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• Φ(I) can be an input specification or any other testing property.
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SMT Sampling Metrics
• Throughput: # satisfying assignments (samples) found in the time budget.

• Diversity: how well the samples represent the solution space.

• These two metrics are in constant tension.

• They are influenced by the underlying sampling algorithm!
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Related Work: SMTSampler

• SMTSampler is a state-of-the-art SMT sampling technique.

• It proved to have higher throughput when compared to other samplers.
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Floating-Point Formulas

• This domain is often challenging for traditional SMT solvers. 

• By design, SMTSampler inherits these scalability limitations.

• We want a scalable sampler for this domain.

• We leverage related work that uses coverage-guided fuzzing.
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Related Work: JFS (Just Fuzz-It Solver)

• JFS is an incomplete SMT solver.

• It may only prove that a formula is satisfiable, but never unsatisfiable.

• Coverage-guided fuzzing is used to find just one satisfying assignment.
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Coverage Saturation in JFSamplerNaive

• The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

• In our example, all satisfying inputs will take the same path.

• If coverage saturates for satisfying assignments, the fuzzer cannot distinguish them.
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SMT Coverage Metric
• At a high-level, it captures how much of the formula’s logic has been 

exercised by all the samples.

• It keeps track of the subexpressions’ values across all samples.

• SMTSampler defined it to measure sample diversity, used for evaluation but 
not part of the algorithm.
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Bespoke Mutator for SMT Sampling

• JFSamplerNaive and JFSamplerDE both rely on the set of byte-level mutators 
that the underlying coverage-guided fuzzer has.

• SMTSampler defined a bit-level combining heuristic that can likely merge 
three satisfying assignments into a new one.

• SMTSampler blindly applies the heuristic without any feedback; it could 
combine uninteresting satisfying assignments.
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• JFSamplerSM incorporates the SMTSampler’s heuristic as a new mutator in 

the fuzzer.

• The sampling mutator benefits from the code-coverage feedback and is 
applied to test cases deemed interesting by the fuzzer.
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JFSamplerSM+DE

• JFSamplerSM+DE combines all of our features:

• the sampling mutator for the coverage-guided fuzzer

• the new C++ encoding for the SMT coverage metric

• We expect this mode to perform the best in terms of diversity and throughput.
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Evaluation

• Our evaluation was conducted in the SMT-LIB benchmark.

• We evaluated the FP and FP+BV suites (total of 862 formulas).
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Conclusions

• We designed and implemented, JFSampler, the first SMT sampling technique 
using coverage-guided fuzzing.

• JFSamplerSM+DE outperforms the SMTSampler in the FP domain.

• We hope our results can help in the adoption of SMT sampling for testing 
techniques.

• Our tool: https://srg.doc.ic.ac.uk/projects/jfs/
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