
Program Analysis for Safe and Secure
Software Evolution

Cristian Cadar

Imperial Global Singapore
Singapore, 28 November 2024

Funded by

2

B
y
 F

u
z
z
y

p
ig

g
y
,

W
ik

ip
e

d
ia

@
 Im

p
e

ria
l C

o
lle

g
e

 L
o

n
d

o
n

http://srg.doc.ic.ac.uk

Karine Even-
Mendoza

Anastasios
Andronidis

Frank Busse

Cristian
Cadar

Manuel
Carrasco

Martin
Nowack

Jordy Ruiz Daniel
Schemmel

Arindam
Sharma

Bachir
Bendrissou

Ahmed Zaki

Current and recent members

3

4

@
 C

ri
s

ti
a

n
 C

a
d

a
r

J
ia

n
g

x
ia

n
g

, W
ik

ip
e

d
ia

https://www.imperial.ac.uk/about/global/singapore/

6

Evolving Software

• Code changes are poorly validated and often introduce bugs & vulnerabilities

• Some with catastrophic impact

Heartbleed

(2014)
Shellshock

(2014)

Stagefright

(2016)

Crowdstrike

(2024)

7

Channel
File 291
Incident

ISSTA 2014

• 6 popular open-source systems

• Analysed 250 revisions per app

• Conclusion: LOTS of code added or
modified without being tested

A decade later: Have things changed?
Tom Bailey, Cristian Cadar

[To be published]

8

3–14 years of development/project
78 development years in total

9

Code increases of
2.5K – 33K ELOC,

24% – 268%

ELOC/time

+5K ELOC

+8K ELOC

+6.5K ELOC

+33K ELOC +7.5K ELOC +8.5K ELOC

+22K ELOC

+21K ELOC

+2.5K ELOC

+41%

+32%

+26%

+43% +38% +268%

+130%

+24%

+48%

10

11

Coverage increases by 2.8 – 22.7pp
It decreases in Redis by 9.2pp

Coverage
Evolution

+3.7pp +13.1pp
+3.3pp

+2.8pp

+16.4pp
+1.8pp

-9.2pp +22.7pp
+10.7pp

Line coverage

Branch coverage
11

12

Patch
Coverage

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ
12

14

Can Program Analysis Tools Help?

15

AFL++Clang Static Analyzer

16

AFL++Clang Static Analyzer

Designed for whole program testing

17

Revolutionary tool for finding compiler bugs, incl. miscompilations

Found hundreds of bugs in compilers such as Clang and GCC

PLDI 2011

19

AFL++

libFuzzer

Honggfuzz

Massive deployment

of greybox fuzzing

• Fuzzing campaigns take a day (clock time)

• Reporting a bug can also take a day

Whole-Program Fuzzing
i.e. Fuzzing from Scratch

Expensive and wasteful
• Lots of wasteful repetition across versions
• Same bugs found over and over again, with the need for deduplication
• New bugs are often missed with patch sometimes not even reached
• Bugs reported with significant delay: expensive context switching

20

Developers need feedback within minutes of patch submission
Quick directed fuzzing campaigns required in a CI/CD context

Testing Evolving Software

Reuse testing results

of previous versions

Direct testing effort

toward the changes

21

Greybox Fuzzing:
Coverage-guided Mutation-based Fuzzing

Img

<a><b

<x><y></x></y>

23F@fe@#$Fce

<p>AbC

…

Input Queue

Pick input

<x><y></x></y>

Mutate
<x><y></z>a</y>

<x></y><x></y>

<x><ww></x></y

>

…

22

Img

<a><b

<x><y></x></y>

23F@fe@#$Fce

<p>AbC

<x><y></z>a</y>

…

Input Queue

Pick input

<x><y></x></y>

Mutate
<x><y></z>a</y>

<x></y><x></y>

<x><ww></x></y>

…

If new coverage, add to queue

23

Greybox Fuzzing:
Coverage-guided Mutation-based Fuzzing

AFLGo:
State-of-the-Art Directed Greybox Fuzzing

• AFLGo is a pioneering tool for directed greybox fuzzing
• It extends traditional fuzzing by targeting specific code areas
• Computes distance estimates to prioritize inputs close to the target

24

• But distance computation can be expensive
• Fuzzing budget may be exhausted before any fuzzing is done

PaZZER = Patch + Fuzzer

• Designed to be practical for short CI/CD runs
• Aims to find a sweet spot between time spent in

distance computation and effectiveness
• Relies on less precise but quick distance

estimates (using only the call graph)
• Computes distances incrementally

(LPA*, Anytime-D*)

26

Pazzer Case Study

ObjDump (>0.5 million LOC)
CVE-2018-8392

AFLGo
Distance Fuzzing Total

34 min 4 min 38 min

Time-to-Exposure (TTE)

Pazzer (non-incremental)
Distance Fuzzing Total

< 3 min < 5 min 7 min

Pazzer (incremental)
Distance Fuzzing Total

14 sec < 5 min 5 min

27

Preregistration Model:
• Common in other fields, such as medicine
• Registered report = paper minus evaluation results
• Judged based on idea, preliminary results & planned evaluation methodology
• If the registered report is accepted, the full paper is accepted if the methodology is followed
• On the author side:

• Avoids overclaims and (inadvertend) p-hacking
• Avoids duplicated efforts when results are poor and allows useful negative results to be published
• Early feedback, before expensive experiments are run, can be more easily incorporated

• On the reviewing side:
• Avoids confirmation bias, where reviewers are more likely to favour results confirming their own view
• Avoids results bias, where reviewers give more consideration to positive or surprising results

28

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:

• Bug finding
• Test generation

• Vulnerability detection and
exploitation

• Equivalence checking
• Debugging

• Program repair
• Bounded verification
• etc. etc.

29

From Symbolic Execution
to Dynamic Symbolic Execution

• Symbolic execution introduced in the 70s
• Revived mid-2000 in its “dynamic” form by the DART and EGT projects
• Significant interest in the last few years
• Many dynamic symbolic execution tools available:

• KLEE, CREST, SPF, S2E, Mayhem, FuzzBall, Angr, SymCC, PEX, Otter, SymJS,
PyExZ3, Manticore, Triton, SymEx-VP, Owi, Symbooglix, SymDroid, Kite, etc.

• Started to be explored and adopted by industry:
• Fujitsu, Microsoft, Hitachi, Bloomberg, Intel, NASA, Samsung, Huawei, Baidu, etc.
• Microsoft’s SAGE found 1/3 of file fuzzing bugs during development of Win 7

30

Popular dynamic symbolic executor primarily developed
and maintained at Imperial
Works at the LLVM level: C (full support), C++, Rust

Active user and developer base:
• 100+ contributors to KLEE and its subprojects
• 400+ mailing list subscribers
• 600+ forks
• 2500+ stars
• 400+ participants across the first four KLEE workshops

https://klee-se.org/

https://github.com/klee/

31

32

Academic impact:
• ACM SIGOPS Hall of Fame Award

and ACM CCS Test of Time Award
• Over 4,500 citations to original KLEE

paper (OSDI 2008)
• From many different research

communities: testing, verification,
systems, software engineering,
PL, security, etc.

• Many different systems using KLEE:
AEG, Angelix , BugRedux , Cloud9,
GKLEE, KleeNet, KLEE-UC, S2E,
SemFix, etc.

https://klee-se.org/

https://github.com/klee/

33

Growing impact in industry:
• Baidu: [KLEE 2018]
• Fujitsu: [PPoPP 2012], [CAV 2013],

[ICST 2015], [IEEE Software 2017],
[KLEE 2018]

• Google: [2x KLEE 2021]
• Hitachi: [CPSNA 2014], [ISPA 2015],

[EUC 2016], [KLEE 2021]
• Intel: [WOOT 2015]
• NASA Ames: [NFM 2014]
• Samsung: 2 x [KLEE 2018], [KLEE 2024]
• Trail of Bits [blog.trailofbits.com/]
• etc.

Dynamic Symbolic Execution

34

x > 5

x > 10

x > 10 x  10

x  5x > 5

x

TRUE

TRUE FALSE

FALSE

int foo(unsigned x) {
int r = x + 1;

if (x > 10)
r = 2 * r;

if (x > 5)
r = r - 24;

return x / r;
}

x > 5
x  5x > 5

TRUE FALSE

Infeasible

2(x+1) – 24 = 0?

x = 11

(x+1) – 24 = 0? x+1 = 0?

[x = 23?] [x = UINT_MAX?]

No div 0 No div 0
34

Dynamic Symbolic Execution

• Systematically explores
unique control-flow paths

• Produces test cases

• No false positives

• Efficiently solving lots of
constraints

• Path explosion, particularly
in the presence of loops

• Reasons about all possible
values on each explored path

• Per-path verification

Key advantages: Key challenges:

35

1. Use distance estimates to favour paths close to the change
2. Prune paths unrelated to the change

DSE for Evolving Software
Direct DSE Effort Toward the Change

37

• Similar in spirit to AFLGo and Pazzer
• But KATCH was published earlier

• Use distance estimates to guide path exploration

KATCH = KLEE + PATCH

38

Input

Patch
+ if (errno == ECHILD) +

{ log_error_write(srv,

__FILE__, __LINE__, "s",

”...");

+ cgi_pid_del(srv, p, p-

>cgi_pid.ptr[ndx]);

Program

1. Select input closest to the

patch (or partially covering it)

•1 test4
test1 test4

test3 test4

test4

test4

test4

test4

test4
test4 test4test4test4

test4

test4
test4

test4 test4

test4
K

A
T

C
H

39

Initial inputs

Program

Patch

2. Greedily drive exploration

toward uncovered basic

blocks in the patch using

distance estimates

K
A

T
C

H

40

Input

3. If stuck, identify the constraints

that disallow execution to reach

the patch, and backtrack

Program

Patch

K
A

T
C

H

41

Input

Combines dynamic symbolic execution

with various program analyses such as

weakest preconditions for input

selection, and definition switching for

backtracking

Program

Patch

K
A

T
C

H

42

Input

Developers’ Patch Testing

Covered Uncovered

100%63%0%

FindUtils:
125 patches

over 26m

Covered

100%0%

BinUtils:
181 patches

over 16m

Uncovered

18%

Covered Uncovered

100%35%0%

DiffUtils:
175 patches

over 30m

Patch Coverage (basic block level)

43

KATCH Patch Testing

Covered + KATCH Un

87% 100%63%0%

10min/BB

Covered + KATCH Uncovered

73% 100%35%0%

10min/BB

Cov’d

100%33%0%

+K Uncovered

18%

15min/BB

FindUtils:
125 patches

over 26m

BinUtils:
181 patches

over 16m

DiffUtils:
175 patches

over 30m

14 distinct crash bugs
(12 still present and fixed, 10 related to patches) 44

Prune Search Space Unrelated to Patch

• Many code fragments are unrelated
to the patch
• But DSE can spend lots of time

unnecessarily analyzing them

• Determining precisely if a part of
the code is unrelated is hard
• Often, most computation in a code

fragment is unrelated, but not all

main

foo

baz

zab

patch

bar

46

Chopped Symbolic Execution

IDEA:

1) Guess unrelated code fragments via lightweight analysis

2) Compute the side effects of these code fragments (write set)

3) Speculatively skip these code fragments

4) If their side effects are ever needed, go back and execute relevant skipped paths

47

Preliminary Experience:
Reproducing Security Vulnerabilities

address = optimizer.optimizeExpr(address, true);
StatePair zeroPointer = fork(state, Expr::createIsZero(address), true);
if (zeroPointer.first) {
if (target)
bindLocal(target, *zeroPointer.first, Expr::createPointer(0));

}
if (zeroPointer.second) { // address != 0
ExactResolutionList rl;
resolveExact(*zeroPointer.second, address, rl, "free");

for (Executor::ExactResolutionList::iterator it = rl.begin(),
ie = rl.end(); it != ie; ++it) {

const MemoryObject *mo = it->first.first;
if (mo->isLocal) {
terminateStateOnError(*it->second, "free of alloca", Free, NULL,

getAddressInfo(*it->second, address));
} else if (mo->isGlobal) {
terminateStateOnError(*it->second, "free of global", Free, NULL,

getAddressInfo(*it->second, address));
} else {
it->second->addressSpace.unbindObject(mo);
if (target)
bindLocal(target, *it->second, Expr::createPointer(0));

}
}

}
}

void Executor::resolveExact(ExecutionState &state,
ref<Expr> p,
ExactResolutionList &results,
const std::string &name) {

p = optimizer.optimizeExpr(p, true);
// XXX we may want to be capping this?
ResolutionList rl;
state.addressSpace.resolve(state, solver, p, rl);

ExecutionState *unbound = &state;
for (ResolutionList::iterator it = rl.begin(), ie = rl.end();

it != ie; ++it) {
ref<Expr> inBounds = EqExpr::create(p, it->first->getBaseExpr());

StatePair branches = fork(*unbound, inBounds, true);

if (branches.first)
results.push_back(std::make_pair(*it, branches.first));

unbound = branches.second;
if (!unbound) // Fork failure
break;

Goal: given vulnerable location, generate an
input that triggers the vulnerability

• Time limit: 24 hours

Benchmark: GNU libtasn1
• ASN.1 protocol used in many networking and

cryptographic applications, such as for public
key certificates and e-mail

61

Reproducing Security Vulnerabilities

0

20

40

60

80

100

120

140

160

CVE-2014-3467 (1) CVE-2014-3467 (2) CVE-2015-2806 CVE-2014-3467 (3) CVE-2015-3622 CVE-2012-1569

M
in

u
te

s

KLEE Chopper
OUT OF MEMORYTIMEOUT (24h) TIMEOUT (24h)

[random path search]

No recoveries!

Over 43k recoveries!
62

Testing Evolving Software

Direct testing effort

toward the changes

63

Start directly from the changed code!
E.g., construct fuzz drivers for any changed function
So far, mostly a manual process!

• Initialising state
• Constructing (complex) data structures
• Calling APIs in the right order
• Checking the result is correct (test oracle)

CHALLENGES

OSS-Fuzz and Fuzz Targets

APPLICATION OSS-FUZZ COVERAGE FUZZ TARGETS

APR

BINUTILS 32.21% 26

CURL 21.67% 17

GIT 10. 68% 11

LIGHTTPD 35.39% 1

MEMCACHED

REDIS

VIM

ZEROMQ

64
According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 27 November 2024

https://introspector.oss-fuzz.com/

Enter Large
Language
Models

OSS-Fuzz-Gen

Taken from https://github.com/google/oss-fuzz-gen

Inputs:

• Guidance about the task
• Target function’s signature and source code
• Header files are available in the target project
• Examples of cross-references that use the target function

Hi, please write a fuzz harness for me.

The target project is
https://github.com/memononen/

nanosvg which is a open source project
written in C. […]

I would like for you to write the harness
targeting the function
NSVGimage * nsvgParse(char *,

const char *, float).`

[…]

Example cross reference from function
NSVGimage * nsvgParseFromFile(const char *, const char
*, float) […] is:

NSVGimage* nsvgParseFromFile(const char*

filename, const char* units, float dpi) {

...

if (fread(data, 1, size, fp) != size)

goto error;

data[size] = '\0’; // Must be null terminated.

fclose(fp);

image = nsvgParse(data, units, dpi);

...

}

int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {

// Prepare input data

char* input = (char*)malloc(size + 1);

memcpy(input, data, size);

input[size] = '\0'; // Must be null terminated

const char* units = "px";

float dpi = 96.0f;

// Call target function

NSVGimage* image = nsvgParse(input, units, dpi);

// Cleanup

if (input) free(input);

if (image) nsvgDelete(image);

return 0;

}

Ongoing and Future Work

• Provide richer usage examples!

• These seem key to good fuzz
driver generation

• Shift focus to library APIs

• Critical pieces of infrastructure

• Unlike internal functions, they
are meant to be called directly

• Key advantage: availability of
diverse clients that provide real-
world usage examples

Ahmed Zaki and Cristian Cadar, ongoing work

Clients 16 libraries from the CCScanner database
• Thousands to hundreds of thousands lines of code
• Some with thousands of APIs

Availability of many diverse clients!

0

50

100

150

200

250

300

APIs not exercised by library test suites, but used by clients

128

14

335 262

36

4

25
45

87

1560

182

19

51

8

1

16

L
o

g
 s

c
a
le

Key Insight:
Extract API Usage Examples from Clients

Requirement:

Small, self-contained examples,
as independent of client code
as possible

Solution:

Use program analysis to slice
out the minimum relevant
code sequence

Fuzz Driver Generation via
Program Analysis & LLMs

...

key.mv_size = sizeof(int);

key.mv_data = &key_data;

data.mv_size = strlen(expected_data);

data.mv_data = expected_data;

E(mdb_put(txn, dbi, &key, &data, 0));

E(mdb_txn_commit(txn));

// Begin a new transaction for

reading

E(mdb_txn_begin(env, NULL,

MDB_RDONLY, &txn));

// Perform the database get operation

rc = mdb_get(txn, dbi, &key, &data);

if (rc == MDB_NOTFOUND) {

printf("Key not found.\n");

} else {

CHECK(rc == MDB_SUCCESS, "mdb_get");

CHECK(data.mv_size ==
strlen(expected_data), "Data size

mismatch");

CHECK(strncmp((char *)data.mv_data,

expected_data, data.mv_size)
== 0, "Data content mismatch");

...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Evolving Software
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14: Can Program Analysis Tools Help?
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20: Whole-Program Fuzzing i.e. Fuzzing from Scratch
	Slide 21: Testing Evolving Software
	Slide 22: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 23: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 24: AFLGo: State-of-the-Art Directed Greybox Fuzzing
	Slide 26: PaZZER = Patch + Fuzzer
	Slide 27: Pazzer Case Study
	Slide 28
	Slide 29: Dynamic Symbolic Execution (DSE)
	Slide 30: From Symbolic Execution to Dynamic Symbolic Execution
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Dynamic Symbolic Execution
	Slide 35: Dynamic Symbolic Execution
	Slide 37: DSE for Evolving Software Direct DSE Effort Toward the Change
	Slide 38: KATCH = KLEE + PATCH
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Developers’ Patch Testing
	Slide 44: KATCH Patch Testing
	Slide 46: Prune Search Space Unrelated to Patch
	Slide 47: Chopped Symbolic Execution
	Slide 61: Preliminary Experience: Reproducing Security Vulnerabilities
	Slide 62: Reproducing Security Vulnerabilities
	Slide 63: Testing Evolving Software
	Slide 64: OSS-Fuzz and Fuzz Targets
	Slide 65: Enter Large Language Models
	Slide 66: OSS-Fuzz-Gen
	Slide 67
	Slide 68
	Slide 69: Ongoing and Future Work
	Slide 70: Clients
	Slide 74
	Slide 76: Key Insight: Extract API Usage Examples from Clients
	Slide 77: Fuzz Driver Generation via Program Analysis & LLMs
	Slide 78

