes and can provide opportunities to
prune and prioritise paths early in the execution, as well as
to simplify constraints.

The techniques discussed above were evaluated on patches
significantly less complex than the Coreutils patches we
considered. However, our technique is not fully automatic;
while most of the annotations that we added could be auto-
mated, manual assistance might still be needed. Neverthe-
less, research on automating this step is promising [16, 23];
furthermore, note that even an imprecise automatic annota-
tion system might be enough to help our technique generate
inputs exposing behavioural changes.

Overall, while shadow symbolic execution offers new op-
portunities, it is unlikely to subsume any of the techniques
cited above. Testing evolving software is a difficult problem,
which is unlikely to be tamed by any single technique.

Running the two program versions in the same symbolic
execution instance is similar in spirit to running multiple ver-
sions in parallel, which has been employed in several other
contexts, including online validation [22, 30], model check-
ing [8], product line testing [14], and software updating [12].

Research on test suite augmentation requirements has used
the differences between two program versions to derive re-
quirements that test suites have to meet in order to ensure
proper patch testing [10, 26]; our analysis could potentially
provide further information to guide these techniques.

7. CONCLUSION
In this paper we have presented shadow symbolic execu-

tion, a novel technique for generating inputs that trigger the
new behaviours introduced by software patches. The key
idea behind shadow symbolic execution is to run both ver-
sions in the same symbolic execution instance, and systemat-
ically test any encountered code-level divergences. The tech-
nique unifies the two program versions via change annota-
tions, maximises sharing between the symbolic stores of the
two versions, and focuses exactly on those paths that trigger
divergences. We implemented this technique in a tool called
Shadow, which we used to generate inputs exposing several
bugs and intended changes in complex Coreutils patches.
We make our experimental data available via the project
webpage at http://srg.doc.ic.ac.uk/projects/shadow.
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