
VARAN the Unbelievable
An Efficient N-version Execution Framework

Petr Hosek Cristian Cadar
Department of Computing
Imperial College London

{p.hosek, c.cadar}@imperial.ac.uk

Abstract
With the widespread availability of multi-core processors,
running multiple diversified variants or several different ver-
sions of an application in parallel is becoming a viable ap-
proach for increasing the reliability and security of software
systems. The key component of such N-version execution
(NVX) systems is a runtime monitor that enables the execu-
tion of multiple versions in parallel.

Unfortunately, existing monitors impose either a large per-
formance overhead or rely on intrusive kernel-level changes.
Moreover, none of the existing solutions scales well with
the number of versions, since the runtime monitor acts as a
performance bottleneck.

In this paper, we introduce VARAN, an NVX framework
that combines selective binary rewriting with a novel event-
streaming architecture to significantly reduce performance
overhead and scale well with the number of versions, without
relying on intrusive kernel modifications.

Our evaluation shows that VARAN can run NVX systems
based on popular C10k network servers with only a modest
performance overhead, and can be effectively used to increase
software reliability using techniques such as transparent
failover, live sanitization and multi-revision execution.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance

General Terms Reliability, Performance

Keywords N -version execution; selective binary rewriting;
event streaming; transparent failover; multi-revision execu-
tion; live sanitization; record-replay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694390

1. Introduction
Recent years have seen a growing interest in using diversity
as a way to increase the reliability and security of software
systems. One form of software diversity that has attracted
significant interest from the research community is the idea
of running multiple diversified versions of a program in
parallel in order to survive bugs and detect security attacks
[5, 10, 13, 14, 40, 44, 48]. In essence, diversity can offer
probabilistic guarantees that at least one variant survives a
bug, or that a security attack will be flagged by divergent
behaviour across variants.1

On the security side, these diversified variants are con-
structed in such a way as to reduce the probability of an attack
succeeding in all of them. For example, one may generate
versions with stacks growing in opposite directions [40] to
prevent attacks whose success depends on the stack layout.

On the reliability side, which forms the main focus of
this paper, these diversified versions are either automatically-
generated variants, multiple revisions of the same application,
or different programs implementing the same interface. For
example, one may run in parallel multiple variants that em-
ploy complementary thread schedules to survive concurrency
errors [44], multiple versions of the same software to survive
update bugs [21], or multiple web browsers to benefit from
the fact that many errors do not affect all browser implemen-
tations [47]. In this paper, we show that running multiple
versions in parallel can be used in other reliability scenar-
ios, such as running expensive error detectors (“sanitizers”)
during deployment.

To enable these scenarios, a monitor process coordinates
the parallel execution of these variants and synchronises their
execution, making them appear as a single application to any
outside entities. While synchronisation can be performed
at different levels, the most common approach is to do it at
the level of system calls, for two main reasons: first, many
existing diversification transformations, such as the ones dis-
cussed above, do not change the sequence of system calls
(the program’s external behaviour), and the ordering is often
preserved even across different software revisions [21]. Sec-

1 The terms version and variant are used interchangeably.

339

ond, system calls are the main way in which the application
communicates with the outside environment, and therefore
must be virtualised in order to enable the multiple versions to
act as one to the outside world.

The main challenge in implementing an NVX monitor at
the system call level is the trade-off between performance,
security, flexibility and ease of debugging. Many implemen-
tations [7, 21, 40] use the ptrace mechanism offered by most
UNIX-based operating systems. While easy-to-use and not
requiring kernel modifications, ptrace is slow, and these sys-
tems see performance degradations of up to two orders of
magnitude. An alternative approach is to implement the mon-
itor in kernel space [13], which is much faster, but requires
kernel patches and/or new kernel modules, and the monitor
must be run in privileged mode. Furthermore, none of these
approaches scales well with the number of variants (as the
monitor is both a communication and synchronisation bot-
tleneck), none are debug-friendly (ptrace disallows the use
of GDB, while kernel debugging has its well-known set of
limitations) and none of them have been designed to be flexi-
ble with respect to small variations in system call sequences
(which can occur for certain diversification transformations
and across software revisions).

In this paper, we propose VARAN,2 a novel architecture
for implementing NVX monitors. VARAN monitors operate
at the system call level, run in user space (and therefore in
unprivileged mode), introduce a small performance overhead
for popular C10k network servers3 and scale well with the
number of versions, and provide a flexible mechanism for
handling small divergences in the system call sequences
issued across versions.

The rest of this paper is structured as follows. Section 2
gives a high-level overview of our approach and Section 3
presents our prototype implementation in detail. Then, Sec-
tion 4 evaluates our prototype on a set of micro- and macro-
benchmarks, Section 5 shows the applicability to different
application scenarios, and Section 6 discusses the main im-
plications of our design. Finally, Section 7 presents related
work and Section 8 concludes.

2. Overview
Two key aspects influence the performance and flexibility
of an NVX system: system call interception and version
coordination. We discuss each in turn below.

2.1 System call interception
The biggest downside of existing system call monitors based
on the ptrace interface is the high performance over-
head [21, 33, 40]. For each system call performed by each

2 VARAN’s name comes from the scientific name Varanus, commonly known
as the monitor lizard. Varan is also a name of the Kaiju monster that first
appeared in the 1958 movie Varan the Unbelievable.
3 Numeronym used for servers capable of concurrently handling ten thousand
connections.

version, execution must switch to the monitor process, which
has to perform several additional system calls in order to copy
buffers to and from the version being monitored, nullify the
system call, etc.

For CPU-intensive applications which perform few sys-
tem calls, this overhead will be amortised, translating into a
modest overall slowdown. However, for heavily I/O-bound
applications, the slowdown can be up to two orders of mag-
nitude, which is unacceptable for many real-world deploy-
ments. Consequently, in order to implement a system call
monitor with acceptable overhead even for heavily I/O-bound
applications, we need to eliminate context switching to the
monitor and back during interception and eliminate the need
for additional system calls. This is accomplished through a
combination of selective binary rewriting and an interprocess
communication mechanism based on a fast shared memory
ring buffer.

Whenever code is loaded into memory, VARAN scans each
code page to selectively rewrite all system calls with jump
instructions to dedicated handlers. Section 3.2 discusses
in detail the main steps and challenges associated with this
binary rewriting approach.

To eliminate the need for additional system calls during in-
terception, VARAN uses a shared ring buffer to communicate
between versions. This ring buffer is heavily optimised for
performance: it is stored in memory, allows largely lock-free
communication, and does not require the dispatch of events
to different queues. These aspects are discussed in detail in
Section 3.3.

2.2 Event-streaming architecture
In prior NVX systems, versions are typically run in lockstep,
with a centralised monitor coordinating and virtualising their
execution. Essentially, at each system call, the versions pass
control to the monitor, which waits until all versions reach the
same system call. Once this happens, the monitor executes
the system call and communicates the result to each individual
version. If two or more versions try to break the lockstep by
executing different system calls, the monitor needs to either
terminate the entire application or continue executing a subset
of the versions in lockstep.

This approach has two key disadvantages. First, the cen-
tralised monitor is a bottleneck, which can have a significant
impact on performance. Note that in addition to the synchro-
nisation overhead, this centralised monitor makes the NVX
application execute at the speed of the slowest individual
version.

Second, this approach is totally inflexible to any diver-
gence in the sequence of system calls executed across ver-
sions. This is an issue both when running automatically-
diversified variants, where certain transformations may affect
the external behaviour, and when running existing software
revisions, where changes in the sequences of system calls can
occur between revisions.

340

Event
Consumer

Ring
Buffer

Followern

Follower1Leader

...

...

Monitor

Coordinator

Monitor

Monitor

Figure 1. The event-streaming architecture of VARAN.

To address these limitations, VARAN uses a new approach
which we call event streaming. In this decentralised architec-
ture, depicted in Figure 1, one of the versions is designated as
the leader, while the others are followers. During execution,
the leader records all events into a shared ring buffer, which
are later read by followers to mimic the leader’s external be-
haviour (§3.3). Events consist primarily of regular system
call invocations, but also of signals, process forks (i.e. clone
and fork system calls) and exits (i.e. exit and exit_group

system calls).
In general, any version can be the leader, although in some

situations some may be a better choice than others–e.g., when
running multiple software revisions in parallel, one might
prefer to designate the newest one as leader. However, the
leader can be easily replaced if necessary, e.g., if it crashes
(§3.3.2).

The only centralised component in this architecture is
the coordinator, whose main job is to prepare the versions
for execution and establish the necessary communication
channels. At a high level, the coordinator first loads the
variants into memory, injects several special handlers and
memory objects into their address spaces, rewrites any system
calls in their code with jumps to the special handlers and then
starts executing the variants (§3.1) in a decentralised manner.

2.3 Rewrite rules for system call sequences
In addition to eliminating the central monitor bottleneck,
our event-streaming architecture also supports (small) diver-
gences between the system call sequences of different vari-
ants. For example, different software revisions can be run
inside a classical NVX system only as long as they all issue
the same sequence of system calls [21]. However, software
patches sometimes change the external behavior of an appli-
cation. In particular, many divergences in system call traces
fall into the following two categories: (i) addition/removal,
characterising situations when one of the versions performs

(or conversely does not perform) an additional system call,
typically as a consequence of an additional check, and (ii) co-
alescing, covering the situations when a (repeated) sequence
of system calls is executed a different number of times in each
version (e.g., one version might execute two write system
calls, while another version executes only one write system
call to write the same bytes because extra buffering is used).

VARAN is the first NVX system that is able to deal with
such changes. When followers process the event sequence
streamed by the leader, they can rewrite it to account for any
such differences: e.g., they can skip and merge system calls,
or perform some calls themselves. We provide a flexible
implementation of such rewrite rules using Berkeley Packet
Filters (§3.4).

3. Prototype
We have implemented our approach in a prototype (to which
we will also refer as VARAN), targeted at multi-core proces-
sors running x86-64 Linux. VARAN works on off-the-shelf
binaries (both stripped and unstripped) and supports single-
as well as multi-threaded applications.

When it starts, VARAN first sets up the address spaces of all
program versions and establishes the needed communication
channels (§3.1). It then performs selective binary rewriting to
replace all system calls with jump instructions (§3.2). After
these initial stages, the event streamer component of VARAN
ensures the coordination of the leader and its followers (§3.3).

3.1 Setup of address spaces and communication
channels

The main steps involved in the setup of version address
spaces and the needed communication channels are shown
in Figure 2. To run multiple versions in parallel, the user
launches VARAN’s coordinator providing the paths to all
versions, together with any command line arguments required
to start them (Step A in Figure 2).

The coordinator first creates the shared memory segment
used for communication among versions, and then spawns
the zygote process (B), which is responsible for starting the
individual versions. The coordinator communicates with the
zygote via a UNIX domain socket. For each version i that
needs to be spawned, the coordinator sends a fork request to
the zygote over this socket pair, which includes the path to
that version executable, the command line arguments, and
the end-point of a socket pair which will be used for the
subsequent communication between the coordinator and that
version (Ci). After receiving this request, the zygote spawns
a new process, which first finalises the communication with
the coordinator (Di). The coordinator then sends the shared
memory segment descriptor to this process, which maps it
inside its address space.

In the final step, the new process starts executing inside
the monitor code, which loads the specified ELF executable
and sets up the initial address space as described in the ELF

341

ld-
linu

x.s
o

libc
.so ...

sh
m va

ran

A

C1 fork()

Cn fork()

varan ./version1/versionn -- args

B fork()

socketpair()

socketpair()D1

Dn

ve
rsi

on n

ve
rsi

on 1

ld-
linu

x.s
o

libc
.so ...

va
ran

Coordinator

Zygote

Monitor

Monitor

va
ran

va
ran

...

Ad
dr

es
s

Sp
ac

es

Pr
oc

es
se

s

socketpair()

Figure 2. Setup of address spaces and communication channels.

headers. If the program requires a dynamic linker, VARAN
loads the linker image specified in the header as well. The text
segments of both the application and the dynamic linker are
then processed by the binary rewriter (§3.2). Finally, VARAN
jumps to the application entry point as specified in the ELF
header, starting the execution of the application version.

The right-hand side of Figure 2 shows the address spaces
of the coordinator, zygote, and program versions. When
run with VARAN, program versions have two new segments
mapped into their address spaces: the shared memory seg-
ment used for communication among versions (“shm”) and
the VARAN statically-linked library (“varan”). Note that
VARAN does not prevent address-space layout randomisation
schemes to be used by the operating system.

Coordinator. To set up the address spaces of the versions,
the coordinator acts as a specialized preloader, inspired by
rtldi.4 However, the coordinator does not attempt to replace
the existing dynamic linker, which would be unnecessarily
complex and may affect compatibility with existing applica-
tions. Instead, it simply intercepts the system calls performed
by the linker to enable the binary rewriter (§3.2) to rewrite the
code of dynamically-linked shared libraries. One important
advantage of our interception mechanism is that we do not
make use of ptrace to intercept calls to the dynamic linker—
instead, the binary rewriter is used to rewrite all the system
calls done by the linker with jumps into the coordinator code.
As a result, VARAN can be used in combination with existing
ptrace-based tools such as GDB or strace, which greatly
simplifies debugging.

Zygote. The role of the zygote is to spawn new processes on
request from the coordinator. Zygote processes are already
used in systems such as Android and Chrome [12]—in this
paper, we use the term to refer to the architectural pattern
rather than a particular implementation, as VARAN provides

4 http://www.bitwagon.com/rtldi/rtldi.html

its own clean-slate implementation. While it would be
technically possible for the coordinator to create the processes
in which versions run, this would bring some complications
regarding the communication channels: for example, the
second version spawned would inherit the communication
channel between the first version and the coordinator, which
would be undesirable.

Monitor. The monitor code is built as a statically-linked,
position-independent library, to make sure it does not stand
in the way of any segments which have to be loaded by the
application at fixed addresses. To ensure that the code can be
compiled like this, we must avoid using any global variables
(i.e. those in the .data section). One consequence is that
VARAN cannot use any of the existing C libraries such as
GNU C Library, as these are not typically built to support this
requirement. Instead, VARAN provides its own implementa-
tion of the necessary C library functions based on the Bionic
C library.5 To support the use of Linux system calls, VARAN
uses a modified version of the linux_syscall_support.h

header.6

3.2 Binary Rewriting
To intercept system calls, VARAN uses selective binary
rewriting [35]. Unlike traditional dynamic binary rewriting
implemented by tools like DynamoRIO [26] or Pin [32],
where the entire process image is being rewritten, often
introducing a significant performance overhead, VARAN only
replaces the instructions for performing system calls (i.e.
int $0x80 on x86 and syscall on x86-64).

The rewriting itself is done when a segment is mapped into
memory with executable permissions, or an existing memory
segment is marked as executable. During rewriting, VARAN
scans the segment searching for system call instructions
using a simple x86 disassembler. Every system call found is

5 https://android.googlesource.com/platform/bionic
6 https://code.google.com/p/linux-syscall-support/

342

http://www.bitwagon.com/rtldi/rtldi.html
https://android.googlesource.com/platform/bionic
https://code.google.com/p/linux-syscall-support/

rewritten with a jump to an internal system call entry point.
This process is complicated by the fact that while a system
call instruction is only one byte long, a jump instruction
requires five bytes. Therefore, in order to rewrite the system
call with a jump, we also need to relocate some of the
instructions surrounding the system call—i.e. perform binary
detouring via trampolines [22]. On the rare occasions when
this is not possible (e.g., because the surrounding instructions
are potential branch targets), we replace the system call with
an interrupt (INT 0x0). This interrupt is handled by VARAN
through a signal handler installed during initialisation, which
redirects the control flow to the system call entry point as for
other system calls.

The system call entry point first saves all registers, and then
consults an internal system call table to check whether there is
a handler installed for that particular system call; if so, it calls
that handler, otherwise it invokes the default handler. After
processing the system call, the entry point handler restores all
registers and returns to the original caller (using sigreturn

in the case of system calls intercepted via an interrupt). The
system call entry point also implements support for restarting
system calls (i.e. signaled by the -ERESTARTSYS error code).
This is used in certain scenarios supported by VARAN such
as transparent failover (§5.1).

The internal system call table can be easily changed to
accommodate various application scenarios. In particular, the
only difference between the leader and the followers is the
system call table. For example, the write system call would
be redirected in the leader to a function that performs the
call and records its result in the shared ring buffer, while in
the followers it would be redirected to a function that reads
the results from the shared buffer without making the call.
VARAN also provides a Python script which can produce new
tables and their implementations using templates.

Finally, note that in order to prevent potential attackers to
easily inject system calls into the program, the binary rewriter
follows a W⊕X discipline throughout execution, making sure
that segments are not marked as both writable and executable
at the same time.

3.2.1 Virtual System Calls
Certain Linux system calls are accelerated through the
vsyscall page and the vDSO segment. These are mapped
into the address space of each Linux process, and contain
system call implementations. These virtual system calls do
not incur the context switch overhead between kernel and
user space associated with standard system calls.

The vsyscall page was introduced first, but is being depre-
cated in favor of the vDSO segment. The main reason for this
development is that the vsyscall page is mapped to a fixed
address, making it susceptible to return-oriented program-
ming attacks [37]. To address this issue, the vDSO segment
is mapped to a random address. Since the segment is dy-
namically allocated, it can also support an arbitrary number

of virtual system calls (currently clock_gettime, getcpu,
gettimeofday and time).

Virtual system calls represents one of the major limitations
of ptrace-based monitors. Since these system calls are
entirely implemented in user space, they cannot be intercepted
via ptrace . This is an important limitation: as these system
calls provide access to timing information, they are often
used as a source of non-determinism (e.g., for random number
generators) and their handling is critical for any NVX system.

To our knowledge, VARAN is the first NVX system which
handles virtual system calls, using binary rewriting. Handling
calls made via the vsyscall page is easier because the function
symbols are always mapped to the same address. To handle
vDSO calls, we first need to determine the base address of
the vDSO segment; this address is passed by the kernel in the
ELF auxiliary vector via the AT_SYSINFO_EHDR flag.7 Second,
we need to examine the ELF headers of the vDSO segment to
find all symbols. Identifying calls to these symbols is more
complicated than in the vsyscall case because these symbols
are allocated at arbitrary addresses. Instead, we replace the
entry point of each function with a jump to dynamically
generated code which sets up the stack and then issues a call
to the VARAN system call entry point as in the case of regular
system calls. Furthermore, we provide a trampoline, which
allows the invocation of the original function, by moving the
first few instructions of each function to a new place, followed
by a jump to the original code. This allows VARAN to take
advantage of the virtual system call mechanism to further
improve performance.

3.3 Event Streaming
As we discussed briefly in Section 2 and illustrated graphi-
cally in Figure 1, the leader records all external events into a
shared ring buffer, while the followers replay them to mimic
the leader’s behavior. The leader is the only version interact-
ing with the environment, i.e. executing the system calls, with
the exception of system calls which are local to the process
(e.g., mmap).

As in any NVX system operating at the level of system
calls, VARAN has to be aware of the system call semantics, in
order to transfer the arguments and results of each system call.
VARAN currently implements 86 system calls, which were
all the system calls encountered across our benchmarks.8

3.3.1 Shared ring buffer
For fast communication, the leader and its followers share a
common ring buffer of fixed size, which is held entirely in
memory. Our initial solution used a separate shared queue
for each process [18, 29], with the coordinator acting as an
event pump—reading events from the leader’s queue and
dispatching them into followers’ queues. This approach

7 https://www.gnu.org/software/libc/manual/html_
node/Auxiliary-Vector.html
8 We configured VARAN to emit an error message when an unhandled system
call is encountered, and have implemented system call handlers on demand.

343

https://www.gnu.org/software/libc/manual/html_node/Auxiliary-Vector.html
https://www.gnu.org/software/libc/manual/html_node/Auxiliary-Vector.html

worked well for a low system call rate, but at higher rates the
event pump quickly became a bottleneck.

As a result, we have instead opted for a design based
on the Disruptor pattern [42], which uses a shared ring
buffer allowing concurrent access by multiple producers
and consumers, eliminating the need to dispatch events
among queues, and thus improving both performance and
memory consumption. Our implementation uses C11 atomics,
in combination with cache aligning to achieve maximum
performance with minimal use of locking (locks are used
only during memory allocation and deallocation).

The size of the ring VARAN uses is configurable and has a
default value of 256 events. Each event has a fixed size of 64
bytes; the size has been deliberately chosen to fit into a single
cache line on modern x86 CPUs. This is sufficient for sending
signals and system calls for which all arguments are passed by
value (on x86-64, a system call can have up to six arguments
of eight bytes, to fit into general purpose registers). However,
for system call arguments passed by reference, the payload
might have variable size and can be potentially larger than the
event itself. In this case, we use events only to transfer shared
pointers, which identify memory shared across versions.

The use of a shared memory buffer may result in a waste
of system resources when the leader process performs a
system call which blocks for a long period of time, as the
followers use busy waiting to check for new events. To
address this problem, we have introduced the concept of
a waitlock. Whenever a follower makes a blocking system
call, it acquires the waitlock. If there is no event available, the
thread will block until the leader wakes up and notifies it. The
waitlocks are efficiently implemented using a combination of
C11 atomics and futexes [15].

3.3.2 Transferring file descriptors and leader
replacement

Apart from the ring buffer, each version has a data channel,
implemented using UNIX domain sockets. The data channel
is used to send information which cannot be transferred via
shared memory, in particular open file descriptors. Whenever
the leader obtains a new file descriptor (e.g., by opening
a file), it sends this descriptor to all followers, effectively
duplicating the descriptor into their processes. This is a
crucial mechanism which enables the leader to be replaced
transparently when it crashes. When the leader crashes, the
follower that is elected as the new leader can simply continue
executing using existing descriptors (e.g., responding to
requests coming over the network) without any disruption of
service.

3.3.3 Multi-process and multi-threaded applications
Handling processes and threads is crucial in supporting many
modern applications. In our design, we have opted to have
separate ring buffers for each tuple of processes or threads
in the system: for instance, when a process forks, the parent
processes in the leader and all followers form one tuple, and

Leader

Monitor

Follower

Monitor

Leader

Monitor

thread1 thread2thread’1 thread’2

Follower

Monitor

e1,C(e1)

e2,C(e2)

T

e’1,C(e1)

e’2,C(e2)

T’

Figure 3. Event delivery in a multi-threaded NVX program,
with the ordering of events enforced using logical clocks.

the child processes another, with a process in each tuple acting
as the leader. More exactly, when a new process is forked, a
new socket pair is established between the process and the
coordinator and a new ring buffer is allocated. The leader
then continues execution, but the coordinator waits until all
followers fork a new process, establishing appropriate socket
pairs for communication, and setting the child processes to
read events from the newly-allocated ring buffer.

To alleviate non-determinism issues due to scheduling,
VARAN enforces system call ordering across all tuples us-
ing Lamport’s happens-before relation [28]. Currently, this
is only implemented for multi-threaded applications, which
make intensive use of synchronisation primitives, but the
same solution could be employed for multi-process applica-
tions too.

Each variant has an internal Lamport clock, shared by
all threads, and each event ei sent through the ring buffer is
annotated with a timestamp C(ei). Then, when replaying
events from the buffer, each thread checks the timestamp
of every new event and only receives the event if it does
not violate the happens-before relation. This scenario is
depicted in Figure 3. If e1 → e2 (e1 happens before e2), then
C(e1) < C(e2) and VARAN enforces e′1 → e′2. Without
the ordering, there could be a situation where e1 → e2,
but e′1 6→ e′2, which could lead to a divergence. A similar
approach has been proposed in the past for record-replay in
shared-memory systems [30].

To implement the internal clocks shared by the threads of
a variant (T and T ′ in Figure 3), we use an atomic counter
allocated in the shared memory space and updated using
C11 atomics for efficiency. When the leader thread writes
a new event into the ring buffer, it increments its variant’s
clock value and attaches it to the event. When a follower
thread reads an event from the ring buffer, it compares its
variant’s clock value with the event’s timestamp. If they are
equal, the thread increments its variant’s clock value and

344

processes the event, otherwise it continues waiting. Our
current implementation uses busy waiting, as the wait times
are expected to be small. However, shall this become a
problem in the future, it is possible to use blocking wait
instead (e.g., a futex).

Our solution resembles existing deterministic multi-
threading (DMT) mechanisms [4, 31]. The guarantees pro-
vided by VARAN are weaker than those typically provided by
these systems as we do not enforce ordering across atomics-
based synchronisation primitives. We have not detected any
system call divergences caused by related data races in our
benchmarks, which include multi-threaded applications (e.g.,
Redis), similar to the experience reported for prior NVX
systems. However, shall this become a problem, we could ad-
dress it by employing a stronger form of determinism similar
to existing DMT systems.

3.3.4 Memory allocation scheme
Efficient shared memory allocation plays an important role
in a system like VARAN. We use a custom shared memory
pool allocator implementation. The allocator has the notion
of buckets for different allocation sizes, where each bucket
holds a list of segments, and each segment is divided into
chunks of the same size; each bucket holds a free list of
chunks. When there are no more unused chunks in a bucket,
the allocator requests a new segment from the memory pool,
and divides it into chunks which are then added to the free
list. Each bucket also has a lock associated with it which has
to be held prior to an allocation from that bucket.

3.4 Rewrite rules for system call sequences
VARAN uses Berkeley Packet Filters (BPF) [34] to implement
the system call rewrite rules introduced in Section 2.3. BPF
is a machine language for writing rules and an interpreter
shipped with many UNIX implementations, including Linux
and BSD. BPF filters have been traditionally used to filter
network packets, but recently also for system call filtering as
a part of seccomp “mode 2” (also known as seccomp-bpf).

We have integrated a BPF interpreter in VARAN to allow
for system call rewrite rules. Our implementation is based
on the Linux kernel code which was ported to user space
and extended for NVX execution. VARAN provides BPF
extensions on top of the instruction set used by seccomp-
bpf.9 The event extension allows access to the event stream,
which can be used to compare the system calls executed
across versions, as we will show in Section 5.2.

The use of BPF has a number of advantages. First, it does
not require the user to modify and recompile the monitor on
every rule change. This is particularly important as rewrite
rules can be application specific. Second, the BPF machine
language was designed to be simple enough to prevent certain

9 https://www.kernel.org/doc/Documentation/
networking/filter.txt

classes of errors—in particular, all filters are statically verified
when loaded to ensure termination.

4. Performance evaluation
One of the main contributions of VARAN is a significantly
lower performance overhead compared to existing state-of-
the-art NVX systems. Therefore, we have conducted an exten-
sive performance evaluation, using microbenchmarks (§4.1),
high-performance C10k servers (§4.2) and applications used
to evaluate prior NVX systems (§4.3).

The microbenchmarks were run on a four-core/eight-
thread machine with a 3.50 GHz Intel Xeon E3-1280 CPU
and 16 GB RAM running 64-bit Ubuntu 14.04 LTS, while the
servers were run on a pair of such machines, one running the
server under VARAN and the other the client. The machines
are located in the same rack, connected by a 1 Gb Ethernet
link.

4.1 Microbenchmarks
To measure the overhead introduced by VARAN while pro-
cessing individual system calls, we designed a series of exper-
iments that compare a system call intercepted and executed
by VARAN against the same system call executed natively.
We used five different system calls:

1. close(-1) is representative of an inexpensive system call,
which returns immediately.

2. write(DEV_NULL, ..., 512) is representative of system
calls which involve expensive I/O, but whose result can
be sent entirely as a single event in the ring buffer.

3. read(DEV_NULL, ..., 512) is representative of system
calls which involve expensive I/O, and whose result cannot
be fully included in the associated event in the ring buffer.
Instead, it has to be copied via additional shared memory
(§3.3.1).

4. open("/dev/null", O_RDONLY) is representative of sys-
tem calls that require transferring file descriptors (§3.3.2).

5. time(NULL) is a virtual system call implemented via the
vDSO segment (§3.2.1). It internally calls __vdso_time

(since glibc 2.15). We could not measure the overhead
of using the vsyscall page, because it is deprecated on
our system (and all recent versions of Linux), with all
vsyscalls now redirected to their syscall versions.

We executed each system call one million times and com-
puted the average of all execution times. Time measurements
were done using the time stamp counter (i.e. the RDTSC in-
struction). Each set of measurements was preceded by a
warm-up stage in which we executed the system call 10,000
times.

Figure 4 shows the results. The first set of bars labeled
native shows the execution time without VARAN. The second
set of bars labeled intercept shows the execution time with
interception, measuring the cost of binary rewriting: for

345

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

 0

 2000

 4000

 6000

 8000

 10000

close

write

read

open

tim
e

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

native

12
61 14
30

14
86

25
83

49

intercept

13
30 15

64

15
28

29
76

12
2

leader

17
18 19

94

32
90

87
88

42
9

follower

25
7

29
1

19
69

73
42

18
9

Figure 4. System call microbenchmarks.

these experiments, the intercepted system call is immediately
executed, without any additional processing. As it can be
seen, the interception cost is small, at under 15% in all cases
except for time. The overhead of intercepting virtual system
calls is high in relative terms, but low in absolute ones: 122
cycles vs 49 cycles for native execution for time.

The set of bars labeled leader shows the execution time
for each system call to be intercepted, executed and recorded
by the leader. That is, it is the sum of the intercept cost and
the cost of recording the system call. For close and write,
the overhead is only 36% and 39% respectively on top of
native execution, because the arguments and results of these
system calls can be recorded in a single event. For read, it is
more expensive, at 139%, because transferring the result also
involves accessing additional shared memory. Finally, the
cost for open is the highest, since it also involves the slower
transfer of the returned file descriptor via a UNIX domain
socket.

Finally, the set of bars labelled follower shows the execu-
tion time of the follower, which has to intercept each system
call and read its results from the ring buffer and (if necessary)
shared memory. As expected, the costs for close and write

are low (and significantly lower than executing the system
call), because the entire result fits into a single event on the
ring buffer. The costs for read and open are higher, because
they involve additional shared memory and transferring a file
descriptor, respectively, but they are still lower than the costs
incurred by the leader.

4.2 C10k servers
Existing NVX systems, including those based on ptrace,
can already run many (two-version) CPU-bound applications
efficiently with an overhead typically less than 20%. As a
result, we focus our evaluation on high-performance, heavily
I/O-bound C10k servers which (1) represent the worst-case
scenario for a system call monitor; and (2) form the back-
bone of modern, highly-scalable web applications, for which
reliability is critical.

The five server applications used in our evaluations are
summarized in Table 1 (the size is measured in lines of

Application Size Threading
Beanstalkd 6365 single-threaded
Lighttpd 38,590 single-threaded
Memcached 9779 multi-threaded
Nginx 101,852 multi-process
Redis 34,625 multi-threaded

Table 1. Server applications used in the evaluation.

 0

 0.5

 1

 1.5

 2

Beanstalkd

Lighttpd (wrk)

M
em

cached

Nginx

Redis

R
un

tim
e

O
ve

rh
ea

d
(n

or
m

al
iz

ed
)

0

1.
10

1.
00

1.
00 1.
04

1.
00

1

1.
52

1.
12 1.
14 1.

28

1.
06

2

1.
57

1.
14 1.
17

1.
37

1.
11

3

1.
64

1.
14 1.
18

1.
41

1.
14

4

1.
74

1.
14 1.
19

1.
55

1.
24

5

1.
73

1.
15 1.

30

1.
58

1.
23

6

1.
77

1.
15

1.
32

1.
64

1.
25

Figure 5. Performance overhead for the Beanstalkd,
Lighttpd, Memcached, Nginx and Redis servers for differ-
ent number of followers. The client and server are located on
the same rack, simulating a worst-case scenario.

code, as reported by the cloc tool). For our performance
experiments, we ran multiple instances of the same version of
each application. Each experiment was performed six times,
with the first measurement used to warm up the caches and
discarded. The overhead was calculated as the median of the
remaining five measurements.

We give a short overview of each benchmark and the way
in which we measure performance (namely throughput) in
our experiments:

Beanstalkd is a simple and fast work queue, used by a number
of websites to distribute jobs among workers. We used
revision 157d88b from the official Git repository, the latest
revision at the time of writing. To measure performance,
we used beanstalkd-benchmark with 10 concurrent workers
each performing 10,000 push operations using 256B of data
per operation.

Lighttpd is a lightweight web server optimized for high per-
formance environments. The version used for the measure-
ments was 1.4.36, the latest version in the 1.4.x series at the
time of writing. We measured the performance of serving a
4 kB page using wrk, which was run for 10 s with 10 clients.

Memcached is a high-performance, distributed memory ob-
ject caching system, used by many high-profile websites to
alleviate database load. We used revision 1.4.17, the latest at
the time of writing. To measure the performance overhead,
we used the memslap benchmark, part of the libMemcached

346

library. We used the default workload, i.e. an initial load of
10,000 key pairs and 10,000 test executions.

Nginx is a highly popular reverse proxy server often used
as an HTTP web server, load balancer or cache. We used
version 1.5.12, the latest at the time of writing. We measured
performance using the same workload as for Lighttpd.

Redis is a high-performance in-memory, key-value data
store, used by many well-known services. We used version
2.9.11 in our experiments. To measure performance, we
used redis-benchmark, distributed as part of Redis. The
benchmark issues different types of commands supported
by Redis and measures both the throughput and the latency
for each type. We used the default workload, i.e. 50 clients
issuing 10,000 requests and calculated the average overhead
across all commands.

Figure 5 shows the results for all servers. All performance
numbers are obtained using the client-side tools mentioned
above. Since the client machine is located on the same rack
as the server, these numbers represent a worst-case scenario,
as the network latency would hide some of the overhead for
a more distant client machine.

For each benchmark, we show one bar, normalised relative
to native execution, showing the performance of VARAN
using a given number of followers. We stop at six followers,
because our machine has eight threads, and we also need one
thread for the leader and one for the coordinator.

The set of bars for 0 followers measure the interception
overhead of VARAN using binary rewriting. This overhead is
negligible for Lighttpd, Memcached and most Redis opera-
tions, 4% for Nginx, and 10% for Beanstalkd.

For all benchmarks, we see that the performance overhead
increases slightly with the number of followers. For instance,
the overhead for Beanstalkd increases from 1.52× for one
follower to 1.77× for six followers, while the overhead for
Lighttpd increases from 1.12× to 1.15×.

The figure also shows that there is a significant difference
across benchmarks: the worst performer is Beanstalkd, which
sees performance degradations in the range of 52% to 77%,
while the best performers are Lighttpd, with only 12% to 15%
overhead and some operations in Redis (not shown separately
in Figure 5) with under 3% overhead.

4.3 Comparison with prior NVX systems
While Sections 4.1 and 4.2 illustrate the worst-case synthetic
and real-world scenarios for a system call monitor, in order to
compare VARAN directly with prior NVX systems, we have
also run it on the same set of benchmarks used to evaluate
prior systems. In particular, we chose to compare against
three state-of-the-art NVX systems: Mx [21], Orchestra [40],
and Tachyon [33]. These systems and their benchmarks
are briefly described in the first three columns of Table 2.
To our knowledge, we are the first to perform an extensive
performance comparison of existing NVX systems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Apache httpd

thttpd

Lighttpd (ab)

Lighttpd (http_load)

R
un

tim
e

O
ve

rh
ea

d
(n

or
m

al
iz

ed
)

0

1.
00

1.
00

1.
00

1.
00

1

1.
02

1.
00

1.
00 1.
01

2

1.
04

1.
00

1.
00 1.
03

3

1.
03

1.
01 1.
02 1.
05

4

1.
04

1.
01 1.
04 1.
06

5

1.
04

1.
01 1.

05 1.
08

6

1.
04

1.
02 1.

07 1.
08

Figure 6. Performance overhead for the Apache httpd, thttpd,
and Lighttpd servers for different numbers of followers to
allow for comparison with existing systems.

The last two columns of Table 2 show the cumulative
results. Since prior systems only handle two versions, the
comparison is done against VARAN configured in the same
way. However, we remind the reader that one of the strengths
of VARAN’s decentralised architecture is that it can often
handle multiple versions with minimum additional overhead,
and below we also show how VARAN performs on these
benchmarks when more than two versions are used.

Apache httpd was used by Orchestra. We used version 1.3.29,
the same as in the original work [40]. The overhead reported
for Orchestra is 50% using the ApacheBench benchmark.
VARAN introduces 2.4% overhead using the same benchmark,
which is a significant improvement. Figure 6 shows the
overhead introduced by VARAN for Apache httpd (and the
other servers used to evaluate prior work) with different
numbers of followers. As it can be seen, VARAN scales
very well with increasing numbers of followers for these
benchmarks.

Lighttpd has been used to evaluate both Mx and Tachyon. We
used version 1.4.36. Mx used the http load benchmark and re-
ported 3.49× overhead while Tachyon used the ApacheBench
benchmark and reported a 3.72× overhead. When bench-
marked using http load, VARAN introduced only 1.01× over-
head, while with ApacheBench it introduced no noticeable
overhead. In both cases, this marks a significant improvement
over previous work.

thttpd was shown to introduce 1.17× overhead when run on
top of Tachyon using the ApacheBench benchmark. When
run on top of VARAN using the same settings as in [33], we
have not measured any noticeable overhead.

Redis 1.3.8 was used in the evaluation of Mx. The per-
formance overhead reported by Mx was 16.72× using the
redis-benchmark utility. When run with VARAN using the
same benchmark and the same workload, the overhead we

347

System Mechanism Benchmarks Overhead VARAN
Mx [21] ptrace Lighttpd (http load) 3.49× 1.01×

Redis (redis-benchmark) 16.72× 1.06×
SPEC CPU2006 17.9% 14.2%

Orchestra [40] ptrace Apache httpd (ApacheBench) 50% 2.4%
SPEC CPU2000 17% 11.3%

Tachyon [33] ptrace Lighttpd (ApacheBench) 3.72× 1.00×
thttpd (ApacheBench) 1.17× 1.00×

Table 2. Comparison with Mx, Orchestra and Tachyon on the benchmarks used to evaluate these systems.

 0
 1
 2
 3
 4
 5
 6
 7

164.gzip
175.vpr
176.gcc
181.m

cf
186.crafty
197.parser
252.eon
253.perlbm

k
254.gap
255.vortex
256.bzip2
300.twolf

R
un

tim
e

O
ve

rh
ea

d
(n

or
m

al
iz

ed
)

0 1 2 3 4 5 6

Figure 7. SPEC CPU2000 performance overhead for differ-
ent numbers of followers.

 0
 1
 2
 3
 4
 5
 6
 7

400.perlbench
401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
464.h264ref
471.om

netpp
473.astar
483.xalancbm

k

R
un

tim
e

O
ve

rh
ea

d
(n

or
m

al
iz

ed
)

0 1 2 3 4 5 6

Figure 8. SPEC CPU2006 performance overhead for differ-
ent numbers of followers.

measured was 1.06×, which is again a significant improve-
ment over previous work.

SPEC CPU2000 was used to evaluate Orchestra. We used
the latest available version 1.3.1. Orchestra reported a 17%
overhead, while VARAN introduced only a 11.3% overhead.
The results for the individual applications contained in the
SPEC CPU2000 suite and for different numbers of followers
can be seen in Figure 7. The reason these applications scale
poorly with the number of followers is likely due to memory
pressure and caching effects [24], and to the fact that our
machine has only four physical cores (with two logical cores
each). We plan to investigate these results in more detail in
future work.

SPEC CPU2006 was previously used to evaluate Mx. We
used the latest version 1.2. The overhead reported by Mx
was 17.9%, while VARAN introduced only a 14.2% overhead.
Individual results can be seen in Figure 8.

5. Application scenarios
VARAN is designed as a flexible framework that can support
a variety of application scenarios involving NVX systems.
In this section, we discuss four such scenarios: transparent
failover (§5.1), multi-revision execution (§5.2), live sanitiza-
tion (§5.3) and record-replay (§5.4).

5.1 Transparent Failover
NVX systems introduce a variety of opportunities for in-
creasing software reliability and availability via transparent
failover. For instance, one can run in parallel multiple vari-
ants of an application with different memory layouts, different
software revisions or different implementations of a given
interface to survive bugs that occur only in some of them.

VARAN makes it easy to implement transparent failover.
When one of the versions crashes, the SIGSEGV signal han-
dler installed in each version notifies the coordinator, which
decides what restart strategy to use. When one of the follow-
ers crashes, the coordinator unsubscribes it from the list of
currently-running followers, and discards it without affecting
other followers. When the leader crashes, it designates one
of the followers as the new leader (currently the one with the
smallest internal ID), and notifies it to switch its system call
table (§3.2) to that of the leader, and to restart the last system
call while discarding the old (crashed) leader.

To demonstrate support for transparent failover, we repro-
duced a Redis bug10 which was also used in the evaluation
of Mx [21]. We ran in parallel eight consecutive revisions
of Redis from the range 9a22de8 to 7fb16ba, where the last
revision introduced a bug which crashes the server by causing
a segmentation fault. We then set up a client to send an HMGET

10 https://code.google.com/p/redis/issues/detail?
id=344

348

https://code.google.com/p/redis/issues/detail?id=344
https://code.google.com/p/redis/issues/detail?id=344

command that triggers the bug, and measured the increase in
latency for that command. When the buggy version is a fol-
lower, we do not observe any increase in latency, as expected.
When the buggy version is the leader, the latency increases
from 42.36 µs to 122.62 µs. In both cases, we observed no
extra degradation in throughput for the commands that follow.

As an additional experiment, we ran revisions 2437 and
2438 of Lighttpd (also used in the evaluation of Mx), the latter
of which introduced a crash bug. We then set up a client that
triggers the bug and measured the latency for that request.
Both when the buggy version was the leader or a follower,
there was no significant increase in latency, which remained
at around 5ms.

5.2 Multi-revision execution
Different software versions (revisions) can be run inside an
NVX system as long as they all issue the same sequence of
system calls [21]. This limitation is due to the fact that prior
NVX systems run versions in lockstep (§2.3).

Because VARAN does not run the versions in lockstep and
can use system call rewrite rules, it can often overcome this
limitation. To illustrate, we used several Lighttpd revisions
from the Mx [21] feasibility study which introduced new
system calls and as such cannot be run in parallel by prior
NVX systems that rely on lockstep execution.

As a first experiment, we ran revision 2435 as leader to-
gether with revision 2436 as follower. Revision 2436 intro-
duces two additional checks using the getuid and getgid

system calls. More precisely, revisions until and including
2435 used geteuid() and getegid() C library functions to
check the user account under which the server is being run,
before issuing an open system call. This resulted in a se-
quence of geteuid, getegid and open system calls. Revi-
sion 2436 replaced the use of the aformentioned functions
with issetugid() which changed the system call sequence
to geteuid, getuid, getegid, getgid, followed by open as
before.

To allow for this divergence, we used the custom BPF fil-
ter shown in Listing 1. The filter is executed by the follower
whenever a divergence is detected. In our experiment, this
happens when the follower executes the newly introduced
getuid system call. The filter first loads the system call
number executed by the leader into the implicit BPF accumu-
lator (line 1) and checks whether the call is either getegid
(line 2) or open (line 3). The former will be true in this case,
so control will transfer to line 6, which loads the system
call number executed by the follower into the accumulator,
checks whether it is getuid (line 7) and finally transfers con-
trol to line 12 returning the value SECCOMP_RET_ALLOW, which
instructs VARAN to execute the additional system call (i.e.
getuid) in the follower. Any other combination of system
calls would have killed the follower (line 11). After execut-
ing the getuid system call and replaying the execution of
getegid (which the leader also executed), VARAN would de-
tect a second divergence when the follower tries to execute

1 ld event[0]
2 jeq #108, getegid /* __NR_getegid */
3 jeq #2, open /* __NR_open */
4 jmp bad
5 getegid:
6 ld [0] /* offsetof(struct seccomp_data, nr) */
7 jeq #102, good /* __NR_getuid */
8 open:
9 ld [0] /* offsetof(struct seccomp_data, nr) */

10 jeq #104, good /* __NR_getgid */
11 bad: ret #0 /* SECCOMP_RET_KILL */
12 good: ret #0x7fff0000 /* SECCOMP_RET_ALLOW */

Listing 1. Example of a BPF rewriting rule.

getgid instead of open. This divergence would be resolved
using the same filter, taking the path on lines 3, 9, 10 and 12.

Note this is only one possible filter for allowing this
divergence; in particular, one could write a filter that takes
into account more information about the context in which
it should be applied, e.g., by inspecting some system call
arguments.

We used a similar filter to run revisions 2523 and 2524, the
latter of which introduces an additional read system call to
access the /dev/urandom file to obtain an additional source
of entropy. We were also able to run revisions 2577 and 2578

where the difference consists of an additional fcntl system
call to set a FD_CLOEXEC flag on one of the file descriptors.

Currently, VARAN’s implementation can use BPF filters
only to allow adding or removing system calls in followers.
However, this is not a fundamental limitation, and in the
future we plan to support other types of transformations, such
as replacing one sequence of system calls with another.

5.3 Live Sanitization
Sanitization is one of the most effective testing techniques
for revealing low-level bugs such as uninitialised pointer
dereferences and use-after-free errors. Both Clang and GNU
C Compiler now include a set of sanitizers—AddressSanitizer
(ASan), MemorySanitizer (MSan), ThreadSanitizer (TSan)—
which can be used to statically instrument the code with
various checks. Unfortunately, these checks introduce extra
overhead (e.g., 2× for ASan, 3× for MSan and 5-15× for
TSan). which is why these sanitizers are typically only used
in offline testing. However, during testing developers only
use a limited set of inputs which might not reveal all bugs.

One possible solution is to record execution traces during
deployment and then replay them in a testing environment
with sanitization enabled. However, this approach is unlikely
to work in practice for several reasons. First, since we do
not know in advance which traces are potentially interesting
(e.g., trigger sanitization checks) and which are not, we have
to potentially collect and replay a huge number of execution
traces. Even with some form of deduplication, this is usually
impractical. Second, for long-running applications such as
servers, the log will quickly grow to a large size. Third, many

349

customers will refuse to share the logs from their production
deployment.

With VARAN, we can perform live sanitization by running
the native unsanitized version as the leader, with sanitized
versions as followers. While sanitization itself introduces
a performance overhead, since followers do not need to
execute any I/O operations and merely replay them, they can
often keep up with the leader, allowing users to run sanitized
versions in production without introducing any significant
overhead. Note that VARAN’s architecture also provides
the ability to run several sanitizers concurrently, which is
important because many sanitizers are mutually incompatible.

To demonstrate this, we build revision 7f77235 of Redis
twice: once with Clang without any sanitization, once with
ASan enabled. We then ran both versions in parallel using
VARAN and used the same benchmark with the same settings
as for our performance evaluation (§4.2). As expected, we
have not measured any additional slowdown in the leader
compared to the scenario with two non-sanitized versions
being run in parallel. To get a better insight into the effect
of running the sanitized version with VARAN, we have also
measured the median size of the log, i.e. the distance between
the leader and the follower. This value is only six events,
which does not impose any problems.

5.4 Record-Replay
Although VARAN shares similarities with record-replay sys-
tems, there are significant differences; in particular, the log is
of fixed size and only kept in-memory. However, it is possible
to easily extend VARAN to provide full record-replay capa-
bilities by implementing two artificial clients: (i) during the
record phase, one acting as a follower whose only goal is to
write the content of the ring buffer to persistent storage, and
(ii) during the replay phase, one acting as the leader, reading
the content of the log from the persistent storage and pub-
lishing events into the ring buffer for consumption by replay
clients.

Compared to some of the previous record-replay systems,
VARAN has a number of advantages. First, decoupling the
logic responsible for reading/writing the log from the actual
application into a separate process allows the application to
run at nearly full speed and utilise the multiple cores available
in modern CPUs. Second, since VARAN was designed to run
multiple instances at the same time, we can replay multiple
versions at once, e.g., to determine which versions of the
application from a given range are susceptible to a crash
reported by the user.

We have implemented a simple prototype of the two
aforementioned clients on top of VARAN and compared its
performance against Scribe [27], a state-of-the-art record-
replay system implemented in the kernel. Unfortunately,
because Scribe is implemented in the kernel and is only
maintained for an old 32-bit Linux kernel (2.6.35), we had to
run our experiments inside a virtual machine (kindly provided
to us by Scribe’s authors, as the source tree was broken at

the time of our experiments). To allow for a more faithful
comparison, we ran VARAN inside the same virtual machine.

We used Redis as a benchmark, running the same workload
as before, and configured both systems to record the execution
to persistent storage. We recorded an overhead of 53% for
Scribe,11 compared to 14% for VARAN.

6. Discussion
This section discusses some of the implications of VARAN’s
design, including its main limitations, many of which are
inherent to all existing NVX systems.

CPU utilisation and memory consumption. The perfor-
mance evaluation reported in Section 4 considers the over-
head in terms of throughput or clock time. However, an NVX
framework introduces a CPU utilisation overhead linear in the
number of versions. While this might be a serious concern in
some scenarios, leaving cores idle has a cost as well [3] and
in many cases idle cores can be profitably used to increase
software reliability and security [5, 8, 9, 13, 40].

Similarly, the memory overhead imposed by VARAN is
linear in the number of versions, as in prior NVX systems.
This can lead to degradations in performance due to mem-
ory pressure and caching effects, as we have observed in
Section 4.3.

Memory-based communication. As prior NVX systems,
VARAN does not support memory-based communication.
More exactly, VARAN only allows files to be mapped into
memory as read-only—if the file would be mapped as read-
write, any writes by the leader would likely lead to diver-
gences in followers, as they would read the value written by
the leader rather than the original value. This limitation comes
from the fact that memory-based communication cannot be
intercepted by interposing upon the system call interface, and
as such is invisible to NVX systems operating at the system
call level.

Synchronisation. While VARAN supports multi-threaded
and multi-process applications (§3.3.3), there is a potential
issue with synchronisation primitives implemented entirely
in user space, as these primitives will be invisible to VARAN.
While it is possible to use entirely user-space synchronisation
primitives, in our experience, they are not that frequent and
standard synchronisation primitives combine atomics with
system calls (i.e. futex). We have not observed any related
problems in our concurrent benchmarks (§4.2, §4.3).

Security. Although our focus with VARAN has been on im-
proving software reliability, VARAN could be also used to im-
plement existing NVX security defences [13, 40]. However,
there are two additional problems that VARAN introduces, as
discussed below.

11 The overhead we measured for Scribe is higher than that reported in [27];
however, note that the original work used less I/O intensive benchmarks such
as Apache httpd and that the use of a virtual machine also affected the result.

350

First, the use of buffering, while essential for improving
performance, leads to delayed detection of divergences, pro-
viding attackers with a window of opportunity in which to
perform malicious system calls. However, VARAN’s buffer
size is configurable, and could be set to one to disable buffer-
ing. Even without buffering, VARAN’s binary rewriting mech-
anism is more efficient than ptrace-based solutions.

Second, since VARAN resides in the same address space as
the application, a return-oriented programming (ROP) attack
can bypass VARAN’s tracing mechanism and thus escape
detection. Furthermore, VARAN’s code could be a primary
target of such an attack. However, this is partially mitigated
by the fact that VARAN’s code is loaded at a random memory
address.

7. Related Work
N-version programming was introduced in the seventies
by Chen and Avizienis [11]. The core idea was to have
multiple teams of programmers develop the same software
independently and then run the produced implementations in
parallel in order to improve the fault tolerance of the overall
system. Both version generation and the synchronisation
mechanism required manual effort.

Recent work on NVX systems has moved in the direc-
tion of opportunistically using existing versions—e.g., dif-
ferent browser implementations [47] or different software
revisions [21]—or automatically synthesising them—e.g.,
by varying the memory layout [5] or the direction of stack
growth [40]. Significant effort has also been expended on run-
ning multiple versions in parallel in the context of online and
offline testing [33, 41, 43, 45]. VARAN targets NVX systems
that use system call level synchronisation and is oblivious to
the way in which the versions are generated.

Recent NVX systems that synchronise versions at the level
of system calls use either the ptrace interface [21, 33, 40]
or kernel modifications [13] to implement monitors. As dis-
cussed, ptrace-based systems incur an unacceptable over-
head on I/O-bound applications—for instance, Tachyon [33]
reports an overhead of 3.72× on Lighttpd and Mx [21] an
overhead of 16.72× in one of the Redis experiments. By
contrast, kernel-based systems [13] achieve overheads com-
petitive to VARAN—but the main disadvantages are the addi-
tional privileges required for deployment and the difficulty
of maintaining and debugging the kernel patches. Finally,
all existing NVX systems operating at the level of system
calls, both user- and kernel-level, require lockstep execution,
which introduces significant limitations both in terms of per-
formance and flexibility, as discussed in detail in Sections 2.2
and 3.4.

Event streaming in VARAN can be seen as a variant of
record-replay. However, unlike traditional record-replay sys-
tems that require a persistent log [17, 20, 38, 39], VARAN
keeps the shared ring buffer in memory, and deallocates
events as soon as they are not needed, which minimises perfor-

mance overhead and space requirements in the NVX context.
As we showed in Section 5.4, VARAN can also be efficiently
extended into a traditional record-replay framework.

RR [6] replicates an application into multiple instances
for fault tolerance. It also uses a variant of record-replay to
synchronise the multiple instances, but in contrast to VARAN
RR is focused on fail-stop scenarios involving identical
replicas. RR was implemented as a Linux kernel extension,
which as discussed above presents several disadvantages
compared to a user-level solution like VARAN, and was
evaluated on a single benchmark.

More generally, system call interposition has been an
active area of research [1, 2, 19, 23, 25, 36, 46]. VARAN
draws inspiration from the Ostia delegating architecture [16],
and from the selective binary rewriting approach implemented
by BIRD [35] and seccompsandbox12 (our binary rewriting
implementation being based on the latter).

8. Conclusion
Recent years have seen a growing interest in using NVX
systems as a way to increase the reliability and security
of software systems. While NVX systems hold promise,
frameworks for implementing them efficiently have lagged
behind.

In this paper, we have introduced VARAN, a novel ar-
chitecture for implementing NVX monitors. VARAN com-
bines selective binary rewriting with high-performance event
streaming to deliver a flexible and efficient user-space solu-
tion that incurs a low performance overhead, can scale to
large numbers of versions, is easier to debug than prior sys-
tems, and can handle small divergences in the sequences of
system calls issued across versions.

Our experimental evaluation has demonstrated that VARAN
can run C10k network servers with low performance over-
head and can be used in various scenarios such as transpar-
ent failover, multi-revision execution, live sanitization and
record-replay.

For up-to-date information about the project, please visit
http://srg.doc.ic.ac.uk/projects/varan.

Acknowledgments
We would like to thank Oscar Dustmann, Paul Marinescu,
Luis Pina, Bennet Yee and the anonymous reviewers for
their valuable comments on the paper. Special thanks to
our ASPLOS shepherd, Andrew Baumann, for his time and
constructive feedback. Petr is a recipient of a Google Europe
Fellowship in Software Engineering, and Cristian of an
Early-Career EPSRC Fellowship, and this research has been
generously supported by these fellowships.

12 https://code.google.com/p/seccompsandbox/

351

http://srg.doc.ic.ac.uk/projects/varan
https://code.google.com/p/seccompsandbox/

References
[1] A. Acharya and M. Raje. MAPbox: Using parameterized

behavior classes to confine applications. In Proc. of the
9th USENIX Security Symposium (USENIX Security’00), Aug.
2000.

[2] A. Alexandrov, P. Kmiec, and K. Schauser. Consh:
Confined execution environment for Internet computa-
tions. http://itslab.inf.kyushu-u.ac.jp/
ssr/Links/alexandrov98consh.pdf, Dec. 1998.

[3] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. Computer, 40:33–37, 2007.

[4] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
CoreDet: A compiler and runtime system for deterministic
multithreaded execution. In Proc. of the 15th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’10), Mar. 2010.

[5] E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In Proc. of the Conference on
Programing Language Design and Implementation (PLDI’06),
June 2006.

[6] P. Bergheaud, D. Subhraveti, and M. Vertes. Fault tolerance in
multiprocessor systems via application cloning. In Proc. of the
27th IEEE International Conference on Distributed Computing
Systems (ICDCS’07), June 2007.

[7] D. Bruschi, L. Cavallaro, and A. Lanzi. Diversified process
replicae for defeating memory error exploits. In Proc. of the
International Performance, Computing, and Communications
Conference (IPCCC’07), Apr. 2007.

[8] C. Cadar and P. Hosek. Multi-version software updates. In
Proc. of the 4th Workshop on Hot Topics in Software Upgrades
(HotSWUp’12), June 2012.

[9] C. Cadar, P. Pietzuch, and A. L. Wolf. Multiplicity computing:
A vision of software engineering for next-generation comput-
ing platform applications. In Proc. of the FSE/SDP workshop
on the Future of Software Engineering Research (FoSER’10),
Nov. 2010.

[10] R. Capizzi, A. Long, V. Venkatakrishnan, and A. P. Sistla.
Preventing information leaks through shadow executions. In
Proc. of the 24th Annual Computer Security Applications
Conference (ACSAC’08), Dec. 2008.

[11] L. Chen and A. Avizienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proc.
of the 8th IEEE International Symposium on Fault Tolerant
Computing (FTCS’78), June 1978.

[12] Chromium.org. Linux Zygote: The use of zygotes on
Linux. https://code.google.com/p/chromium/
wiki/LinuxZygote.

[13] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant systems: a
secretless framework for security through diversity. In Proc. of
the 15th USENIX Security Symposium (USENIX Security’06),
July-Aug. 2006.

[14] D. Devries and F. Piessens. Noninterference through secure
multi-execution. In Proc. of the IEEE Symposium on Security
and Privacy (IEEE S&P’10), May 2010.

[15] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in Linux. In Proc. of the
2002 Ottawa Linux Symposium (OLS’02), June 2002.

[16] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating
architecture for secure system call interposition. In Proc. of
the 11th Network and Distributed System Security Symposium
(NDSS’04), Feb. 2004.

[17] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In Proc. of the 2006
USENIX Annual Technical Conference (USENIX ATC’06),
May-June 2006.

[18] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward
for efficient pipeline parallelism: a cache-optimized concurrent
lock-free queue. In Proc. of the 13th ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP’08),
Feb. 2008.

[19] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications confining
the wily hacker. In Proc. of the 6th USENIX Security
Symposium (USENIX Security’96), July 1996.

[20] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel
for record and replay. In Proc. of the 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’08),
Dec. 2008.

[21] P. Hosek and C. Cadar. Safe software updates via multi-version
execution. In Proc. of the 35th International Conference on
Software Engineering (ICSE’13), May 2013.

[22] G. Hunt and D. Brubacher. Detours: Binary interception of
Win32 functions. In Proc. of the 3rd USENIX Windows NT
Symposium (USENIX NT’99), July 1999.

[23] K. Jain and R. Sekar. User-level infrastructure for system
call interposition: A platform for intrusion detection and
confinement. In Proc. of the 6th Network and Distributed
System Security Symposium (NDSS’99), Feb. 1999.

[24] A. Jaleel. Memory characterization of workloads using
instrumentation-driven simulation. Technical report, Intel
Corporation, 2007.

[25] T. Kim and N. Zeldovich. Practical and effective sandboxing
for non-root users. In Proc. of the 2013 USENIX Annual
Technical Conference (USENIX ATC’13), June 2013.

[26] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In Proc. of the 11th
USENIX Security Symposium (USENIX Security’02), Aug.
2002.

[27] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In Proc. of the ACM SIGMETRICS 2010
(SIGMETRICS’10), June 2010.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the Association for
Computing Machinery (CACM), 21(7):558–565, July 1978.
ISSN 0001-0782.

352

http://itslab.inf.kyushu-u.ac.jp/ssr/Links/alexandrov98consh.pdf
http://itslab.inf.kyushu-u.ac.jp/ssr/Links/alexandrov98consh.pdf
https://code.google.com/p/chromium/wiki/LinuxZygote
https://code.google.com/p/chromium/wiki/LinuxZygote

[29] P. P.-C. Lee, T. Bu, and G. Chandranmenon. A lock-free,
cache-efficient multi-core synchronization mechanism for line-
rate network traffic monitoring. In Proc. of the 24th IEEE
International Parallel & Distributed Processing Symposium
(IPDPS’10), Apr. 2010.

[30] L. Levrouw, K. Audenaert, and J. Van Campenhout. A new
trace and replay system for shared memory programs based
on Lamport clocks. In Proc. of the 6th IEEE International
Parallel & Distributed Processing Symposium (IPDPS’94),
Oct. 1994.

[31] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: Efficient
deterministic multithreading. In Proc. of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11), Oct.
2011.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumentation.
In Proc. of the Conference on Programing Language Design
and Implementation (PLDI’05), June 2005.

[33] M. Maurer and D. Brumley. TACHYON: Tandem execution
for efficient live patch testing. In Proc. of the 21st USENIX
Security Symposium (USENIX Security’12), Aug. 2012.

[34] S. McCanne and V. Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In Proc. of the 1993
Winter USENIX Conference, Jan. 1993.

[35] S. Nanda, W. Li, L.-C. Lam, and T. cker Chiueh. BIRD:
Binary interpretation using runtime disassembly. In Proc.
of the 4th International Symposium on Code Generation and
Optimization (CGO’06), Mar. 2006.

[36] N. Provos. Improving host security with system call policies.
In Proc. of the 11th USENIX Security Symposium (USENIX
Security’02), Aug. 2002.

[37] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 15(1):2:1–2:34, Mar. 2012.

[38] M. Ronsse and K. De Bosschere. RecPlay: A fully inte-
grated practical record/replay system. ACM Transactions on
Computer Systems (TOCS), 17(2):133–152, May 1999. ISSN
0734-2071.

[39] Y. Saito. Jockey: a user-space library for record-replay
debugging. In Proc. of the 6th International Workshop on
Automated Debugging (AADEBUG’05), Sept. 2005.

[40] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra:
intrusion detection using parallel execution and monitoring of
program variants in user-space. In Proc. of the 4th European
Conference on Computer Systems (EuroSys’09), Mar.-Apr.
2009.

[41] S. Sidiroglou, S. Ioannidis, and A. D. Keromytis. Band-aid
patching. In Proc. of the 3rd Workshop on Hot Topics in
System Dependability (HotDep’07), June 2007.

[42] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart.
Disruptor: High performance alternative to bounded queues for
exchanging data between concurrent threads. Technical report,
LMAX, 2011. URL http://lmax-exchange.github.
io/disruptor/files/Disruptor-1.0.pdf.

[43] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation
with delta execution. In Proc. of the 14th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’09), Mar. 2009.

[44] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and surviving data races using complementary sched-
ules. In Proc. of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11), Oct. 2011.

[45] M. A. Vouk. Back-to-back testing. Information and Software
Technology (IST), 32:34–45, Jan.-Feb. 1990.

[46] D. A. Wagner. Janus: an approach for con-
finement of untrusted applications. Technical Report
UCB/CSD-99-1056, University of California at Berkley,
1999. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/1999/5271.html.

[47] H. Xue, N. Dautenhahn, and S. T. King. Using replicated
execution for a more secure and reliable web browser. In
Proc. of the 19th Network and Distributed System Security
Symposium (NDSS’12), Feb. 2012.

[48] A. R. Yumerefendi, B. Mickle, and L. P. Cox. Tightlip:
Keeping applications from spilling the beans. In Proc. of the
4th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’07), Apr. 2007.

353

http://lmax-exchange.github.io/disruptor/files/ Disruptor-1.0.pdf
http://lmax-exchange.github.io/disruptor/files/ Disruptor-1.0.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1999/5271.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1999/5271.html

	Introduction
	Overview
	System call interception
	Event-streaming architecture
	Rewrite rules for system call sequences

	Prototype
	Setup of address spaces and communication channels
	Binary Rewriting
	Virtual System Calls

	Event Streaming
	Shared ring buffer
	Transferring file descriptors and leader replacement
	Multi-process and multi-threaded applications
	Memory allocation scheme

	Rewrite rules for system call sequences

	Performance evaluation
	Microbenchmarks
	C10k servers
	Comparison with prior NVX systems

	Application scenarios
	Transparent Failover
	Multi-revision execution
	Live Sanitization
	Record-Replay

	Discussion
	Related Work
	Conclusion

