
ICST 2025

Scalable SMT Sampling  
 for Floating-Point Formulas  
 via Coverage-Guided Fuzzing

Manuel Carrasco, Cristian Cadar and Alastair F. Donaldson
Imperial College London

What is SMT Sampling?

2

What is SMT Sampling?

Φ(x1, x2)SMT formula

3

What is SMT Sampling?

Φ(x1, x2)SMT formula

4

≡ x1 + x2 = 10
Free variables Boolean predicate

What is SMT Sampling?

Φ(x1, x2)SMT formula

5

≡ x1 + x2 = 10
Free variables Boolean predicate

SMT Sampling
Technique

Φ(x1, x2)
time budget

What is SMT Sampling?

Φ(x1, x2)SMT formula

6

≡ x1 + x2 = 10
Free variables Boolean predicate

SMT Sampling
Technique

x1=2, x2=8
Φ(x1, x2)

time budget

What is SMT Sampling?

Φ(x1, x2)SMT formula

6

≡ x1 + x2 = 10
Free variables Boolean predicate

SMT Sampling
Technique

x1=2, x2=8

x1=5, x2=5
Φ(x1, x2)

time budget

What is SMT Sampling?

Φ(x1, x2)SMT formula

6

≡ x1 + x2 = 10
Free variables Boolean predicate

SMT Sampling
Technique

x1=2, x2=8

x1=5, x2=5

x1=8, x2=2

Φ(x1, x2)
time budget

Why SMT Sampling?

7

Why SMT Sampling?

7

OracleoutputSysteminput

Why SMT Sampling?

Φ(I) SMT Sampling
Technique

7

OracleoutputSysteminput

Why SMT Sampling?

Φ(I) SMT Sampling
Technique

7

OracleoutputSysteminput

• Φ(I) can be an input specification or any other testing property.

SMT Sampling Metrics

8

SMT Sampling Metrics
• Throughput: # satisfying assignments (samples) found in the time budget.

8

SMT Sampling Metrics
• Throughput: # satisfying assignments (samples) found in the time budget.

• Diversity: how well the samples represent the solution space.

8

SMT Sampling Metrics
• Throughput: # satisfying assignments (samples) found in the time budget.

• Diversity: how well the samples represent the solution space.

• These two metrics are in constant tension.

8

SMT Sampling Metrics
• Throughput: # satisfying assignments (samples) found in the time budget.

• Diversity: how well the samples represent the solution space.

• These two metrics are in constant tension.

• They are influenced by the underlying sampling algorithm!

8

Related Work: SMTSampler

9

Related Work: SMTSampler

• SMTSampler is a state-of-the-art SMT sampling technique.

9

Related Work: SMTSampler

• SMTSampler is a state-of-the-art SMT sampling technique.

• It proved to have higher throughput when compared to other samplers.

9

SMTSampler’s Algorithm

Solution space for the input SMT formula

10

SMTSampler’s Algorithm

Solution space for the input SMT formula

Initial set of  
random solutions

MAX-SMT
Solver

11

SMTSampler’s Algorithm

Solution space for the input SMT formula

Initial set of  
random solutions

MAX-SMT
Solver

Bit-level
combining
heuristic

Recursive combination of 
existing solutions

12

SMTSampler’s Algorithm

Solution space for the input SMT formula

MAX-SMT
Solver

Bit-level
combining
heuristic

13

SMTSampler’s Algorithm

Solution space for the input SMT formula

MAX-SMT
Solver

Bit-level
combining
heuristic

14

Slow
Fast

Floating-Point Formulas

15

Floating-Point Formulas

• This domain is often challenging for traditional SMT solvers.

15

Floating-Point Formulas

• This domain is often challenging for traditional SMT solvers.

• By design, SMTSampler inherits these scalability limitations.

15

Floating-Point Formulas

• This domain is often challenging for traditional SMT solvers.

• By design, SMTSampler inherits these scalability limitations.

• We want a scalable sampler for this domain.

15

Floating-Point Formulas

• This domain is often challenging for traditional SMT solvers.

• By design, SMTSampler inherits these scalability limitations.

• We want a scalable sampler for this domain.

• We leverage related work that uses coverage-guided fuzzing.

15

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

New  
Input

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

New  
Input System

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

New  
Input System

New Coverage
Analysis

coverage feedback

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

New  
Input System

New Coverage
Analysis

coverage feedbackkeep new-coverage input

16

Background: Coverage-Guided Fuzzing
• Coverage-guided fuzzing is a simple but powerful program testing technique.

Input  
Corpus

Current  
Input

Built-in
Mutator A

Built-in
Mutator B

Built-in
Mutator C

New  
Input System

New Coverage
Analysis

coverage feedbackkeep new-coverage input

Crash
Oracle

Crashing 
Corpus

16

Related Work: JFS (Just Fuzz-It Solver)

17

Related Work: JFS (Just Fuzz-It Solver)

• JFS is an incomplete SMT solver.

17

Related Work: JFS (Just Fuzz-It Solver)

• JFS is an incomplete SMT solver.

• It may only prove that a formula is satisfiable, but never unsatisfiable.

17

Related Work: JFS (Just Fuzz-It Solver)

• JFS is an incomplete SMT solver.

• It may only prove that a formula is satisfiable, but never unsatisfiable.

• Coverage-guided fuzzing is used to find just one satisfying assignment.

17

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

T
Input Timeout Value

Coverage-guided
Fuzzer

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

T
Input Timeout Value

Coverage-guided
Fuzzer

x=8.0f 
y=2.0f

First crashing input

SAT

18

Related Work: JFS (Just Fuzz-It Solver)

x + y = 10
x, y ∈ FloatingPoint<32>

Input SMT Formula

SMT to C++
Transpiler

T
Input Timeout Value

Coverage-guided
Fuzzer

x=8.0f 
y=2.0f

First crashing input

SAT

No crashing input found

UNK

18

Related Work: JFS (Just Fuzz-It Solver)

Our Work: JFSampler (Just Fuzz-it Sampler)

19

Our Work: JFSampler (Just Fuzz-it Sampler)

• JFSamplerNaive is JFS but it continues fuzzing after the first crashing input.

19

SMT to C++
TranspilerSMT Formula C++ Program Coverage-guided

Fuzzer
Many SAT

Assignments

Our Work: JFSampler (Just Fuzz-it Sampler)

• JFSamplerNaive is JFS but it continues fuzzing after the first crashing input.

19

SMT to C++
TranspilerSMT Formula C++ Program Coverage-guided

Fuzzer
Many SAT

Assignments

JFSamplerDE

New diversity encoding

Our Work: JFSampler (Just Fuzz-it Sampler)

• JFSamplerNaive is JFS but it continues fuzzing after the first crashing input.

19

SMT to C++
TranspilerSMT Formula C++ Program Coverage-guided

Fuzzer
Many SAT

Assignments

JFSamplerDE

New diversity encoding

JFSamplerSM

New sampling mutator

Coverage Saturation in JFSamplerNaive

20

Coverage Saturation in JFSamplerNaive

• The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

20

Coverage Saturation in JFSamplerNaive

• The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

• In our example, all satisfying inputs will take the same path.

20

Coverage Saturation in JFSamplerNaive

• The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

• In our example, all satisfying inputs will take the same path.

20

Coverage Saturation in JFSamplerNaive

• The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

• In our example, all satisfying inputs will take the same path.

• If coverage saturates for satisfying assignments, the fuzzer cannot distinguish them.

20

SMT Coverage Metric

21

SMT Coverage Metric
• At a high-level, it captures how much of the formula’s logic has been

exercised by all the samples.

21

SMT Coverage Metric
• At a high-level, it captures how much of the formula’s logic has been

exercised by all the samples.

• It keeps track of the subexpressions’ values across all samples.

21

SMT Coverage Metric
• At a high-level, it captures how much of the formula’s logic has been

exercised by all the samples.

• It keeps track of the subexpressions’ values across all samples.

• SMTSampler defined it to measure sample diversity, used for evaluation but
not part of the algorithm.

21

JFSamplerDE (Diversity Encoding)

22

JFSamplerDE (Diversity Encoding)
• JFSamplerDE makes the coverage-guided fuzzer aware of the SMT coverage metric.

22

JFSamplerDE (Diversity Encoding)
• JFSamplerDE makes the coverage-guided fuzzer aware of the SMT coverage metric.

• Diverse satisfying assignments will now take different paths in the code.

22

JFSamplerDE (Diversity Encoding)
• JFSamplerDE makes the coverage-guided fuzzer aware of the SMT coverage metric.

• Diverse satisfying assignments will now take different paths in the code.

22

JFSamplerDE (Diversity Encoding)
• JFSamplerDE makes the coverage-guided fuzzer aware of the SMT coverage metric.

• Diverse satisfying assignments will now take different paths in the code.

22

JFSamplerDE (Diversity Encoding)
• JFSamplerDE makes the coverage-guided fuzzer aware of the SMT coverage metric.

• Diverse satisfying assignments will now take different paths in the code.

22

Bespoke Mutator for SMT Sampling

23

Bespoke Mutator for SMT Sampling

• JFSamplerNaive and JFSamplerDE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

23

Bespoke Mutator for SMT Sampling

• JFSamplerNaive and JFSamplerDE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

• SMTSampler defined a bit-level combining heuristic that can likely merge
three satisfying assignments into a new one.

23

Bespoke Mutator for SMT Sampling

• JFSamplerNaive and JFSamplerDE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

• SMTSampler defined a bit-level combining heuristic that can likely merge
three satisfying assignments into a new one.

23

Bespoke Mutator for SMT Sampling

• JFSamplerNaive and JFSamplerDE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

• SMTSampler defined a bit-level combining heuristic that can likely merge
three satisfying assignments into a new one.

• SMTSampler blindly applies the heuristic without any feedback; it could
combine uninteresting satisfying assignments.

23

JFSamplerSM (Sampling Mutator)

24

JFSamplerSM (Sampling Mutator)
• JFSamplerSM incorporates the SMTSampler’s heuristic as a new mutator in

the fuzzer.

24

JFSamplerSM (Sampling Mutator)
• JFSamplerSM incorporates the SMTSampler’s heuristic as a new mutator in

the fuzzer.

• The sampling mutator benefits from the code-coverage feedback and is
applied to test cases deemed interesting by the fuzzer.

24

JFSamplerSM (Sampling Mutator)
• JFSamplerSM incorporates the SMTSampler’s heuristic as a new mutator in

the fuzzer.

• The sampling mutator benefits from the code-coverage feedback and is
applied to test cases deemed interesting by the fuzzer.

System

Input  
Corpus

Sampling
Mutator

Built-in
Mutator A

Built-in
Mutator B

Current  
Input

New  
Input

New Coverage
Analysis

coverage feedbackkeep new-coverage input

Crash
Oracle

Crashing 
Corpus

24

JFSamplerSM+DE

25

JFSamplerSM+DE

• JFSamplerSM+DE combines all of our features:

25

JFSamplerSM+DE

• JFSamplerSM+DE combines all of our features:

• the sampling mutator for the coverage-guided fuzzer

25

JFSamplerSM+DE

• JFSamplerSM+DE combines all of our features:

• the sampling mutator for the coverage-guided fuzzer

• the new C++ encoding for the SMT coverage metric

25

JFSamplerSM+DE

• JFSamplerSM+DE combines all of our features:

• the sampling mutator for the coverage-guided fuzzer

• the new C++ encoding for the SMT coverage metric

• We expect this mode to perform the best in terms of diversity and throughput.

25

Evaluation

26

Evaluation

• Our evaluation was conducted in the SMT-LIB benchmark.

26

Evaluation

• Our evaluation was conducted in the SMT-LIB benchmark.

• We evaluated the FP and FP+BV suites (total of 862 formulas).

26

FP Suite
Throughput (the higher, the better)

27

#
 S

at
isf

yin
g

As
sig

nm
en

ts

FP Suite
Throughput (the higher, the better)

27

#
 S

at
isf

yin
g

As
sig

nm
en

ts

Total sat. assignments sampled from a single SMT formula

FP Suite
Throughput (the higher, the better)

27

#
 S

at
isf

yin
g

As
sig

nm
en

ts

Total sat. assignments sampled from a single SMT formula

Median value across all formulas

FP Suite
Diversity (the higher, the better)

28

Di
ve

rs
ity

 S
co

re

FP Suite
Diversity (the higher, the better)

28

Di
ve

rs
ity

 S
co

re

Diverisity score achieved from sampling a single SMT formula

Conclusions

29

Conclusions

• We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

• We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

• JFSamplerSM+DE outperforms the SMTSampler in the FP domain.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

• We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

• JFSamplerSM+DE outperforms the SMTSampler in the FP domain.

• We hope our results can help in the adoption of SMT sampling for testing
techniques.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

• We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

• JFSamplerSM+DE outperforms the SMTSampler in the FP domain.

• We hope our results can help in the adoption of SMT sampling for testing
techniques.

• Our tool: https://srg.doc.ic.ac.uk/projects/jfs/

29

https://srg.doc.ic.ac.uk/projects/jfs/

