Program Analysis for Safe and Secure
Software Evolution

Cristian Cadar

(@D sorTwARE RELIABILITY Imperial College

GROUP London

Imperial Global Singapore
Singapore, 28 November 2024

By Fuzzypiggy, Wikipedia

uopuoaba|jo) reladw| @

1 SOFTWARE RELIABILITY
Imperial College et
LOndOn http://srg.doc.ic.ac.uk

Current and recent members

Anastasios Frank Busse Manuel Karine Even- Martin
Andronidis Carrasco Mendoza Nowack
Cristian -
Cadar

Jordy Ruiz Daniel Arindam Bachir Ahmed Zaki
Schemmel Sharma Bendrissou 3

Jiangxiang, Wikipedia

National University
of Singapore

lepe)d uensud ©

s

| [BbL Dot

(244

. —
-
: - -
-
- -
-
» -
= . e -
o .

)

AT

| _lnt' .
- ! o 2
AR L
.
1 - 5 . 5 2
. e WS - o -t . a = o -
T - - - e — - - %
P TR . wat— g r .
. “w - = — i
- CT A S = - o L e 1 2
; NI e CE
s R » — o e 1y sopcty - »
- e e e A - 3 2 B .='Ii - ol
» . v - . e
i mw 9k —" A .
<o
P - s a5 S ‘
= g T T I > s
V

————- —_— \J
vomenme s - N‘

. Imperial Global Singapore f'm.". T

(ﬁm\\\‘fzi’___" T

......... R

Collaborating with partners in Singapore to deliver
ground-breaking research and innovation to
address global issues.

!

|

) 2 % % =

> - —— . 4 e - :

- : | s 5 >

- - -g‘ ¥ — - 'g. * .’ > -¢J =
> = - — - - .
& £ " k3 = o . < S :
i . “ R —— s e = = = ‘
< —3 P - s B s
S—— b = =2 ez, U pde t e
-~ - == o

l
|

l@‘ Updated software is available for this computer. Do you want
N to install it now?

~ Details of updates

Install or remove Download
& Other updates 195.3 MB
& Google Chrome 112.5 MB

> B @ Settings (14) 8.7 MB
'] Anopenand reliable container runtime 29.5 MB

[| C++interface to the Clang library 14.7 MB

£ Modular compiler and toolchain technologies, runtime li... 29.8 MB

] Tool to Format C/C++/Obj-C code 97 kB

AVAILABLE UPDATES

Microsoft Windows (38)

[8=| Security Update for Microsoft Windows (KB5044273)
ez U pdate for Microsoft Windows (KBE5044020)

[5=] Servicing Stack 10.0.19041.4950

[5=] Servicing Stack 10.0.19041.4892

[5=] Servicing Stack 10.0.19041.4769

[8=] Servicing Stack 10.0.19041.4585

[8=] Servicing Stack 10.0.19041.4467

[8=] Servicing Stack 10.0.19041.4351

[8=] Servicing Stack 10.0.19041.4289
Mozl Servicina Stack 10.0.19041 4163

macOS Sequoia 15.1 Upgrade Now

AN
)
Update All @ ﬁ 15.1 — 6.73 GB

.) macOS Sequoia introduces new features to help you be more productive and
c Microsoft PowerPoint Update creative on Mac. With the latest Continuity feature, iPhone Mirroring, you can
Yesterday access your entire iPhone on Mac. It's easy to tile windows to quickly create your
ideal workspace, and you can even see what you're about to share while presenting

- Bug fixes more

with Presenter preview. A big update to Safari includes Distraction Control, making
it easy to get things done while you browse the web. macOS Sequoia also brings

text effects and emoji Tapbacks to Messages, Maths Notes to Calculator, and so

much more.
Microsoft To Do

Yesterday Update

Some features may not be available in all regions or on all Apple devices.

For information on the security content of Apple software updates, please visit this
website: https://support.apple.com/100100

We fixed some bugs to improve the app

experience. more More Info

Evolving Software

« Code changes are poorly validated and often introduce bugs & vulnerabilities

« Some with catastrophic impact

Channel
File 291
Incident

Heartbleed Shellshock Stagefright Crowdstrike
(2014) (2014) (2016) (2024)

CoVRIG: A Framework for the Analysis
of Code, Test, and Coverage Evolution
in Real Software

Paul Marinescu, Petr Hosek, Cristian Cadar
Department of Computing
Imperial College London, UK

{p.marinescu,p.hosek,c.cadar}@imperial.ac.uk

ISSTA 2014

* 6 popular open-source systems
* Analysed 250 revisions per app

e Conclusion: LOTS of code added or
modified without being tested

A decade later: Have things changed?
Tom Bailey, Cristian Cadar
[To be published]

APR -

Binutils -

Curl -

Git -

Lighttpd?2 -

Memcached -

Redis A

Vim -

ZeroMQ A

Legacy data for original Covrig paper (250 commits)

3—-14 years of development/project
78 development years in total

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

APR

18000 A -
w
170001 +5K ELOC
16000 - (V)
o +41%
@ 15000 - =
14000 - __,..-’
13000 -
e
0 100 200 300 400
Revision
Git
110000 p
1050001 : 433K ELO
100000 4 +43%
§ 95000 -
* 900007 ”~
85000 - /
80000 - /
0 500 1000 1500 2000 2500
Revision
Redis
40000 4]
37500 { 4
350001 : 429K ELO?
32500
& 30000 - +130% -~
9 275001 P4
250001 ‘/
225004 :
20000 /
17500 4

0 500 1000 1500 2000 2500

Revision

Binutils
33000 - ;"
320001 p:
310001 /
o 300004 : .
(@] :
o 29000 -
28000 -
291 / +8K ELOC
26000 1 +32%
25000 - , : ,
0 500 1000 1500
Revision
Lighttpd2
27000 - ? .
2| +7-5KELOC _
25000 - :
+38%_f"‘?
L 24000 - :
3 s
I 23000 - -~
22000 -
21000 - —
20000 4o :
0 100 200 300
Revision
Vim
107500 -
105000 -
102500 -
100000 -
(@]
% 97500 A
95000 | +21K ELOC
92500 - +24%
90000 -
87500 4
0 500 1000 1500 2000 2500
Revision

Curl
32000
20001 +6,5K ELOC / |
30000
+26% ,
§ 29000 P
“ 28000 - - 7
27000 - -
26000
0 500 1000 1500 2000 2500
Revision
Memcached
12000 A ; g
11000 :
1000 | +8.5K ELOC~
9000 - +268%, »
Q 8000 A : .
7000 - ' /"‘"
6000 - 5
5000 / " o
4000 A VE
3000 i 1 1
0 200 400 600 800
Revision
ZeroMQ
7500 - P
00| +2.5K ELOC”
w -
o/ %
Les0] +48% .
S
u-l -
6000 - ”
~
5500 - -~ °
|
5000 | : '
0 100 200
Revision

ELOC/time

Code increases of
2.5K - 33K ELOC,
24% — 268%

10

APR Binutils Curl

100 + Line Coverage 100 . + Line Coverage 100 + Line Coverage
* Branch Coverage % Branch Coverage 3 3ppx Branch Coverage
+5.
80 80 - 80
R +3.7pp) +13.1pp = _—
5 5 S - -
S 60 T E— 60 - % 60 | gt ~
2 g g [= ~
Coverage L e
2 40 A 2 40 2 404
o .t . O o
" * x ———-)
E | t. 20 1) 20 ﬁ"" 201 * . .
VOIUTION
0 100 200 300 400 0 500 1000 1500 0 500 1000 1500 2000 2500
Revision Revision Revision
Git Lighttpd2 Memcached
100 . + Line Coverage 100 + Line Coverage 100 . + Line Coverage
® Branch Coverage x B;an(hCqurage +1.8pp ¥ Branch Coverage
80 == P < 80 - : 80 :
;—r{ = +16.4pp st e
£ 6o ’ £ 60+ : £ 60- W
[\7) -, v . @ ®
& : - 2 TR :
. g 401 +2 8pp . g 40'4-—."""“-‘ - g 40 1 :
Coverage increases by 2.8 — 22.7pp ° | TE ?]
. . 20{ i x K 20 - {1 20- L
It decreases in Redis by 9.2pp ' .
D T T T T 0 T T - T 0 T - T T T
0 500 1000 1500 2000 2500 0 100 200 300 0 200 400 600 800
Revision Revision Revision
Redis Vim ZeroMQ
100 . + Line Coverage 100 + Line Coverage 100 + Line Coverage
: ® Branch Coverage * Branch Coverage

| +10.7pp

%1 1-9.2pp 1 +22.7pp %0 e
= : = A - w0
% 60 -M_“ % 60 - / % g0 =T
S a0 i+ LAY § a0 2 A0 e it
L. @} : 2 ih.i]] :
Ine coverage o T~ by . . .
x - .

ne
*®

=== Branch coverage i

T T T T 0 T T T T 0 T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 100 200

Revision Revision Revision

Patch
Coverage

Bl 100%

B (75%, 100%)
3 (50%, 75%])
B (25%, 50%]
B (0%, 25%]
B 0%

100 -

60 A

20 A

Patch Coverage across projects (revs that introduce executable lines)

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ .

Can Program Analysis Tools Help?

Dafny(f

Clang Static Analyzer A F I_ ++

Designed for whole program testing

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

PLDI 2011

Revolutionary tool for finding compiler bugs, incl. miscompilations

Found hundreds of bugs in compilers such as Clang and GCC

John Regehr
@johnregehr

I hadn't run Csmith for a while and it turns out LLVM is
now amazingly resistant to it, ran a million tests
overnight without finding a crash or miscompile

5:59 pm - 1 Jun 2019 - Twitter Web App

6 Retweets 64 Likes

17

5 oss-fuzz

AFL++
Massive deployment | . i Fuzzing campaigns take a day (clock time)
of greybox fuzzing IIbFuzzer Reporting a bug can also take a day
Honggfuzz

Trophies

As of August 2023, OSS-Fuzz has helped identify and fix over 10,000 vulnerabilities and 36,000 bugs across 1,000
projects.

19

Whole-Program Fuzzing
l.e. Fuzzing from Scratch

Expensive and wasteful

* Lots of wasteful repetition across versions

* Same bugs found over and over again, with the need for deduplication
* New bugs are often missed with patch sometimes not even reached
* Bugs reported with significant delay: expensive context switching

Developers need feedback within minutes of patch submission
Quick directed fuzzing campaigns required in a Cl/CD context

Testing Evolving Software

Reuse testing results

of previous versions

Direct testing effort

toward the changes

21

Greybox Fuzzing:
Coverage-quided Mutation-based Fuzzing

Input Queue
Img
<a><b Pick input Mutate
<X><Y></X><[y> <X><y></z>a<ly>
23F@fe @H#$FCe ‘ <X><y></X><[y> ‘ <X ></y><x><[y>
<p>AbC <X S>S<WW></X></y
>

22

Greybox Fuzzing:
Coverage-quided Mutation-based Fuzzing

Input Queue

Img
Pick input
<a><b IcK Inpu Mutate <X><y><[z>a<ly>

<p>AbC K> IX><ly>
<X><y></z>a<ly>

If new coverage, add to queue

23

AFLGo:
State-of-the-Art Directed Greybox Fuzzing

* AFLGo is a pioneering tool for directed greybox fuzzing
* |t extends traditional fuzzing by targeting specific code areas
* Computes distance estimates to prioritize inputs close to the target

v

v

l
.~ - * Butdistance computation can be expensive
= . Fuzzing budget may be exhausted before any fuzzing is done

=

lr\‘

Directed Greybox Fuzzing

Marcel Bohme Van-Thuan Pham*

National University of Singapore, Singapore National University of Singapore, Singapore
marcel.boehme@acm.org thuanpv@comp.nus.edu.sg
Manh-Dung Nguyen Abhik Roychoudhury

National University of Singapore, Singapore National University of Singapore, Singapore

dungnguy@comp.nus.edu.sg abhik@comp.nus.edu.sg

PaZZER = Patch + Fuzzer

* Designed to be practical for short CI/CD runs I M P E R I A L

* Aims to find a sweet spot between time spent in
distance computation and effectiveness

* Relies on less precise but quick distance I
estimates (using only the call graph) o g e

* Computes distances incrementally
(LPA*, Anytime-D¥*)

26

Pazzer Case Study

ObjDump (>0.5 million LOC)
CVE-2018-8392

Time-to-Exposure (TTE)

AFLGo

Distance

Fuzzing

Total

34 min

4 min

38 min

Pazzer (non-incremental)

Distance

Fuzzing

Total

<3 min

<5 min

7 min

Pazzer (incremental)

Distance

Fuzzing

Total

14 sec

<5 min

5 min

27

Effective Fuzzing within CI/CD Pipelines (Registered Report)

Arindam Sharma Cristian Cadar Jonathan Metzman
Imperial College London Imperial College London Google
United Kingdom United Kingdom USA
arindam.sharma@imperial.ac.uk c.cadar@imperial.ac.uk metzman@google.com
Secti I Registered Papers ‘)
l Sections Journal Special Issue on Fuzzing:

_ . What about Preregistration?
Preregistration Model:

° Com mon in Other ﬁeldS, SUCh as mediCine co-authored by Marcel Bohme (Monash University), Laszlo Szekeres (Google),
Registered report = paper minus evaluation results At Ray (Cotumbia tniversity, Cristian Cadar (mpendt Colese bondon)
Judged based on idea, preliminary results & planned evaluation methodology

If the registered report is accepted, the full paper is accepted if the methodology is followed

On the author side:
* Avoids overclaims and (inadvertend) p-hacking
* Avoids duplicated efforts when results are poor and allows useful negative results to be published
* Early feedback, before expensive experiments are run, can be more easily incorporated

On the reviewing side:
* Avoids confirmation bias, where reviewers are more likely to favour results confirming their own view
* Avoids results bias, where reviewers give more consideration to positive or surprising results

28

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:
* Bug finding
* Test generation

Vulnerability detection and
exploitation

Equivalence checking
Debugging

Program repair
Bounded verification
etc. etc.

From Symbolic Execution
to Dynamic Symbolic Execution

« Symbolic execution introduced in the 70s
* Revived mid-2000 in its “dynamic” form by the DART and EGT projects
* Significant interest in the last few years

* Many dynamic symbolic execution tools available:
* KLEE, CREST, SPF, S2E, Mayhem, FuzzBall, Angr, SymCC, PEX, Otter, SymJS,
PyExZ3, Manticore, Triton, SymEx-VP, Owi, Symbooglix, SymDroid, Kite, etc.
e Started to be explored and adopted by industry:
* Fujitsu, Microsoft, Hitachi, Bloomberg, Intel, NASA, Samsung, Huawei, Baidu, etc.
* Microsoft’s SAGE found 1/3 of file fuzzing bugs during development of Win 7

V4 https://klee-se.org/
https://github.com/klee/

Popular dynamic symbolic executor primarily developed
and maintained at Imperial

Works at the LLVM level: C (full support), C++, Rust

Active user and developer base:
* 100+ contributors to KLEE and its subprojects

400+ mailing list subscribers
600+ forks

2500+ stars
400+ participants across the first four KLEE workshops

L%

KILEE

FINDING BUGS WITH STYLE

31

KLEE WorkShOp 2024 Program ~ Attending Call for Contributions ~ Organisation Sponsors Series ~ W

4th International KLEE Workshop on Symbolic Execution
15-16 April 2024 e Lisbon, Portugal ® Co-located with ICSE 2024

/ https://klee-se.org/
https://github.com/klee/

Academic impact: Growing impact in industry:
* ACM SIGOPS Hall of Fame Award e Baidu: [KLEE 2018]

and ACM CCS Testof Time Award ., g\ iitsu: [PPoPP 2012], [CAV 2013],
* Over 4,500 citations to original KLEE [1CST 20151, [IEEE Software 2017],

paper (OSDI 2008) [KLEE 2018]

* From many different research * Google: [2x KLEE 2021]
communities: testing, verification, | Hitachi: [CPSNA 2014], [ISPA 2015],
systems, software engineering, [EUC 2016], [KLEE 2021]

PL, security, etc.

M diff svst s KLEE * Intel: [WOOQOT 2015]
* Many different systems using L .
AEG, Angelix , BugRedux , Cloud9, NASA Ames: [NFM 2014]
GKLEE, KleeNet, KLEE-UC, S2E, « Samsung: 2 x [KLEE 2018], [KLEE 2024]

SemrFix, etc. * Trail of Bits [blog.trailofbits.com/]
* etc.

Dynamic Symbolic Execution

X

int foo(unsigned x) { /K
intr=x+1; —— \wy -

x>10 x<10

-9 % ..
r=2 r. TRUE

FALSE TRUE FALSE
. X>5 x<5
if (x>D) X>5 X<5

r=r-24; ®

/ ' - Infeasible 2 8
} refurn x / r, 2(x+1) — 24 = 0? (x+1) — 24 = 0? x+1 = 0?

x=11 [x = 237] [x = UINT_MAX?]

Dynamic Symbolic Execution

Key advantages: Key challenges:
e Systematically explores e Efficiently solving lots of
unique control-flow paths constraints
* Produces test cases e Path explosion, particularly
" in the presence of loops
* No false positives

* Reasons about all possible
values on each explored path

* Per-path verification

DSE for Evolving Software
Direct DSE Effort Toward the Change

1. Use distance estimates to favour paths close to the change
2. Prune paths unrelated to the change

37

KATCH = KLEE + PATCH

e Similar in spirit to AFLGo and Pazzer
e But KATCH was published earlier

* Use distance estimates to guide path exploration

KATCH: High-Coverage Testing of Software Patches

Paul Dan Marinescu Cristian Cadar
Department of Computing Department of Computing
Imperial College London, UK Imperial College London, UK
p.marinescu@imperial.ac.uk c.cadar@imperial.ac.uk

38

KATCH

Input

L

Program \
ﬁ
Patch L

{ log error write(srv,
FILE LINE nsm,

’

test, & . test
4 St test, . - i t,
. tag) n ot
test, test, test, fes(test,

Initial inputs

1. Select input closest to the
patch (or partially covering it)

39

KATCH

Input

L

Program \

2. Greedily drive exploration
toward uncovered basic
blocks In the patch using
distance estimates

40

KATCH

Input

L

Program \

3. If stuck, 1dentify the constraints
that disallow execution to reach
the patch, and backtrack

41

KATCH

Input

L

Program \

Combines dynamic symbolic execution
with various program analyses such as
weakest preconditions for input
selection, and definition switching for
backtracking

42

Developers’' Patch Testing

Uncovered

FindUtils:

125 patches

(o)
over 26m 63%

100%

DiffUtils: Uncovered

175 patches
over 30m

0% 35%

100%

Uncovered

BinUtils:

181 patches

0,
over 16m 0% 18%

Patch Coverage (basic block level)

100%

43

KATCH Patch Testing

FindUtils:

125 patches
over 26m

DiffUtils:

175 patches
over 30m

BinUtils:

181 patches
over 16m

0%

0

18%

63% 87% 100%

+ KATCH ’Uncovered 10min/BB
35% 73% 100%

+K ' Uncovered 15min/BB
33% 100%

14 distinct crash bugs
(12 still present and fixed, 10 related to patches)

—

44

Prune Search Space Unrelated to Patch

main
* Many code fragments are unrelated

to the patch

e But DSE can spend lots of time
unnecessarily analyzing them

e Determining precisely if a part of
the code is unrelated is hard

e Often, most computation in a code
fragment is unrelated, but not all

patch

46

Chopped Symbolic Execution

IDEA:
1) Guess unrelated code fragments via lightweight analysis
2) Compute the side effects of these code fragments (write set)

3) Speculatively skip these code fragments
4) If their side effects are ever needed, go back and execute relevant skipped paths

Chopped Symbolic Execution

David Trabish Andrea Mattavelli Noam Rinetzky Cristian Cadar
Tel Aviv University Imperial College London Tel Aviv University Imperial College London
Israel United Kingdom Israel United Kingdom

davivtra@post.tau.ac.il amattave@imperial.ac.uk maon(@cs.tau.ac.il c.cadar@imperial.ac.uk

Preliminary Experience:
Reproducing Security Vulnerabilities

Goal: given vulnerable location, generate an
input that triggers the vulnerability
* Time limit: 24 hours

Benchmark: GNU libtasnl

e ASN.1 protocol used in many networking and
cryptographic applications, such as for public
key certificates and e-mail

address = optimizer.optimizeExpr(address, true);
StatePair zeroPointer = fork(state, Expr::createIsZero(address), true);
if (zeroPointer.first) {
if (target)
bindLocal(target, *zeroPointer.first, Expr::createPointer(0));
}

if (zeroPointer.second) { // address != ©
ExactResolutionList rl;
resolveExact(*zeroPointer.second, address, rl, "free");

for (Executor::ExactResolutionList::iterator it = rl.begin(),
ie = rl.end(); it != ie; ++it) {
const MemoryObject *mo = it->first.first;
if (mo->isLocal) {
terminateStateOnError(*it->second, "free of alloca", F
getAddressInfo(*it->second, add
} else if (mo->isGlobal) {
terminateStateOnError(*it->second, "free of glob
getAddressInfo(*it->seco
} else {
it->second->addressSpace.unbindObject(mo) ;
if (target)
bindLocal(target, *it->second, Expg
}

}
}
}

void Executor: :resolveExact (Exeg

p = optimizer.optimizeExpr(p, trd
// XXX we may want to be capping t
ResolutionList rl;
state.addressSpace.resolve(state, sol

ExecutionState *unbound = &state;
for (ResolutionList::iterator it = rl.begin(), ie = rl.end();
it != ie; ++it) {
ref<Expr> inBounds = EqExpr::create(p, it->first->getBaseExpr());

StatePair branches = fork(*unbound, inBounds, true);

if (branches.first)
results.push_back(std: :make_pair(*it, branches.first));

unbound = branches.second;
if (lunbound) // Fork failure
break;

61

Reproducing Security Vulnerabillities

160 TIMEOUT (24h) TIMEOUT (24h) OUT OF MEMORY

m KLEE ® Chopper
140
[random path search]
120
100

CVE-2014-3467 (1) CVE-2014-3467 (2) CVE-2015-2806 CVE-2014-3467 (3) CVE-2015-3622 CVE-2012-1569

L L Over 43k recoveries!

No recoveries!

Minutes
N D @)} o0
o o o (@]

o

Testing Evolving Software

Start directly from the changed code!
E.g., construct fuzz drivers for any changed function
So far, mostly a manual process!

CHALLENGES
* |nitialising state
e Constructing (complex) data structures

e Calling APIs in the right order
* Checking the result is correct (test oracle)

Direct testing effort

toward the changes

63

OSS-Fuzz and Fuzz Targets

APPLICATION OSS-FUZZ COVERAGE FUZZ TARGETS
APR

32.21% 26
21.67% 17
10. 68% 11
35.39% 1

BINUTILS
CURL

GIT

LIGHTTPD
MEMCACHED
REDIS

VIM
ZEROMQ

SRR

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 27 November 2024

https://introspector.oss-fuzz.com/

Rebot developer =\
\'Q/\ f"\”"'r‘i ﬂ'l"‘l“"l“"“': 43

|
: iv)'nl/l
pnea

s gl praisl)

(ghiifs) S G

mmmnnm.mm(lmwaml,'s | "J L

ol o ol A zmm;(;mmwnfdnul]

a8 i A

{ rrnﬂ‘f‘wm’om spariasard!) Q}
T .mlra:)yvﬂl,]. 4

¢
ITIJ;‘vlf’

mfiﬂmknraummﬂln,,
i Qrmmiar paadobti

ﬂnmﬂml th

paon? g

3 a .‘Miﬂnnl.;-uh\imﬂn 1 (AL "
‘ R .‘-‘mm\umnumn. [, 0> il e ruunmmm\ A
d) -

G

Language \

[} {lﬂr,{\',.t

Models >

G oss-fuzz-gen

A Framework for Fuzz Target Generation and Evaluation

This framework generates fuzz targets for real-world C / C++/Java/Python projects with various Large Language
Models (LLM) and benchmarks them via the 0SS-Fuzz platform.

Inputs:

* Guidance about the task

* Target function’s signature and source code

 Header files are available in the target project
 Examples of cross-references that use the target function

Taken from https://github.com/google/oss-fuzz-gen

o~

Hi, please write a fuzz harness for me.

The target project is
https://github.com/memononen/
nanosvg which is a open source project
written in C. [...]

| would like for you to write the harness
targeting the function

NSVGimage * nsvgParse (char *,
const char *, float).

[...]

w2 oss-fuzz-gen

Example cross reference from function

NSVGimage * nsvgParseFromFile(const char *, const char
* float) [...] is:

NSVGimage* nsvgParseFromFile (const char*
filename, const char* units, float dpi) {

1f (fread(data, 1, size, fp) != size)
goto error;

data[size] = '"\0’; // Must be null terminated.
fclose (fp) ;

image = nsvgParse (data, units, dpi);

G oss-fuzz-gen

int LLVMFuzzerTestOnelInput (const uint8 t *data, size t size)
// Prepare input data
char* input = (char*)malloc(size + 1);
memcpy (input, data, size);
input[size] = '\0'; // Must be null terminated
const char* units = "px";

float dpi = 96.0f;

// Call target function

NSVGimage* image = nsvgParse (input, units, dpi):;
// Cleanup
if (input) free (input);

if (image) nsvgDelete (image) ;

return O;

{

Ongoing and Future Work

* Provide richer usage examples! * Shift focus to library APIs

* These seem key to good fuzz * Critical pieces of infrastructure

driver generation * Unlike internal functions, they

are meant to be called directly

* Key advantage: availability of
diverse clients that provide real-
world usage examples

Ahmed Zaki and Cristian Cadar, ongoing work

16 libraries from the CCScanner database

Clients * Thousands to hundreds of thousands lines of code
* Some with thousands of APIs

300 Availability of many diverse clients!
250
200
150
100

A RITHT

0

&
<<‘<®Q‘°0 “Q«$ 0\9 ¢ Q\o‘i,@??og \'® \, @Q"" OQ“'éG?,\, > 90\}/\ QOQ .\.‘2& iv§0v§

Log scale

APIls not exercised by library test suites, but used by clients

1560

“II'II]

335 262
128

14

Key Insight:

Extract APl Usage Examples from Clients

Requirement:

Small, self-contained examples,
as independent of client code

as possible

Use program analysis to slice
out the minimum relevant

code sequence

- Fuzz Driver Generation via
Program Analysis & LLMs

key.mv size = sizeof(int);

key.mv_data = &key data;
data.mv_size = strlen(expected data);
data.mv_data =

E(mdb put(txn, dbi, &key, &data, 0));

expected data;

E(mdb txn commit (txn)) ;

// Begin a new transaction for
reading

E (mdb txn begin(env, NULL,
MDB_RDONLY, &txn)) ;

// Perform the database get operation
mdb get(txn, dbi, &key, &data);
MDB_NOTFOUND) {

rc =

if (rc
printf ("Key not found.\n");

} else {
CHECK (rc

CHECK (data.mv_size
strlen(expected data), "Data size
mismatch") ;

MDB SUCCESS, "mdb get") ;

CHECK (strncmp ((char *)data.mv _data,
expected data, data.mv_size)

, "Data content mismatch");

Patch Coverage across projects (revs that introduce executable lines)

Evolving Software Patch

Program Analysis for Safe and Secure
Coverage

SOftwa re EVO | Ut|0 n + Code changes are poorly validated and often introduce bugs & vulnerabilities

+ Some with catastrophic impact

Cristian Cadar

E 100%

Channel E (75%, 100%) ol

i =3 (50%, 75%]

@D sorTwaRE ReLiaBiLITY Imperial College Flle. 291 B3 (25%, 50%)

GROUP London Incident = (0%, 25%)
0% »]
Heartbleed Shellshock Stagefright Crowdstrike
) . (2014) (2014) (2016) (2024)
n—_— Genmrrews - e Imperial Global Singapore
e P Singapore, 28 November 2024 T

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ

/ https://klee-se.org/
https://github.com/klee/

Popular dynamic symbolic executor primarily developed
and maintained at Imperial

= KLEE
* Designed to be practical for short CI/CD runs I M P E R I A L Works atthe LLVMlevel: C (full support), G+, Rust |_KX Ej EI

FINDING BUGS WITH STYLE

Testing Evolving Software PaZZER = Patch + Fuzzer

Reuse testing results Direct testing effort

of previous versions toward the changes

* Aims to find a sweet spot between time spent in

X R . Active user and developer base:
distance computation and effectiveness P

* 100+ contributors to KLEE and its subprojects

* Relies on less precise but quick distance I o .
estimates (using only the call graph) (@) g e * 400+ mailing list subscribers
* Computes distances incrementally *+ 600+ forks
(LPA*, Anytime-D*) + 2500+ stars

* 400+ participants across the first four KLEE workshops

Preliminary Experience: e "4 - Fuzz Driver Generation via

ExactResolutionList r1;
FesolveEract(*zaropointer sacond, adoress, rl, "Fres”);

KATCH Patch Testing Reproducing Security Vulnerabilities s e <__ Program Analysis & LLMs

for (Bxpcutors ExsetasalutionL ists: ttarstor ¢ = rl.bepta(),
FLend(); 1t I= f6; st

- » ".m::ﬁl}.:,[.:: o ‘mﬂ - ces // Perform the database get operation
FIndUtIIS: lomin/BB H H st 1t Gt T — key.mv_size = sizeof(int); = mdb t (t: dbi, &k &data) ;
125 patches Goal: given vulnerable location, generate an e Y m_ i re = mdb_get (txn, dbi, &key,)i
over 26m 0% e ik 0% input that triggers the vulnerability " e key.mv_data = gkey data; if (zc == MDR_HOTFOUND) {
¢ Time |Im|t 24 hOLII'S data.mv_size = strlen (expected_d.ata) ; printf ("Key not found.\n");
3 ¢ data.mv_data = expected data; } else {
- e peoms ooy e
lz‘sle”r"’;;"‘:‘ 0% 35% 73% 100% Benchmark: GNU libtasn1 5 s E (mdb_txn_commit (txn)) ; CHECK (data.mv_size ==
. . esolutiontist] strlen (expected data), "Data size
* ASN.1 protocol used in many netwarking and E 3-'555»5- restusate, : ; " ; =
= A cryptogpraphic applications, :LICh as for pgublic Enr‘TEE:;:i:::M:g?_l\E"ilul‘- e i etin), e = rhenst)s // Begin a new transaction for m:::::s::;nmtp((char *)data.mv data
+ s - o P —— i S
?;:‘Utt'hls 5 Uncovers min key certificates and e-mail [e it () reading expected data, data.mv_size)
patches ke s = e e E (mdb_txn_begin (env, NULL, == 0, "Data content mismatch");
over 16m 18% 33% 100% T e i e, (s MDB_RDONLY, &txn)); ’
14 distinct crash bugs :5'??:@:?"77‘:;;‘:!.%

(12 still present and fixed, 10 related to patches) 43 60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Evolving Software
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14: Can Program Analysis Tools Help?
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20: Whole-Program Fuzzing i.e. Fuzzing from Scratch
	Slide 21: Testing Evolving Software
	Slide 22: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 23: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 24: AFLGo: State-of-the-Art Directed Greybox Fuzzing
	Slide 26: PaZZER = Patch + Fuzzer
	Slide 27: Pazzer Case Study
	Slide 28
	Slide 29: Dynamic Symbolic Execution (DSE)
	Slide 30: From Symbolic Execution to Dynamic Symbolic Execution
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Dynamic Symbolic Execution
	Slide 35: Dynamic Symbolic Execution
	Slide 37: DSE for Evolving Software Direct DSE Effort Toward the Change
	Slide 38: KATCH = KLEE + PATCH
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Developers’ Patch Testing
	Slide 44: KATCH Patch Testing
	Slide 46: Prune Search Space Unrelated to Patch
	Slide 47: Chopped Symbolic Execution
	Slide 61: Preliminary Experience: Reproducing Security Vulnerabilities
	Slide 62: Reproducing Security Vulnerabilities
	Slide 63: Testing Evolving Software
	Slide 64: OSS-Fuzz and Fuzz Targets
	Slide 65: Enter Large Language Models
	Slide 66: OSS-Fuzz-Gen
	Slide 67
	Slide 68
	Slide 69: Ongoing and Future Work
	Slide 70: Clients
	Slide 74
	Slide 76: Key Insight: Extract API Usage Examples from Clients
	Slide 77: Fuzz Driver Generation via Program Analysis & LLMs
	Slide 78

