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Concrete vs. Symbolic Execution

concrete outputconcrete input
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Concrete vs. Symbolic Execution
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symbolic input

𝛀
➔ high-coverage test cases
➔ crashing inputs



Challenges in Symbolic Execution

Path explosion

Constraint solving overhead

● feasibility checks
● safety checks
● test generation
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Early Termination (Memory Pressure)
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Motivation
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✔

✔

✔

✔

don’t re-explore paths

don’t re-solve queries

large subtree



Memoization
● trade time for space
● store solver results as metadata in execution tree nodes
● persist tree to disk
● re-use results on re-execution
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memoize

Database



Memoization
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stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch
4. load metadata
5. free metadata in parent



Memoization
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stored execution treecurrent execution tree

path progresses beyond 
memoized data



Memoization
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stored execution treecurrent execution tree

path switches to 
recording mode



Memoization
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stored execution treecurrent execution tree

metadata in database 
is updated



Memoization
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stored execution treecurrent execution tree

metadata is freed



Memoization
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stored execution treecurrent execution tree

new subtree written 
to database



Path Pruning
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stored execution treecurrent execution tree

completed subtree



on branch completeness 
immediately detected

Path Pruning
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stored execution treecurrent execution tree

completed subtree



path gets terminated

Path Pruning
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stored execution treecurrent execution tree

completed subtree



… and removed from tree

Path Pruning
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stored execution treecurrent execution tree

completed subtree



ISSTA 2012
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(same search strategy)

(loads complete tree)



No divergence detection.
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(same search strategy)

(loads complete tree)

(short runtimes)



Divergences
Causes

● changes in external environment 
(disk layout, date, environment 
variables)

● shared address space between 
execution states

Problem

● exploration of infeasible paths
● false negatives 
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stored execution treecurrent execution tree



Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset
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checksum = C0



checksum = hash(BB7) ⊗ hash(BB6) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset
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checksum ≠ hash(BB7) ⊗ hash(BB8) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset
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Evaluation
● MoKlee is implemented on top of KLEE 1.4
● evaluated on 93 benchmarks:

○ readelf (Binutils)
○ 87 Coreutils
○ diff (Diffutils)
○ find (Findutils)
○ grep
○ libspng
○ tcpdump
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Evaluation - Runtime
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Evaluation - Storage Size
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Evaluation - Divergences

28



Evaluation - Long Running Symbolic Execution
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14 applications terminate ran out of states 
before the 2h limit!

✔

✔

✔

✔



Evaluation - Long Running Symbolic Execution
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Evaluation - Long Running Symbolic Execution
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MoKlee Artefact: https://srg.doc.ic.ac.uk/projects/moklee/

KLEE: https://klee.github.io/

2nd KLEE Workshop: 22-23 April 2021 in London

https://srg.doc.ic.ac.uk/projects/moklee/
https://klee.github.io/

