
Running Symbolic Execution Forever
Frank Busse · Martin Nowack · Cristian Cadar

Imperial College London

ISSTA 2020, 18-22 July, Virtual Conference, USA



Concrete vs. Symbolic Execution

concrete outputconcrete input

42

2



Concrete vs. Symbolic Execution

3

symbolic input

𝛀
➔ high-coverage test cases
➔ crashing inputs



Challenges in Symbolic Execution

Path explosion

Constraint solving overhead

● feasibility checks
● safety checks
● test generation

4



Early Termination (Memory Pressure)

5



Motivation

6

✔

✔

✔

✔

don’t re-explore paths

don’t re-solve queries

large subtree



Memoization
● trade time for space
● store solver results as metadata in execution tree nodes
● persist tree to disk
● re-use results on re-execution

7

memoize

Database



Memoization

8

stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch
4. load metadata
5. free metadata in parent



Memoization

9

stored execution treecurrent execution tree

path progresses beyond 
memoized data



Memoization

10

stored execution treecurrent execution tree

path switches to 
recording mode



Memoization

11

stored execution treecurrent execution tree

metadata in database 
is updated



Memoization

12

stored execution treecurrent execution tree

metadata is freed



Memoization

13

stored execution treecurrent execution tree

new subtree written 
to database



Path Pruning

14

stored execution treecurrent execution tree

completed subtree



on branch completeness 
immediately detected

Path Pruning

15

stored execution treecurrent execution tree

completed subtree



path gets terminated

Path Pruning

16

stored execution treecurrent execution tree

completed subtree



… and removed from tree

Path Pruning

17

stored execution treecurrent execution tree

completed subtree



ISSTA 2012

18



19

(same search strategy)

(loads complete tree)



No divergence detection.
20

(same search strategy)

(loads complete tree)

(short runtimes)



Divergences
Causes

● changes in external environment 
(disk layout, date, environment 
variables)

● shared address space between 
execution states

Problem

● exploration of infeasible paths
● false negatives 

21

stored execution treecurrent execution tree



Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset

22

checksum = C0



checksum = hash(BB7) ⊗ hash(BB6) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset

23

BB1

BB2

BB3

BB4

BB5

BB6

BB7

checksum = C0



checksum ≠ hash(BB7) ⊗ hash(BB8) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset

24

BB1

BB2

BB3

BB4

BB5

BB6

BB7

checksum = C0

BB8



Evaluation
● MoKlee is implemented on top of KLEE 1.4
● evaluated on 93 benchmarks:

○ readelf (Binutils)
○ 87 Coreutils
○ diff (Diffutils)
○ find (Findutils)
○ grep
○ libspng
○ tcpdump

25



Evaluation - Runtime

26



Evaluation - Storage Size

27



Evaluation - Divergences

28



Evaluation - Long Running Symbolic Execution

29

14 applications terminate ran out of states 
before the 2h limit!

✔

✔

✔

✔



Evaluation - Long Running Symbolic Execution

30



Evaluation - Long Running Symbolic Execution

31



32

MoKlee Artefact: https://srg.doc.ic.ac.uk/projects/moklee/

KLEE: https://klee.github.io/

2nd KLEE Workshop: 22-23 April 2021 in London

https://srg.doc.ic.ac.uk/projects/moklee/
https://klee.github.io/

