
Three Colours of Fuzzing:
Reflections and Open Challenges

Cris%an Cadar

Keynote @ FUZZING 2023
Seattle, USA, 17 July 2023

Image credits: aitoff, jackmac34, Gam-
Ol, JessBaileyDesign, No-longer-here,
Walkerssk @ Pixabay, Powerpoint

2005

2

2020

2022

2023

3

KLEE
 Open-source tool widely used in both research and industry
Microsoft SAGE
 Found one-third of file fuzzing bugs during development of Windows 7

AFL
 Revolutionary greybox fuzzer with a long list of trophies
Google’s OSS-Fuzz
 Fuzzing platform for OSS, found 8K+ vulnerabilities and 28K+ bugs in 850+ projects

Csmith and EMI
 Compiler fuzzers, discovered hundreds of bugs in mature compilers like GCC & LLVM
SQLancer
 DBMS fuzzer, found 400+ bugs in popular DBMS like SQLite & PostgreSQL

5

ISSTA 2014

• 6 popular open-source systems
• Analysed 250 revisions per app
• Conclusion: LOTS of code added or

modified without being tested

A decade later: Have things changed?
Tom Bailey, C.C., WiP

7

3–14 years of development/project
200–1900 code revisions/project

8

Code increases of
2.5K – 33K LOC,

24% – 268%

ELOC/time
+5K LOC

+8K LOC

+6.5K LOC

+33K LOC +7.5K LOC +8.5K LOC

+22K LOC

+21K LOC

+2.5K LOC

+41%

+32%

+26%

+43% +38% +268%

+130%

+24%

+48%

9

10

Coverage increases by 2.8 – 22.7pp
It decreases in Redis by 9.2pp

Coverage
Evolution

+3.7pp +13.1pp
+3.3pp

+2.8pp

+16.4pp
+1.8pp

-9.2pp +22.7pp
+10.7pp

Line coverage

Branch coverage
10

11

Patch
Coverage

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ
11

Can Fuzzers
Help?

YES, BUT…

13

Not Agile Enough

• Most techniques focus on whole-program testing (it’s easier!)
• Most of our benchmark suites measure global metrics (bugs, coverage)
• Good progress on patch testing techniques, but results still poor overall

Software patch
- if (value)
- {
- initial = value;
- value = 0;
- }
- else
- initial = 1;
+ initial = (lhs_specified ?
value : 1);
+ value = 0;

Patch
Testing •1

test67

test1

test4

test3

test44

test4

test55
test4

test34

test4

test10
test42

test33

test13
test4

test41

test14

test9

test40

BUGS

PATCH
COVERAGE

BEHAVIORAL
DIFFERENCES

14

CIFuzz
• CI version of OSS-Fuzz: 10 minutes/patch
• Runs only the fuzzers that reached the changed files

Great initiative, but would love to see similar
reports, trophies & community attention as for OSS-Fuzz

*Thanks to Jonathan Metzman for answering my CIFuzz questions

According to http://cifuzz.appspot.com/, 7 July 2023 (dashboard active only for a limited time)

15

Not Fast Enough
24h too long for patch testing

Reusing previous analysis results

Targeted explora4on

Targeted exploration

Reusing previous analysis results
Running only the fuzzers that

reached the changed files (CIFuzz)

16

Not Automated Enough

APPLICATION OSS-FUZZ
APR
BINUTILS
CURL
GIT
LIGHTTPD
MEMCACHED
REDIS
VIM
ZEROMQ

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023
17

https://introspector.oss-fuzz.com/

Not Automated Enough

APPLICATION OSS-FUZZ COVERAGE
APR
BINUTILS 35.31%
CURL 5.05%
GIT
LIGHTTPD 34.58%
MEMCACHED
REDIS
VIM
ZEROMQ

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023
18

https://introspector.oss-fuzz.com/

Not Automated Enough

APPLICATION OSS-FUZZ COVERAGE FUZZ TARGETS
APR
BINUTILS 35.31% 26
CURL 5.05% 20
GIT
LIGHTTPD 34.58% 1
MEMCACHED
REDIS
VIM
ZEROMQ

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023
19

https://introspector.oss-fuzz.com/

Papers on improving fuzzing heuristics Papers on test driver generation

20

Improving Test Suites with Fuzzing?

0%

20%

40%

60%

80%

100%

1 12 23 34 45 56 67 78 89

GNU Coreutils: ls, mkdir, echo, sort, …
Overall: 84%, Average 91%, Median 95%

16 at 100%

Apps sorted by KLEE coverage

Co
ve

ra
ge

 (E
LO

C
%

)

21

9

-20%

0%

20%

40%

60%

80%

100%
KL

EE
 c

ov
er

ag
e

–
M

an
ua

l c
ov

er
ag

e Avg/utility
KLEE 91%

Manual 68%

Apps sorted by KLEE coverage – Manual coverage

Manual tests do much more!

Improving Test Suites with Fuzzing?

22

Value of Test Cases

23

. . .

Quality assurance

Documentation

Debugging Aid

Test Suites:
Desired Properties

24

Fast

High Code Coverage

High Feature Coverage

Small

Well-documented

A good test suite performs a
combination of code-based &

specification-based testing

Readable

. . .

• In recent work, we contributed fuzzer-generated tests to the LLVM
test suite (16/24 tests accepted)
• Main challenge: oracles and input minimisation

Improving Test Suites with Fuzzing?

ISSTA 2023, Wed @ 14:30, Fuzzing 2 session
25

Input MinimisationOracles

26

Oracles

• Generic/crash bugs in general software (main focus in grey- and whitebox fuzzing)
• Logical bugs in software for specific domains (main focus in blackbox fuzzing)

Logical bugs in general code?
What is the sweet spot?

“One fuzzing researcher of particular note is Manuel Rigger
[…] Most fuzzers only look for assertion faults, crashes,
undefined behavior (UB), or other easily detected
anomalies. Dr. Rigger's fuzzers, on the other hand, are able
to find cases where SQLite computes an incorrect answer.”

– SQLite webpage

Manual tests are (typically) written with good functional oracles
Fuzzer-generated tests:

27

Patch Specifications
Specifications encoding cross-patch properties

assert(out == out_prev + 1)

32

We need a way to make the state of both versions available to the analyser

Product Programs

A mechanism for merging multiple program versions into a single program
Used to reason about hyperproperties in a security context

• Particularly non-interference
• Product program of program P with itself

1) Can product programs work for multiple versions of a program?
2) Can they be constructed automatically for large programs?
3) Can they facilitate the writing of patch specifications?

G. Barthe, J. M. Crespo, C. Kunz, “Relational verification using product programs”
Proc. of the 17th International Symposium on Formal Methods (FM’11)

33

Example

x_prev = y_prev – 1;

x = y - 1;

z_prev = x_prev / 4;

z = x >> 2;

x = y - 1;

z = x / 4;

x = y - 1;

z = x >> 2;

Previous version Current version

Product program

34

assert(z == z_prev);

Preliminary Experience

• We wrote patch specs for several patches from CoreBench
• CoreBench: a collection of complex real-world patches from popular OSS
• We constructed test drivers around the functions involved in patches
• We used AFL++ and KLEE to look for violations of the patch specs

M. Böhme and A. Roychoudhury, “CoREBench: Studying complexity of regression errors”,
In Proc. of the Interna>onal Symposium on So?ware Tes>ng and Analysis (ISSTA’14)

35

static char * make_link_name (char const *name,
 char const *linkname);

make_link_name(”A/B/f.txt", "g.txt") = ”A/B/g.txt"

“Do not hard-code ’/’. Use IS_ABSOLUTE_FILE_NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

36

Patch in ls

 if (*linkname == '/')
 return xstrdup (linkname);

 char const *linkbuf = strrchr (name, '/’);
 if (linkbuf == NULL)

 return xstrdup (linkname);

 size_t bufsiz = linkbuf - name + 1;
 char *p = xmalloc (bufsiz + strlen (linkname) + 1);

 strncpy (p, name, bufsiz);
 strcpy (p + bufsiz, linkname);

 return p;

 if (IS_ABSOLUTE_FILE_NAME (linkname))
 return xstrdup (linkname);

 size_t prefix_len = dir_len (name);
 if (prefix_len == 0)

 return xstrdup (linkname);

 char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
 stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

 return p;

assert(strcmp(p, p_prev) == 0);

AFL++ and KLEE
both find a spec
violation:
 name = /a
 linkname = x

Bug made it into a
release, was reported
by a user and fixed

37

Patch in ls

 if (*linkname == '/')
 return xstrdup (linkname);

 char const *linkbuf = strrchr (name, '/’);
 if (linkbuf == NULL)

 return xstrdup (linkname);

 size_t bufsiz = linkbuf - name + 1;
 char *p = xmalloc (bufsiz + strlen (linkname) + 1);

 strncpy (p, name, bufsiz);
 strcpy (p + bufsiz, linkname);

 return p;

 if (IS_ABSOLUTE_FILE_NAME (linkname))
 return xstrdup (linkname);

 size_t prefix_len = dir_len (name);
 if (prefix_len == 0)

 return xstrdup (linkname);

 char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
 stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

 return p;

assert(strcmp(p, p_prev) == 0);

38

Code patch to
fix reported bug

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
 stpcpy (stpncpy (p, name, prefix_len), linkname);

AFL++ and KLEE
find new spec
violation:
 name = /x//y
 linkname = a

Patch in ls

 if (*linkname == '/')
 return xstrdup (linkname);

 char const *linkbuf = strrchr (name, '/’);
 if (linkbuf == NULL)

 return xstrdup (linkname);

 size_t bufsiz = linkbuf - name + 1;
 char *p = xmalloc (bufsiz + strlen (linkname) + 1);

 strncpy (p, name, bufsiz);
 strcpy (p + bufsiz, linkname);

 return p;

 if (IS_ABSOLUTE_FILE_NAME (linkname))
 return xstrdup (linkname);

 size_t prefix_len = dir_len (name);
 if (prefix_len == 0)

 return xstrdup (linkname);

 char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
 stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

 return p;

39

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
 stpcpy (stpncpy (p, name, prefix_len), linkname);

Patch in ls
No more spec
violations found
is path-based
equality is used

assert(patheq(p, p_prev) == 0);

Input MinimisationOracles

40

Automated Bug Finding
WITHOUT Any Input Generation

> 230K files 11 Linux readers
(+8 for Windows)

Bug
Reports

41

Examples: Chrome and Firefox Bugs

42

Plenty of inputs that matter: real-world, human-created

Oracle challenge
• Detecting meaningful cross-reader inconsistencies

Too many bugs
• 2% of docs crash at least one reader
• 13% of docs trigger inconsistencies

Too large inputs (documents)

Automated Bug Finding
WITHOUT Any Input Generation

43

PDF Domain: Solutions

• Ignore inconsistencies imperceptible to the human eye: we
use CW-SSIM algorithm
• Cluster documents based on warnings and errors emitted by

the readers
• Minimise documents based on delta debugging at the level of

PDF objects

Evince Chromium

44

Fuzzing and the Bystander Effect
Success or Failure?

“xmlsec is integrated with OSS-Fuzz and is continuously fuzzed with the latest
libxml2 code from the master branch. So your tests offer very little on top of that.”

– libxml2 developer, listing one reason for not accepting some test contributions

Should developers rely on fuzzers to replace test suites?

Ongoing project with Ahmed Zaki and Arindam Sharma

46

Fuzzing is about finding bugs
…but our objective should be to improve software

Key challenge: Better integration of fuzzing into development process
• Automatically generate test drivers / fuzz targets
• Using fuzzing in an incremental fashion
• Generating inputs that trigger different behaviours across versions
• Using fuzzing to enhance test suites
• Moving beyond crash bugs
• . . .

Three Colours of Fuzzing:
Reflections and Open Challenges

47

