
Addressing the Saturation Effect
in Compiler Testing

Cristian Cadar

Department of Computing
Imperial College London

National University of Singapore
12 May 2023Funded by

Based on joint work with Karine Even-Mendoza,
Arindam Sharma and Alastair Donaldson

Trusted
Development

Base
(Typically Hidden

from View)

Compiler
Language Runtime
Operating System

Hardware

Code

6

Compilers are

“I know it’s me!”

7

“I proved this source
code correct!”

Compilers are

8

Compilers Are Also Just Software

• Complex software: both GCC and LLVM/Clang have millions of LOCs

• Over 100 bugs/months fixed on average in both compilers recently

History of LLVM Bug Tracking System (2003-2015). Taken from [Sun et al., ISSTA’16]
9

Not All Bugs are the Same

CRASH BUG

MISCOMPILATION

10

The Security Angle: Trusting Trust

USEFUL
PATCH

PROJECT
REPOSITORY

Non-vulnerable
compiler

Vulnerable
compiler

11

What Makes Compiler*
Testing Hard?

At least the following related factors:

• Absence of an oracle

• Undefined, unspecified and
implementation-defined behaviour

• Nondeterminism

• Lack of clear language semantics

12

* We use the term compiler in a broad sense, including other
language processors such as program analysis tools

12

Derived Oracle: Differential Testing

Compile a program with many
compilers

Compare results

Mismatches indicate bugs
Majority is probably right 24

test.c

gcc clang Microsoft
compiler

Intel
compiler

24 2442

13

Differential Testing Requirements
Program must be:
• Deterministic
• Free from undefined /

unspecified behaviour

Compilers:
• Must agree on implementation-

defined behaviour

Crosschecking multiple compiler optimization levels also
works well; e.g. gcc -O0 vs. gcc -O2

24

test.c

gcc clang Microsoft
compiler

Intel
compiler

24 2442

14

Undefined Behaviour
• Undefined behaviour: the standard imposes no requirement, i.e. the

compiler can generate any code (or no code at all)

• E.g., buffer overflows, uninitialized reads, signed integer overflow

15

Example: Saturating Add
Let’s try to implement saturating addition for signed integers in C

x + y is clamped to an extreme value if it falls outside the signed integer range

int saturating_add(int x, int y) {
if (x > 0 && y > 0 && x + y < 0)
return INT_MAX;

if (x < 0 && y < 0 && x + y > 0)
return INT_MIN;

return x + y;
}

16

Saturating Add in Action
Compiled with gcc 7.5.0, -O0, we get:

saturating_add(1, 2) == 3
saturating_add(-5, 2) == -3
saturating_add(1000000000, 1000000000) == 2000000000
saturating_add(2000000000, 2000000000) == 2147483647
saturating_add(-2000000000, -2000000000) == -2147483648

saturating_add(1, 2) == 3
saturating_add(-5, 2) == -3
saturating_add(1000000000, 1000000000) == 2000000000
saturating_add(2000000000, 2000000000) == -294967296
saturating_add(-2000000000, -2000000000) == 294967296

Compiled with gcc 7.5.0, -O2, we get:

Intended saturating
behaviour (32-bit)

This looks like wrap-
around behaviour!

17

“I will assume this program does not exhibit
undefined behaviours, because if it does
then it matters not what code I emit.”

int saturating_add(int x, int y) {
if (x > 0 && y > 0 && x + y < 0)

return INT_MAX;
if (x < 0 && y < 0 && x + y > 0)

return INT_MIN;
return x + y;

}

“I know x + y does not overflow:
this would be an UB.
So if x and y are positive, x + y
must be positive.

The condition is equivalent to
false.

Excellent!!”
“By similar reasoning, this
condition is equivalent to false.”

The Compiler’s “Thought Process”

18

“I can simplify the program to:”

int saturating_add(int x, int y) {
if (false)

return INT_MAX;
if (false)

return INT_MIN;
return x + y;

}

int saturating_add(int x, int y) {
return x + y;

}

“Or better still, to:”

Full marks, compiler

The Compiler’s “Thought Process”

19

C Compiler Fuzzing
Blackbox Fuzzing Greybox Fuzzing Whitebox Fuzzing

Highly successful,
but starting to saturate

Limited success,
finding mostly front-end bugs

None
available

20

Blackbox C Compiler Testing

Hundreds of crash and miscompilation bugs found in GCC,
LLVM by several effective blackbox fuzzers

EMI Orange

21

Csmith has found hundreds of bugs in
GCC and LLVM

Csmith team won Most Influential
PLDI 2011 Paper Award (at PLDI 2021)

22

Compilers Have Become Immune to Csmith

Similar story for other compiler fuzzing tools

John Regehr
(Csmith research

group lead) in 2019:

23

• Csmith introduces constraints for
UB-free program generation

• Example: avoid UB related to division
in zero via “safe math” wrappers

Csmith and Undefined Behaviour

!/# # == 0 ? ! ∶ !/#
Unsafe
division

Safe division
wrapper

24

Imposed Constraints

25

• Generated programs never contains
certain expressions/ statements, e.g.
a naked addition of signed integers

• As a result, some code optimisations
never trigger!

• New fuzzer? Compilers not yet immune
to it but takes long time to develop!

• Can we relax the constraints imposed by
existing fuzzers and find more bugs?

CsmithEdge: Be Less Conservative

• Get closer to the edge of the language semantic by being less conservative

about undefined behaviour

• Modify Csmith to create more interesting programs by weakening the constraints
related to UB avoidance

1) Weaken generation constraints

2) Remove unnecessary safe math wrappers

• The more diverse relaxed programs can be used directly to find crashes
• To find miscompilations, we use sanitizers to detect any UB introduced

Weaken Generation Constraints
These constraints guard against

• Use a set of probabilities to decide separately per generated program:
(1) A subset of constraints to weaken
(2) The probability with each constraint type is weakened

• Example:
• Allow null pointer deference 10% of the time and
• Allow array out-of-bound accesses 25% of the time

Dangling
pointers

Null pointer
dereference

Out-of-bound
accesses

Uninitialised
accesses …

27

Remove Unnecessary Safe Math Wrappers

CsmithEdge’s dynamic analysis detects and replaces unnecessary safe math wrappers
with the corresponding arithmetic operator

Relax arithmetic
checks

28

int main(){
const long ONE = 1L;
long y = 0L;
long x = ((long) (ONE || (y = 1L)) % 8L);
printf("x = %ld, y = %ld\n", x, y);

}

CsmithEdge Evaluation in the Wild

• 9 bugs, 7 previously unknown (5 fixed) + 2 independently reported:
• 7 in GCC, 1 in LLVM, 1 in Visual Studio,
• And several bugs in older compiler versions
• All bugs were out-of-reach for Csmith

• Each bug required a different subset of relaxations to be discovered

Applied the tool regularly during development:

29

Bug: violation of the short-circuiting rule
Buggy compiler version incorrectly evaluates

second operand to || and prints 1

Required a naked %

C Compiler Fuzzing
Blackbox Fuzzing Greybox Fuzzing

?

Whitebox Fuzzing

Highly successful,
but starting to saturate

Limited success,
finding mostly front-end bugs

None
available

31

Greybox Fuzzing and Compiler Testing

• Greybox fuzzing highly successful for testing general software
• E.g., Google found ~9k vulnerabilities and 28K bugs in 850 projects
• More agile than blackbox fuzzing: lacking feedback, the latter saturates

• Why are standard greybox fuzzing tools ineffective for compiler testing?
• Byte-level mutations likely to result in invalid programs!
• Would only exercise the front-end

32

Greybox Fuzzing and Compiler Testing
• Mutation-based testing approaches (sometimes including coverage

guidance) successful for dynamic languages
• Dynamic languages more tolerant to code mutations (i.e. mutations less likely to result in

invalid programs)
• Front-end bugs often as valuable in the context of web security
• LangFuzz (JavaScript/PHP), Superion (JavaScript), Nautilus (JavaScript, Lua, PHP, Ruby)

• Attempts for static languages include keyword dictionaries, protobuf
descriptions of PL structure, regular expressions for common PL patterns
• Still produce a high rate of invalid programs
• Clang-Proto-Fuzzer: “Bugs are being fixed too slow (if at all)”
• No-fuss Compiler Fuzzing: "code that crashes a C or C++ compiler, but that includes

extensive undefined behaviour may well be ignored by developers”

33

GrayC
• Greybox fuzzing for testing compilers for C,

representative of languages with lots of UB

• Pronounced “Grace”, in honor of compiler pioneer
Grace Hopper

• Key idea: semantic-aware mutations which
• Operate at the level of ASTs
• Can both modify individual programs or combine

existing ones
• Have a configurable level of aggressiveness

(likelihood of generating valid programs)
• Uses LibFuzzer as the underlying greybox fuzzing

engine 34

Smithsonian Institution - Flickr: Grace
Hopper and UNIVAC, CC BY 2.0

GrayC Mutators: Examples
• Duplicate a statement, delete a statement, delete a sub-expression,

change the type of an expression

• Combine the body of a function with another function with the same
number of arguments, either by concatenating bodies or interleaving
their statements.

35

Example:
Mutating Individual Programs

typedef struct {
unsigned w[3];

} Y;
Y arr[32];
int main() {

int i=0;
unsigned x=0;
for (i=0; i<32; ++i)

arr[i].w[1]=i == 1;
for (i=0; i<32; ++i)

x+=arr[1].w[1];
if (x!=32)

abort();
return 0;

}

typedef struct {
unsigned w[3];

} Y;
Y arr[32];
int main() {

int i=0;
unsigned x=0;
for (i=0; i<32; ++i)
for (i=0; i<32; ++i)

x+=arr[1].w[1];
if (x!=32)

abort();
return 0;

}

typedef struct {
unsigned w[3];

} Y;
Y arr[32];
int main() {

int i=0;
unsigned x=0;
for (i=0; i<32; ++i)
for (i=0; i<32; ++i)

x+=arr[1].w[1];
x+=arr[1].w[1];
if (x!=32)

abort();
return 0;

}
36

Delete
statement

Duplicate
statement

Example: Combining Programs
Combine the body of a function with another function with the same number
of arguments, either by concatenating bodies or interleaving their statements

int dest_func(int x_dest, int y_dest) {
int b_dest = x_dest * y_dest;
b_dest = b_dest + 5;
return b_dest;

}

int src_func(int j_src, int k_src){
int m_src = j_src + k_src;
return m_src;

}
+

int dest_func(int x_dest, int y_dest) {
int j_src = x_dest; int k_src = x_dest;
int m_src = j_src + k_src;
int b_dest = x_dest * y_dest;
b_dest = b_dest + 5;
return b_dest;

}

Initialize variables corresponding to the src
function to the args of dest function

Interleave statements from src function

Randomly select return from src or dest

37

GrayC Aggresiveness
•Grayc has two modes:
•Conservative mode
•Aggressive mode

•Conservative mode has extra checks to ensure
program validity, e.g.:
•Change integer type to another integer type
•Never replace array index with negative
constant
•Combine only functions with matching
parameter types
•etc.

38

GrayC Evaluation in the Wild

39
29 Bugs

GrayC Bugs: Compiler Component

40
29 Bugs

GrayC Controlled Experiments
1) GrayC-Aggressive

2) GrayC-Conservative

3) GrayC-No-Cov-Guidance

4) GrayC-Fragments-Fuzzing

5) Clang-Fuzzer

6) Csmith

7) Grammarinator

8) PolyGlot

9) RegExpMutator

4124h per tool, 10 repetitions

Default GrayC

Do the extra checks have an impact?

Does coverage guidance matter?

Only code fragments injection, no coverage (similar to LangFuzz)

Greybox fuzzing with byte-level mutations

Grammar-based fuzzing

Grammar-based fuzzing (ANTLR C grammar)

Language-agnostic AFL-based fuzzer, based on semantic error fixing

LibFuzzer-based fuzzer based that uses regexp-based mutations

Throughput & Static Validity

42

Middle-End Coverage in LLVM

43

Bugs Found

44

Conservative vs Aggressive Mode

• Not enforcing strict checks to maximize validity seems to be better

• Two possible explanations

1) Some restrictions not needed and lead to less diverse programs
• Similar to the Csmith vs CsmithEdge story

2) Some bugs and extra coverage triggered by ”almost valid” programs

45

Conservative vs Aggressive Mode

• Valid programs needed for finding miscompilations and contributing test
cases to compilers’ regression suites

• We contributed 30 test cases to LLVM’s test suite with 23 already accepted

46

CsmithEdge
• Blackbox compiler fuzzers tend to

saturate over time

• One key limitation of existing compiler
fuzzers is that they produced overly
restrictive programs

• Relaxing these restrictions can extend
their reach

• CsmithEdge found 9 new bugs, all of
which were out-of-reach for Csmith

GrayC
• Greybox compiler fuzzing for languages

with extensive UB is feasible

• Key idea is to use AST-level semantics-
aware mutations

• GrayC found 29 bugs (26 fixed), with 24
previously unknown (22 fixed)

• Significant gains in terms of bug-finding
& coverage compare to prior work

• We used GrayC to contribute 30 test
cases (23 accepted) to the LLVM
compiler

