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Complexity

• Complexity of code

• Complexity of specification

• Complexity of verification process

• Difficulty of evolving the system
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Performance

Features
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Donald Knuth -- Notes on Priority Deques, 1977
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OpenSSH

sigsegv_handler(){

   cut_rope();

}

John Regehr’s 
Piano Test for 
Program VerificationVerified

AFL KLEE
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Assumptions

• Formalisation/model of code is correct
• Model-based verification, incorrect specifications

• Programming language semantics are correctly encoded
• Including subtle issues such as undefined, unspecified and implementation-defined behaviour

• Compiler, linker, operating system etc. are correct
• Source-level verification

• Environment behaves in a certain way
• E.g., input format, reliable network, unlimited resources

• Software obeys mathematical rules
• E.g.,  n + 1 > n  or     n + x ≠ n, for x ≠ 0

• Verification tools are correct
• Large complex systems, sometimes even closed-source
• Machine-checked proofs not always available

• etc.
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Assumptions

• Every method, formal or informal, makes assumptions

• We should do a better job documenting them

• Could take some inspiration from threat models of security research
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Verification

When the Software is Correct…
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>>  Testing



Verification

“Software is likely correct” “Software is likely buggy”

When the Software is Buggy…
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vs

≈  Testing
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Testing Verification

Manual
Testing

Formal 
Verification
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Fuzzing

Greybox
Fuzzing

Dynamic 
Symbolic
Execution

Sound Static 
Analysis

Model
Checking

Presence
of Bugs

Absence 
of Bugs
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Low(er) Effort High(er) Effort



Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:

• Bug finding
• Test generation

• Vulnerability detection and 
exploitation

• Equivalence checking
• Debugging 

• Program repair
• Bounded verification
• etc. etc.
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Dynamic Symbolic Execution in Practice

• Introduced in the 70s, revived mid-2000 by the DART and EGT projects

• Significant interest in the last few years

• Many dynamic symbolic execution/concolic tools available as open-source:
• KLEE, CREST, SPF, FuzzBall, Angr, SymCC, etc.

• Started to be explored and adopted by industry:
• Microsoft, Fujitsu, Hitachi, Bloomberg, Intel, Google, NASA, Samsung, Baidu, etc. 

• SAGE from Microsoft found 1/3 of file fuzzing bugs during development of  Win 7

• KLEE widely used in both academia and industry
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Popular dynamic symbolic executor primarily developed and maintained at Imperial 
Academic impact:
• ACM SIGOPS Hall of Fame Award and ACM CCS Test of Time Award
• 3.5K+ citations to original KLEE paper (OSDI 2008)
• From many different research communities: testing, verification, systems, software 

engineering, programming languages, security, etc.
• Many different systems using KLEE: AEG, Angelix , BugRedux , Cloud9, GKLEE, KleeNet, 

KLEE-UC, S2E, SemFix, etc.
Growing impact in industry:

• Baidu: [KLEE 2018], Fujitsu: [PPoPP 2012], [CAV 2013], [ICST 2015], [IEEE Software 
2017], [KLEE 2018], Google: [2x KLEE 2021], Hitachi: [CPSNA 2014], [ISPA 2015],  
[EUC 2016], [KLEE 2021], Intel: [WOOT 2015], NASA Ames: [NFM 2014], Samsung: 
[2x KLEE 2018], Trail of Bits [https://blog.trailofbits.com/], etc.

Active user and developer base with 100+ contributors listed on GitHub, 500+ forks, 2500+ 
stars, 400+ mailing list subscribers, 400+ participants to KLEE Workshops, etc.

https://klee-se.org/

https://github.com/klee/
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Dynamic Symbolic Execution
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int foo(unsigned x) {
   int r = x + 1;

   if (x > 10)
       r = 2 * r;

   if (x > 5)
       r = r - 24;

   return x / r;
}

x > 5
x  5x > 5

TRUE FALSE

Infeasible
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2(x+1) – 24 = 0?

x = 11

(x+1) – 24 = 0? x+1 = 0?

[x = 23?] [x = UINT_MAX?]

No div 0 No div 0



Dynamic Symbolic Execution
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FALSE

int foo(unsigned x) {
   int r = x + 1;

   if (x > 10)
       r = 2 * r;

   if (x > 5)
       r = r - 12;

   return x / r;
}

x > 5
x  2x > 5

TRUE FALSE

Infeasible
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2(x+1) – 12 = 0? (x+1) – 12 = 0? x+1 = 0?

[x = 11?]

No div 0 No div 0

[x = 5?]
x = 2147483653
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Dynamic Symbolic Execution

• Systematically explores unique 
control-flow paths

• No control-flow abstraction

• No false positives
• theory and practice!

• Efficiently solving lots of 
constraints

• Path explosion, particularly 
in the presence of loops

• Reasons about all possible 
values on each explored path

• Per-path verification

Key advantages: Key challenges:

A path with 1 iteration through the loop 

≠ 
A path with 2 iteration through the loop



Merging Paths 
[with P. Collingbourne and P. Kelly]

if (a > b)
 max = a;
else max = b;
 

a > b

a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
 max = a;
else max = b;
 

Path merging (via phi-node folding, when no side effects)

max = select(a>b, a, b)
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for (i=0; i < N; i++) {
 if (a[i] > b[i])
  max[i] = a[i];
 else max[i] = b[i];
}
 

• Default:  2N paths

• Path merging: 1 path

Path merging Outsourcing problem 

to constraint solver
≡
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SIMD Optimizations

Most processors offer support for 
SIMD instructions

• Can operate on multiple data 
concurrently

• Many algorithms can make use of them 
(e.g., computer vision algorithms)
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OpenCV

Popular computer vision 
library from Intel and 
Willow Garage 

[Corner detection algorithm]

Computer vision 
algorithms were 
optimized to make 
use of SIMD
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OpenCV: Correctness of SIMD Optimisations

• Crosschecked 51 SIMD-optimized versions against their reference scalar 
implementations

• DSE with aggressive path merging

• Verified the correctness of 41 of them up to a certain image size 

• Bounded verification

• Found mismatches in the other 10

• Most mismatches due to tricky FP-related issues: 
precision, rounding, associativity, distributivity, NaN values
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Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) → always returns false if one  
                            of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN),  100) = min(NaN, 100) = 100
min(5, min(NaN, 100))  = min(5, 100) = 5
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OpenCV: Correctness of SIMD Optimisations



● Strings are everywhere

● String operations usually involve loops

● Lots of work from SMT community on building string solvers
● E.g., Z3, CVC4, HAMPI

● Can we use them for dynamic symbolic execution?
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Loop Summaries
[with T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky]



Problem

Developers often use custom loops instead of string functions

#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p;
for (p = line; p && *p && whitespace (*p); p++)
  ;

char *p = path + strlen (path);
for (; *p != '/' && p != path; p--)

  ;

while (*s != '\n’) 
    s++;

while (('␣' == *pbeg) || ('\r' == *pbeg) 
   || ('\n' == *pbeg) || ('\t' == *pbeg))    
   pbeg++;



Solution

Replace custom loops with sequence of primitive pointer operations and 
calls to standard string functions
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#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p = line + strspn(line, "␣\t")

p = strrchr(path, '/’); 

p = p == NULL ? path : p;

s = rawmemchr(s, '\n');

pbeg += strspn(pbeg, "␣\r\n\t");



Scope: Memoryless Loops

● Loops conforming to an interface:
○ Argument: single pointer to a string
○ Returns: pointer to an offset in the string

● Only reads the character under current pointer

● For memoryless loops:
○ Equivalence for lengths ≤ 3 implies 

equivalence for any length
○ Intuitively the proof depends on the fact 

that each iteration is independent from 
previous ones
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Vocabulary for Summarising String Loops

string.h functions

● strspn
● strcspn
● memchr
● strchr
● strrchr
● strpbrk

conditionals

● is null
● is start

pointer manipulation

● increment
● set to start
● set to end

special

● backward traverse
● return
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char *p = line + strspn(line, "␣\t")

STRSPN ␣\t \0 RETURN

Loop summary 37

for (char* p = line; 
     *p && (*p == ‘␣’ ||  *p == ‘\t’); 
     p++) ;

size_t strspn(const char *s, const char *charset);

“computes the string array index of the first character of s which is not in 
charset”



Interpreter for Loop Summaries

● Loop summary has  meaning in 
an interpreter()

● Adding a new vocabulary item as 
simple as adding a new case

#define STRSPN ‘P’
#define RETUNR ‘F’

char* interpreter(char* input) {
char *result = input;

while(token = nextToken())
switch(token)

case STRSPN:
result += strspn(result,

nextData());
case RETURN:

return result;
}
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Find sequences of character 
tokens that when executed by 
our interpreter have the same 
behaviour as the original loop

Loop summarization: 



Counterexample Guided Synthesis

Synthesizer Verifier

Loop to 
summarize

Done

Success

Fail - generate counterexample

Generate a sequence of tokens
 fitting all counterexamples
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● Dynamic symbolic execution

● Symbolic input: sequence of tokens

● Constrain it to be equivalent on 
current (counter)examples

● Ask an SMT solver for a solution

● Dynamic symbolic execution

● Symbolic input: strings of length ≤ 3

● Exhaustively check that the original 
loop is equivalent to the interpreted 
loop summary

40

Synthesizer Verifier



Synthesis Evaluation

● 13 open source programs

● Extracted 115 memoryless loops

● 88/115 successfully 
synthesized within 2h*

● 81 within 5 minutes

*Gaussian process optimization to optimize 
the vocabulary

diff

make

m4

patch
libosip

41
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Impact of string solvers (KLEE+Z3str) on DSE
Average across loops, 2min timeout

Can reason 
about 
unbounded 
string lengths



Refactoring

● Used summaries to create patches and send them to developers
● Submitted patches to 5 applications
● Patches accepted in libosip, patch and wget

- for(; *tmp == ' ' || *tmp == '\t'; tmp++){

- }

- for(; *tmp == '\n' || *tmp == '\r'; tmp++){

- }                         /* skip LWS */

+ tmp += strspn(tmp, " \t");

+ tmp += strspn(tmp, "\n\r");

43



Dynamic Symbolic Execution

• DSE offers a middle ground b/w testing and verification

• DSE systematically explores paths through the code

• As in testing, no false positives, but only some paths are explored

• Exhaustive path exploration → verification

• As in testing, concrete inputs (best bug reports!) can be produced 

• But unlike testing, DSE reasons about all possible values on a path: 
per-path verification

• DSE has already been successfully used for bounded verification in 
combination with path merging/code summarisation

• Open challenges include:
• the right trade-off b/w individual path exploration and summarization
• reasoning about unbounded inputs
• combining DSE with other testing and verification techniques
• applying DSE to new types of verification scenarios 

(particularly interested in patch verification!)
44
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Testing and Verification
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• What parts of the software should be verified and 
what parts tested?
• What are the partial guarantees in each case?
• Under what assumptions?
• Can one control the FP/FN ratio?

• Can testing/verif. handle fast evolving software?
• Can I test/verify software changes quickly?

• Does the testing/verification approach integrate 
well with existing development practices?
• How hard is to use the testing/verif. system?
• What is the annotation/specif. writing effort?
• Does it enhance/complement/hinder the 

existing development practices?
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