
Towards Deployment-Time Dynamic
Analysis of Server Applications

Luı́s Pina Cristian Cadar
Imperial College London, UK

{l.pina, c.cadar}@imperial.ac.uk

Abstract
Bug-finding tools based on dynamic analysis (DA), such
as Valgrind or the compiler sanitizers provided by Clang
and GCC, have become ubiquitous during software devel-
opment. These analyses are precise but incur a large perfor-
mance overhead (often several times slower than native ex-
ecution), which makes them prohibitively expensive to use
in production. In this work, we investigate the exciting pos-
sibility of deploying such dynamic analyses in production
code, using a multi-version execution approach.

Categories and Subject Descriptors D.3.4 [Processors]:
Run-time Environments
Keywords N-Version Execution, Partial Dynamic Analysis

1. Introduction
Multi-version execution [1, 2] allows multiple program ver-
sions to run concurrently as long as they issue the same se-
quence of system calls. In particular, we have built a system
called Varan [2] which resembles a record-replay system: a
leader version performs the system calls and records their
results into a buffer in shared memory, while other follower
versions read the results of the system calls from the buffer,
to mimic the leader’s behaviour. System-call interposition is
inexpensive, done through binary rewriting. The main ad-
vantage of this decentralised architecture is the small perfor-
mance overhead, as the leader only needs to write the results
of the system calls in the shared buffer, without having to
synchronise directly with the followers.

Bug-finding tools based on dynamic analysis (DA), such
as Valgrind [3] or the compiler sanitizers provided by Clang
and GCC [5, 6], are precise but incur a large performance
overhead. We use Varan to deploy such tools in production:
We run a native version of the application as the leader, and
a version instrumented for DA as the follower. Given that

the buffer has a fixed size and the follower is much slower,
the leader eventually runs out of free space in the buffer.
Once this happens, the leader has to wait for the follower
to consume the results in the buffer, effectively running at
the same speed as the follower.

One solution for dealing with this problem is partial DA
checking, i.e. only checking part of the execution with the
DA. In this paper, we illustrate partial DA checking in the
context of network servers and compiler sanitizers.

2. Case Study
For our study, we chose a toy web server implemented as
part of a class assignment1 which we further simplified, e.g.,
by limiting the number of connected clients to one. This
allowed us to quickly experiment with our ideas, before
moving to real-world applications.

Network servers are typically structured around a main
dispatch loop which waits for user requests. As a result,
user requests are the basic blocks of a server’s execution.
Running the DA on only a fraction of the requests is a natural
way to do partial checking. To skip checking a request in
our multi-version execution framework, the leader simply
disables recording the system calls for that request. Since
the web-server is stateless, the executions of the leader and
follower do not diverge due to the leader handling more
requests than the follower.

To detect each request, we added a simple annotation at
the top of our server’s dispatch loop, similar to the annota-
tions done in the context of dynamic software updates [4].
More precisely, we added an open system call to the start
of the loop with a unique dummy path as the argument. The
dummy argument instructs Varan to ignore the system call,
and also gives it the opportunity to detect the start of the
loop and decide whether to send the system calls issued in
that loop iteration to the follower.

For our dynamic analysis, we chose the Address Sanitizer
(ASan) [5], a compiler sanitizer that detects buffer overflows
and use-after-free errors in C/C++ programs available in
both Clang and GCC; we used GCC 4.8.2.

The execution of the web server is dominated by I/O—
reading the requested file and sending it to the client. As
a result, the ASan overhead is relatively small (the re-

1 Abhijeet Rastogi’s blog, http://tinyurl.com/qxhezrb

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

WODA’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3909-4/15/10
http://dx.doi.org/10.1145/2823363.2823372

35

quests/second rate drops to around 88% of the original rate).
To mimic a server that also performs some computation for
each request, thus introducing a significant sanitization over-
head, we modified our web server to compress the requested
files through BZip2 before sending them to the client.

3. Experimental Evaluation
To measure the web server’s performance, we ran for 30s
the http load benchmark,2 configured to download files in
sequence, randomly chosen from a set of ten files with size
1KB and ten with size 1MB.

On average, an iteration of the server loop issues roughly
2K system calls. Therefore, we configured Varan to use a
buffer with a capacity of 32K system calls, thus able to hold
several loop iterations.

The top half of Figure 1 shows how Varan and ASan
affect baseline performance. Each bar shows how many files
were downloaded in 30 seconds. The bars labelled No Varan
refer to running the web server without Varan, compiled with
and without the sanitizer. We can see that ASan reduces
throughput by roughly 50%. The bars labelled Leader only
refer to repeating this experiment but running Varan with
either a native or sanitized leader. We can see that Varan
adds little overhead to the baseline, consistent with prior
experiments [2]. Finally, the bars labelled Leader/Follower
refer to Varan configured with a native leader and a native or
sanitized follower. As expected, when a sanitized follower is
used, the throughput drops by almost half, because once the
buffer gets full, the leader has to wait for the slow follower.

To throttle sending system calls to the follower, Varan
only sends the first n% in each window of 32K system calls.
We configured Varan to repeat this process with an increas-
ing n, from 0 to 100 in increments of 10. Given that Varan
has to wait for the start of the loop, the actual percentage
varies. The bottom half of Figure 1 shows the results for this
experiment. The label on each bar describes how many re-
quests Varan checked in the sanitized follower.3 We can see
that the results match expectations, with throughput increas-
ing as the percentage of checked requests decreases.

4. Related Work
We briefly introduced the idea of production-time sanitiza-
tion in our Varan paper [2] and illustrated its applicability in
the context of an I/O-bound server, where the sanitized fol-
lower can easily keep up with the leader. In this work, we
focus instead on the more challenging scenario in which the
sanitized follower cannot.

The research community has invested significant effort
into designing DA techniques that are cheap enough to be
deployed in production. Instead, our focus is to make exist-
ing expensive techniques, such as compiler sanitizers, de-
ployable in production.

2 http://www.acme.com/software/http_load
3 The percentage of system calls replayed matches the checked requests.

0 50 100 150 200 250 300

Leader
Follower

Leader
only

No Varan

196

219

219

93

83

82

No ASan
ASan

0 50 100 150 200 250 300
files downloaded in 30 seconds

2.75

13.31

23.72

32.06

38.79

50.27

65.57

82.53

88.26

97.00

sa
ni

tiz
ed

re
qu

es
ts

216

204

209

201

197

182

141

122

109

99

Figure 1. Web-server performance experiment. Each bar
reports the average throughput over 10 runs, with the error
bars reporting the standard deviation. Run on a an Intel Xeon
E31280 machine, 3.5 GHz CPU (8 logical cores, 4 physical),
16GB of RAM, with Ubuntu Linux 14.04 (kernel 3.13.0-39).

5. Conclusion
Our preliminary experience makes us optimistic that partial
checking of network server executions during deployment is
feasible. In future work, we plan to focus on the challenges
introduced by real-world servers, as well as explore new
application domains.

Acknowledgements
We thank Petr Hosek for his assistance with the Varan sys-
tem, and the EPSRC for sponsoring this research through an
Early-Career Fellowship.

References
[1] P. Hosek and C. Cadar. Safe software updates via multi-version

execution. In ICSE’13.

[2] P. Hosek and C. Cadar. Varan the Unbelievable: An efficient
N-version execution framework. In ASPLOS’15.

[3] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In PLDI’07.

[4] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java on a
stock JVM. In OOPSLA’14.

[5] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A fast address sanity checker. In USENIX
ATC’12.

[6] E. Stepanov and K. Serebryany. MemorySanitizer: fast detector
of uninitialized memory use in C++. In CGO’15.

36

