
Structure Resilience in Greybox Fuzzing via 
Automated Error Recovery

Bachir Bendrissou

Imperial College London

Supervisors: Cristian Cadar, Alastair Donaldson

ASE2024 Doctoral Symposium



Critical Role of Software Testing

2

Rising
Complexity

Automated 
Testing & CI

Risk
Mitigation



Aa&aaa!a

0xffffffff

`select * from table

Fuzz Testing (Fuzzing)

3



Main Challenges

1. Test inputs must satisfy input constraints

2. Should exercise a variety of code paths in core program logic

4



Input Processing Pipeline

5



State of the Art

1. Mutation-based fuzzing: 

diverse tests, but invalid

2. Grammar-based fuzzing: 

valid tests, but uniform
Structure 

Aware 
Fuzzers

Validity

Diversity

Byte-Level 
Fuzzers

6



State of the Art: American Fuzzy Lop (AFL)

7



Proposed Solution: AFLRepair

8



Automatic Error Recovery

1. Originally used to report programming errors and 
suggest fixes

2. Search-based approach 

3. Highly precise and efficient

9



Automatic Error Recovery

“Insert Short, Insert <id>”

10



Structure 
Aware 

Fuzzers

Validity

Diversity

The Differentiating Factor

AFLRepairByte-Level 
Fuzzers

Produce highly diverse test 
cases while maintaining 
structure validity

11



Setup:
- Systems under test: cJSON, Lua
- Tools: AFL, AFL+GM, AFLRepair

Results:
- Lua crash found by AFLRepair
- Crashing Input:

12

Preliminary Experiment



13

Evaluation Plan: Systems Under Test

Program Language LOC

Lua Lua 15 k

LuaJIT lua 50 k

Ruby Ruby 768k

V8 JavaScript 1.5M

WAMR WebAssembly 170K



14

Evaluation Plan: Tools

1. Nautilus: Generates and mutates inputs using a grammar

2. Nautilus+AFLRepair: Imports Nautilus inputs as seed 

corpus, and performs AFLRepair mutations



Conclusion

❖ Greybox fuzzing is a scalable and effective approach at finding 

software vulnerabilities

❖ The challenge is to ensure input diversity and validity

❖ AFLRepair can achieve both simultaneously

❖ The research capitalizes on current advances in the field

15



Thank you

16


