
Dynamic Symbolic Execution:
Between Testing and Verification

Cristian Cadar

Keynote @ VSTTE’24
Prague, Czechia, 14 October 2024Image credits: Powerpoint, Bing, jackmac34, Gam-Ol, Walkerssk @ Pixabay

Funded by

3

VERIFIED

SOFTWARE

Binutils

VERIFIED

SOFTWARE

Complexity

• Complexity of code

• Complexity of specification

• Complexity of verification process

• Difficulty of evolving the system

7

Performance

Features

VERIFIED

SOFTWARE
VERIFIED

SOFTWARE

VERIFIED

SOFTWARE

Donald Knuth -- Notes on Priority Deques, 1977

8

OpenSSH

sigsegv_handler(){

 cut_rope();

}

John Regehr’s
Piano Test for
Program VerificationVerified

AFL KLEE

9

Assumptions

• Formalisation/model of code is correct
• Model-based verification, incorrect specifications

• Programming language semantics are correctly encoded
• Including subtle issues such as undefined, unspecified and implementation-defined behaviour

• Compiler, linker, operating system etc. are correct
• Source-level verification

• Environment behaves in a certain way
• E.g., input format, reliable network, unlimited resources

• Software obeys mathematical rules
• E.g., n + 1 > n or n + x ≠ n, for x ≠ 0

• Verification tools are correct
• Large complex systems, sometimes even closed-source
• Machine-checked proofs not always available

• etc.

10

13

. . .

. . .

Assumptions

• Every method, formal or informal, makes assumptions

• We should do a better job documenting them

• Could take some inspiration from threat models of security research

14

Verification

When the Software is Correct…

15

>> Testing

Verification

“Software is likely correct” “Software is likely buggy”

When the Software is Buggy…

16

vs

≈ Testing

17

Testing Verification

Manual
Testing

Formal
Verification

Blackbox
Fuzzing

Greybox
Fuzzing

Dynamic
Symbolic
Execution

Sound Static
Analysis

Model
Checking

Presence
of Bugs

Absence
of Bugs

.

Low(er) Effort High(er) Effort

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:

• Bug finding
• Test generation

• Vulnerability detection and
exploitation

• Equivalence checking
• Debugging

• Program repair
• Bounded verification
• etc. etc.

18

Dynamic Symbolic Execution in Practice

• Introduced in the 70s, revived mid-2000 by the DART and EGT projects

• Significant interest in the last few years

• Many dynamic symbolic execution/concolic tools available as open-source:
• KLEE, CREST, SPF, FuzzBall, Angr, SymCC, etc.

• Started to be explored and adopted by industry:
• Microsoft, Fujitsu, Hitachi, Bloomberg, Intel, Google, NASA, Samsung, Baidu, etc.

• SAGE from Microsoft found 1/3 of file fuzzing bugs during development of Win 7

• KLEE widely used in both academia and industry

19

Popular dynamic symbolic executor primarily developed and maintained at Imperial
Academic impact:
• ACM SIGOPS Hall of Fame Award and ACM CCS Test of Time Award
• 3.5K+ citations to original KLEE paper (OSDI 2008)
• From many different research communities: testing, verification, systems, software

engineering, programming languages, security, etc.
• Many different systems using KLEE: AEG, Angelix , BugRedux , Cloud9, GKLEE, KleeNet,

KLEE-UC, S2E, SemFix, etc.
Growing impact in industry:

• Baidu: [KLEE 2018], Fujitsu: [PPoPP 2012], [CAV 2013], [ICST 2015], [IEEE Software
2017], [KLEE 2018], Google: [2x KLEE 2021], Hitachi: [CPSNA 2014], [ISPA 2015],
[EUC 2016], [KLEE 2021], Intel: [WOOT 2015], NASA Ames: [NFM 2014], Samsung:
[2x KLEE 2018], Trail of Bits [https://blog.trailofbits.com/], etc.

Active user and developer base with 100+ contributors listed on GitHub, 500+ forks, 2500+
stars, 400+ mailing list subscribers, 400+ participants to KLEE Workshops, etc.

https://klee-se.org/

https://github.com/klee/

20

21

Dynamic Symbolic Execution

x > 5

x > 10

x > 10 x 10

x 5x > 5

x

TRUE

TRUE FALSE

FALSE

int foo(unsigned x) {
 int r = x + 1;

 if (x > 10)
 r = 2 * r;

 if (x > 5)
 r = r - 24;

 return x / r;
}

x > 5
x 5x > 5

TRUE FALSE

Infeasible

22

2(x+1) – 24 = 0?

x = 11

(x+1) – 24 = 0? x+1 = 0?

[x = 23?] [x = UINT_MAX?]

No div 0 No div 0

Dynamic Symbolic Execution

x > 5

x > 10

x > 10 x 10

x 5x > 5

x

TRUE

TRUE FALSE

FALSE

int foo(unsigned x) {
 int r = x + 1;

 if (x > 10)
 r = 2 * r;

 if (x > 5)
 r = r - 12;

 return x / r;
}

x > 5
x 2x > 5

TRUE FALSE

Infeasible

23

2(x+1) – 12 = 0? (x+1) – 12 = 0? x+1 = 0?

[x = 11?]

No div 0 No div 0

[x = 5?]
x = 2147483653

24

Dynamic Symbolic Execution

• Systematically explores unique
control-flow paths

• No control-flow abstraction

• No false positives
• theory and practice!

• Efficiently solving lots of
constraints

• Path explosion, particularly
in the presence of loops

• Reasons about all possible
values on each explored path

• Per-path verification

Key advantages: Key challenges:

A path with 1 iteration through the loop

≠
A path with 2 iteration through the loop

Merging Paths
[with P. Collingbourne and P. Kelly]

if (a > b)
 max = a;
else max = b;

a > b

a > b a ≤ b

max = a

TRUE FALSE

max = b

Default behaviour

if (a > b)
 max = a;
else max = b;

Path merging (via phi-node folding, when no side effects)

max = select(a>b, a, b)

25

for (i=0; i < N; i++) {
 if (a[i] > b[i])
 max[i] = a[i];
 else max[i] = b[i];
}

• Default: 2N paths

• Path merging: 1 path

Path merging Outsourcing problem

to constraint solver
≡

26

Merging Paths

SIMD Optimizations

Most processors offer support for
SIMD instructions

• Can operate on multiple data
concurrently

• Many algorithms can make use of them
(e.g., computer vision algorithms)

27

OpenCV

Popular computer vision
library from Intel and
Willow Garage

[Corner detection algorithm]

Computer vision
algorithms were
optimized to make
use of SIMD

28

OpenCV: Correctness of SIMD Optimisations

• Crosschecked 51 SIMD-optimized versions against their reference scalar
implementations

• DSE with aggressive path merging

• Verified the correctness of 41 of them up to a certain image size

• Bounded verification

• Found mismatches in the other 10

• Most mismatches due to tricky FP-related issues:
precision, rounding, associativity, distributivity, NaN values

29

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) → always returns false if one
 of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

30

OpenCV: Correctness of SIMD Optimisations

● Strings are everywhere

● String operations usually involve loops

● Lots of work from SMT community on building string solvers
● E.g., Z3, CVC4, HAMPI

● Can we use them for dynamic symbolic execution?

32

Loop Summaries
[with T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky]

Problem

Developers often use custom loops instead of string functions

#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p;
for (p = line; p && *p && whitespace (*p); p++)
 ;

char *p = path + strlen (path);
for (; *p != '/' && p != path; p--)

 ;

while (*s != '\n’)
 s++;

while (('␣' == *pbeg) || ('\r' == *pbeg)
 || ('\n' == *pbeg) || ('\t' == *pbeg))
 pbeg++;

Solution

Replace custom loops with sequence of primitive pointer operations and
calls to standard string functions

34

#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p = line + strspn(line, "␣\t")

p = strrchr(path, '/’);

p = p == NULL ? path : p;

s = rawmemchr(s, '\n');

pbeg += strspn(pbeg, "␣\r\n\t");

Scope: Memoryless Loops

● Loops conforming to an interface:
○ Argument: single pointer to a string
○ Returns: pointer to an offset in the string

● Only reads the character under current pointer

● For memoryless loops:
○ Equivalence for lengths ≤ 3 implies

equivalence for any length
○ Intuitively the proof depends on the fact

that each iteration is independent from
previous ones

35

Vocabulary for Summarising String Loops

string.h functions

● strspn
● strcspn
● memchr
● strchr
● strrchr
● strpbrk

conditionals

● is null
● is start

pointer manipulation

● increment
● set to start
● set to end

special

● backward traverse
● return

36

char *p = line + strspn(line, "␣\t")

STRSPN ␣\t \0 RETURN

Loop summary 37

for (char* p = line;
 *p && (*p == ‘␣’ || *p == ‘\t’);
 p++) ;

size_t strspn(const char *s, const char *charset);

“computes the string array index of the first character of s which is not in
charset”

Interpreter for Loop Summaries

● Loop summary has meaning in
an interpreter()

● Adding a new vocabulary item as
simple as adding a new case

#define STRSPN ‘P’
#define RETUNR ‘F’

char* interpreter(char* input) {
char *result = input;

while(token = nextToken())
switch(token)

case STRSPN:
result += strspn(result,

nextData());
case RETURN:

return result;
}

38

Find sequences of character
tokens that when executed by
our interpreter have the same
behaviour as the original loop

Loop summarization:

Counterexample Guided Synthesis

Synthesizer Verifier

Loop to
summarize

Done

Success

Fail - generate counterexample

Generate a sequence of tokens
 fitting all counterexamples

39

● Dynamic symbolic execution

● Symbolic input: sequence of tokens

● Constrain it to be equivalent on
current (counter)examples

● Ask an SMT solver for a solution

● Dynamic symbolic execution

● Symbolic input: strings of length ≤ 3

● Exhaustively check that the original
loop is equivalent to the interpreted
loop summary

40

Synthesizer Verifier

Synthesis Evaluation

● 13 open source programs

● Extracted 115 memoryless loops

● 88/115 successfully
synthesized within 2h*

● 81 within 5 minutes

*Gaussian process optimization to optimize
the vocabulary

diff

make

m4

patch
libosip

41

42

Impact of string solvers (KLEE+Z3str) on DSE
Average across loops, 2min timeout

Can reason
about
unbounded
string lengths

Refactoring

● Used summaries to create patches and send them to developers
● Submitted patches to 5 applications
● Patches accepted in libosip, patch and wget

- for(; *tmp == ' ' || *tmp == '\t'; tmp++){

- }

- for(; *tmp == '\n' || *tmp == '\r'; tmp++){

- } /* skip LWS */

+ tmp += strspn(tmp, " \t");

+ tmp += strspn(tmp, "\n\r");

43

Dynamic Symbolic Execution

• DSE offers a middle ground b/w testing and verification

• DSE systematically explores paths through the code

• As in testing, no false positives, but only some paths are explored

• Exhaustive path exploration → verification

• As in testing, concrete inputs (best bug reports!) can be produced

• But unlike testing, DSE reasons about all possible values on a path:
per-path verification

• DSE has already been successfully used for bounded verification in
combination with path merging/code summarisation

• Open challenges include:
• the right trade-off b/w individual path exploration and summarization
• reasoning about unbounded inputs
• combining DSE with other testing and verification techniques
• applying DSE to new types of verification scenarios

(particularly interested in patch verification!)
44

44

Testing and Verification

45

• What parts of the software should be verified and
what parts tested?
• What are the partial guarantees in each case?
• Under what assumptions?
• Can one control the FP/FN ratio?

• Can testing/verif. handle fast evolving software?
• Can I test/verify software changes quickly?

• Does the testing/verification approach integrate
well with existing development practices?
• How hard is to use the testing/verif. system?
• What is the annotation/specif. writing effort?
• Does it enhance/complement/hinder the

existing development practices?

	Default Section
	Slide 1

	Formal Verification
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Complexity
	Slide 7
	Slide 8
	Slide 9: John Regehr’s Piano Test for Program Verification
	Slide 10: Assumptions
	Slide 13
	Slide 14: Assumptions
	Slide 15: When the Software is Correct…
	Slide 16: When the Software is Buggy…
	Slide 17

	Dynamc Symbolic Execution
	Slide 18: Dynamic Symbolic Execution (DSE)
	Slide 19: Dynamic Symbolic Execution in Practice
	Slide 20
	Slide 21
	Slide 22: Dynamic Symbolic Execution
	Slide 23: Dynamic Symbolic Execution
	Slide 24: Dynamic Symbolic Execution

	Static Path Merging
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	String Loop Summaries
	Slide 32: Loop Summaries [with T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky]
	Slide 33: Problem
	Slide 34: Solution
	Slide 35: Scope: Memoryless Loops
	Slide 36: Vocabulary for Summarising String Loops
	Slide 37
	Slide 38: Interpreter for Loop Summaries
	Slide 39: Counterexample Guided Synthesis
	Slide 40
	Slide 41: Synthesis Evaluation
	Slide 42: Impact of string solvers (KLEE+Z3str) on DSE Average across loops, 2min timeout
	Slide 43: Refactoring
	Slide 44: Dynamic Symbolic Execution
	Slide 45: Testing and Verification

