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Critical Role of Software Testing
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Main Challenges

1. Test inputs must satisfy input constraints

2. Should exercise a variety of code paths in core program logic
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Input Processing Pipeline
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State of the Art

1. Mutation-based fuzzing: 

diverse tests, but invalid

2. Grammar-based fuzzing: 

valid tests, but uniform
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State of the Art: American Fuzzy Lop (AFL)
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Proposed Solution: AFLRepair
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Automatic Error Recovery

1. Originally used to report programming errors and 
suggest fixes

2. Search-based approach 

3. Highly precise and efficient
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Automatic Error Recovery

“Insert Short, Insert <id>”
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AFLRepairByte-Level 
Fuzzers

Produce highly diverse test 
cases while maintaining 
structure validity
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Setup:
- Systems under test: cJSON, Lua
- Tools: AFL, AFL+GM, AFLRepair

Results:
- Lua crash found by AFLRepair
- Crashing Input:
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Preliminary Experiment
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Evaluation Plan: Systems Under Test

Program Language LOC

Lua Lua 15 k

LuaJIT lua 50 k

Ruby Ruby 768k

V8 JavaScript 1.5M

WAMR WebAssembly 170K
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Evaluation Plan: Tools

1. Nautilus: Generates and mutates inputs using a grammar

2. Nautilus+AFLRepair: Imports Nautilus inputs as seed 

corpus, and performs AFLRepair mutations



Conclusion

❖ Greybox fuzzing is a scalable and effective approach at finding 

software vulnerabilities

❖ The challenge is to ensure input diversity and validity

❖ AFLRepair can achieve both simultaneously

❖ The research capitalizes on current advances in the field
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Thank you
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