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 @O(/) can be an input specification or any other testing property.
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SMT Sampling Metrics

 Throughput: # satisfying assignments (samples) found in the time budget.

» Diversity: how well the samples represent the solution space.

e These two metrics are in constant tension.

* They are influenced by the underlying sampling algorithm!
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SMTSAMPLER: Efficient Stimulus Generation from Complex SMT Constraints

Rafael Dutra, Jonathan Bachrach and Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{rtd,jrb,ksen}@cs.berkeley.edu

« SMTSampler is a state-of-the-art SMT sampling technigue.

* |t proved to have higher throughput when compared to other samplers.
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Floating-Point Formulas

* This domain is often challenging for traditional SMT solvers.
* By design, SMTSampler inherits these scalability limitations.
 We want a scalable sampler for this domain.

 We leverage related work that uses coverage-guided fuzzing.
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 JFS is an incomplete SMT solver.
* |t may only prove that a formula is satisfiable, but never unsatisfiable.

 Coverage-guided fuzzing is used to find just one satisfying assignment.
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1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0,
7 }

8 // SAT assignment
9 —p abort();
10 s

v No crashing input found
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* |In our example, all satisfying inputs will take the same path.

1 int smt_formula(float x, float y) {
- |2 float sum = x + vy;
—p |3 bool sat = sum == 10.0f;

4 if ('sat) {

5 return 0;

6 }
—> |7 abort();

8 s

* |f coverage saturates for satisfying assignments, the fuzzer cannot distinguish them.
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SMT Coverage Metric

* At a high-level, it captures how much of the formula’s logic has been
exercised by all the samples.

* |t keeps track of the subexpressions’ values across all samples.

« SMTSampler defined it to measure sample diversity, used for evaluation but
not part of the algorithm.
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JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

e Diverse satisfying assignments will now take different paths in the code.

1 int smt_formula(float x, float y) { 11 #define SMT_COVERAGE(F) {
2 float sum = x + y; 12 // New C++ code that, if covered,
3 bool sat = sum == 10.0f: 13 // means an increase in diversity
4 if (1sat) { L4
5 return 0; 15
) :
7 // New code coverage for SAT assignments 18
8 SMT_COVERAGE (sum) ; 19 /\
9 abort(); >0 .
10} 21 A 5
22 s
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 JFSamplerNave gnd JFSamplerPE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

« SMTSampler defined a bit-level combining heuristic that can likely merge
three satistfying assignments into a new one.

COMBINE(A1,As,A3) = A1 @ ((A1 @ A2) V (A1 @ A3))

« SMTSampler blindly applies the heuristic without any feedback; it could
combine uninteresting satisfying assignments.
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JFSamplersM (Sampling Mutator)

 JFSamplerSMincorporates the SMTSampler’s heuristic as a new mutator in
the fuzzer.

* The sampling mutator benefits from the code-coverage feedback and is
applied to test cases deemed interesting by the fuzzer.
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JFSamplersM+DE

 JFSamplersSM+DE combines all of our features:
* the sampling mutator for the coverage-guided fuzzer
* the new C++ encoding for the SMT coverage metric

* We expect this mode to perform the best in terms of diversity and throughput.

25



Evaluation

20



Evaluation

e Qur evaluation was conducted in the SMT-LIB benchmark.

20



Evaluation
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 We evaluated the FP and FP+BV suites (total of 862 formulas).

20



FP Suite

Throughput (the higher, the better)

25M

20M

-
Ul
<

-
-
=

# Satisfying Assignments

U1
=

SMTSampler JFSamplerNaive JFSamplersM

27

JFSampler®t

JFSampler>M+DE




FP Suite

Throughput (the higher, the better)

/Total sat. assignments sampled from a single SMT formula

25M

= N
U o
=< =<

-
-
=

# Satisfying Assignments

U1
=

SMTSampler

JFSamplerNaive

JFSampler>M JFSampler®t JFSampler>M+DE

27




FP Suite

Throughput (the higher, the better)

/Total sat. assignments sampled from a single SMT formula

25M

o N
U -
< <

-
-
=

# Satisfying Assignments

U1
=

SMTSampler

JFSamplerNaive

JFSampler>V JFSamplerPE JFSampler>M+DE

Median value across all formulas

27




FP Suite

Diversity (the higher, the better)

100%

80%

60%

40%

Diversity Score

20%

0%

SMTSampler JFSamplerNhaive JFSamplersM JFSamplerP®®  JFSamplerSM+DE

28



FP Suite

Diversity (the higher, the better)

/Diverisity score achieved from sampling a single SMT formula

100%
80%
L
o
v  60%
ey
L
2 40%
)
20%
0%

SMTSampler JFSamplerNaive JFSamplersM JFSamplerPE JFSamplersM+DE

28



Conclusions

29



Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

29


https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

29


https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

* We hope our results can help in the adoption of SMT sampling for testing
techniques.

29


https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

* We hope our results can help in the adoption of SMT sampling for testing
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