Scalable SMT Sampling
for Floating-Point Formulas
via Coverage-Guided Fuzzing

Manuel Carrasco, Cristian Cadar and Alastair F. Donaldson
Imperial College London

ICST 2025

What is SMT Sampling?

What is SMT Sampling?

SMT formula CD (X1 : X2)

What is SMT Sampling?

Free variables Boolean pred/cate

SMT formula CD(X'I, X2) — X + X2 10

What is SMT Sampling?

Free variables Boolean predicate

f 1
SMT formula CD(X'I, X2) — X + X2 = 10

D(x1, X2)
time budget

| SMT Sampling

Technique

What is SMT Sampling?

Free variables Boolean predicate

f 1
SMT formula CD(X'I, X2) — X + X2 = 10

X1=2, X2=8

D(x1, X2)
time budget

| SMT Sampling

Technique

What is SMT Sampling?

Free variables Boolean predicate

f 1
SMT formula CD(X'I, X2) — X + X2 = 10

X1=2, X2=8

D(x1, X2)
time budget

| SMT Sampling B B
Technique " X1=9, X2=5

What is SMT Sampling?

Free variables Boolean predicate

f 1
SMT formula CD(X'I, X2) — X + X2 = 10

X1=2, X2=8

D(x1, X2) g SMT Sampling

time budget | Technique \ X1=9, X2=9
X1=8, Xo=2

Why SMT Sampling?

Why SMT Sampling?

iINnput g - output

Why SMT Sampling?

oot [

SMT Sampling

Technique

Why SMT Sampling?

oot [

SMT Sampling

Technique

 @O(/) can be an input specification or any other testing property.

SMT Sampling Metrics

SMT Sampling Metrics

 Throughput: # satisfying assignments (samples) found in the time budget.

SMT Sampling Metrics

 Throughput: # satisfying assignments (samples) found in the time budget.

» Diversity: how well the samples represent the solution space.

SMT Sampling Metrics

 Throughput: # satisfying assignments (samples) found in the time budget.

» Diversity: how well the samples represent the solution space.

e These two metrics are in constant tension.

SMT Sampling Metrics

 Throughput: # satisfying assignments (samples) found in the time budget.

» Diversity: how well the samples represent the solution space.

e These two metrics are in constant tension.

* They are influenced by the underlying sampling algorithm!

Related Work: SMTSampler

SMTSAMPLER: Efficient Stimulus Generation from Complex SMT Constraints

Rafael Dutra, Jonathan Bachrach and Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{rtd,jrb,ksen}@cs.berkeley.edu

Related Work: SMTSampler

SMTSAMPLER: Efficient Stimulus Generation from Complex SMT Constraints

Rafael Dutra, Jonathan Bachrach and Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{rtd,jrb,ksen}@cs.berkeley.edu

« SMTSampler is a state-of-the-art SMT sampling technigue.

Related Work: SMTSampler

SMTSAMPLER: Efficient Stimulus Generation from Complex SMT Constraints

Rafael Dutra, Jonathan Bachrach and Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{rtd,jrb,ksen}@cs.berkeley.edu

« SMTSampler is a state-of-the-art SMT sampling technigue.

* |t proved to have higher throughput when compared to other samplers.

SMTSampler’s Algorithm

Solution space for the input SMT formula

10

SMTSampler’s Algorithm

MAX-SMT
Solver

Initial set of
random solutions

Solution space for the input SMT formula

11

SMTSampler’s Algorithm

Recursive combination of
existing solutions

O 0606 0 &
i BN BN _

Initial set of
random solutions

Solution space for the input SMT formula

12

SMTSampler’s Algorithm

Solution space for the input SMT formula

13

SMTSampler’s Algorithm

o060 o 0
o060 X
00 O
— 3
Fast
Slow 0 000OF0 ® o
000 00F0 ® O
000000 ® O
" X ® © O

Solution space for the input SMT formula

14

Floating-Point Formulas

Floating-Point Formulas

* This domain is often challenging for traditional SMT solvers.

15

Floating-Point Formulas

* This domain is often challenging for traditional SMT solvers.

* By design, SMTSampler inherits these scalability limitations.

15

Floating-Point Formulas

* This domain is often challenging for traditional SMT solvers.
* By design, SMTSampler inherits these scalability limitations.

 We want a scalable sampler for this domain.

15

Floating-Point Formulas

* This domain is often challenging for traditional SMT solvers.
* By design, SMTSampler inherits these scalability limitations.
 We want a scalable sampler for this domain.

 We leverage related work that uses coverage-guided fuzzing.

15

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

Input
Corpus

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

000 - @

Input Current
Corpus Input

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

Built-in
Mutator A
Built-in
‘ ‘ ‘ > ‘ ’
Input Current
Corpus Input

Mutator C

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

Built-in i
Mutator A New
Built-in Input
‘ ‘ ‘ > ‘
Input Current
Corpus Input

Mutator C

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

System

>
Mutator A
. New\
Built-in Input
Input Current

Corpus Input
Mutator C

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

New Coverage coverage feedback
Analysis)
Built-in X
Mutator A
New
Built-in Input
i ¢ Mutator B

System

Input Current

Corpus Input
Mutator C

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

keep new-coverage input New Coverage coverage feedback
Analysis)
Built-in X
Mutator A
' New
Built-in Input
00 ® Mutator B

System

Input Current

Corpus Input
Mutator C

16

Background: Coverage-Guided Fuzzing

* Coverage-guided fuzzing is a simple but powerful program testing technique.

keep new-coverage input New Coverage coverage feedback
Analysis)
Built-in X
Mutator A NGW\
Built-in Input
Input Current 00

Corpus Input Built-in Crashing Crash [l
Mutator C Corpus Oracle

16

System =

Related Work: JFS (Just Fuzz-It Solver)

Just Fuzz It: Solving Floating-Point Constraints
using Coverage-Guided Fuzzing

Daniel Liew Cristian Cadar Alastair F. Donaldson J. Ryan Stinnett
dan@su-root.co.uk c.cadar@imperial.ac.uk afd@imperial.ac.uk jryans@gmail.com
Imperial College London Imperial College London Imperial College London Mozilla
United Kingdom United Kingdom United Kingdom United States

17

Related Work: JFS (Just Fuzz-It Solver)

Just Fuzz It: Solving Floating-Point Constraints
using Coverage-Guided Fuzzing

Daniel Liew Cristian Cadar Alastair F. Donaldson J. Ryan Stinnett
dan@su-root.co.uk c.cadar@imperial.ac.uk afd@imperial.ac.uk jryans@gmail.com
Imperial College London Imperial College London Imperial College London Mozilla
United Kingdom United Kingdom United Kingdom United States

 JFS is an incomplete SMT solver.

17

Related Work: JFS (Just Fuzz-It Solver)

Just Fuzz It: Solving Floating-Point Constraints
using Coverage-Guided Fuzzing

Daniel Liew Cristian Cadar Alastair F. Donaldson J. Ryan Stinnett
dan@su-root.co.uk c.cadar@imperial.ac.uk afd@imperial.ac.uk jryans@gmail.com
Imperial College London Imperial College London Imperial College London Mozilla
United Kingdom United Kingdom United Kingdom United States

 JFS is an incomplete SMT solver.

* |t may only prove that a formula is satisfiable, but never unsatisfiable.

17

Related Work: JFS (Just Fuzz-It Solver)

Just Fuzz It: Solving Floating-Point Constraints
using Coverage-Guided Fuzzing

Daniel Liew Cristian Cadar Alastair F. Donaldson J. Ryan Stinnett
dan@su-root.co.uk c.cadar@imperial.ac.uk afd@imperial.ac.uk jryans@gmail.com
Imperial College London Imperial College London Imperial College London Mozilla
United Kingdom United Kingdom United Kingdom United States

 JFS is an incomplete SMT solver.
* |t may only prove that a formula is satisfiable, but never unsatisfiable.

 Coverage-guided fuzzing is used to find just one satisfying assignment.

17

Related Work: JFS (Just Fuzz-It Solver)

Related Work: JFS (Just Fuzz-It Solver)

Xx+y=10
X, Yy € FloatingPoint<32>
Inout SMT Formula

18

Related Work: JFS (Just Fuzz-It Solver)

x+y=10 SMT to C++

Transpiler

Inout SMT Formula

18

Related Work: JFS (Just Fuzz-It Solver)

Inout SMT Formula

SMT to C++

Transpiler

18

1 int smt_formula(float x, float y) {
2 float sum = X + vy;

3 bool sat = sum == 10.0f;

4 if ('sat) {

5 // UNSAT assignment

6 return 0;

7 }

8 // SAT assignment

9 abort();

10 s

Related Work: JFS (Just Fuzz-It Solver)

Inout SMT Formula

SMT to C++

Transpiler

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 bool sat = sum == 10.0f;

4 if ('sat) {

5 // UNSAT assignment

6 return 0;

7 }

8 // SAT assignment

9 abort();

10 s

Related Work: JFS (Just Fuzz-It Solver)

Inout SMT Formula

SMT to C++

Transpiler

18

1

1

nt smt_formula(float x, float y) {

2 —» float sum = X + y;
3 =% bool sat = sum == 10.0f;

4 if (!sat) {

5 // UNSAT assignment
6 return 0;

7 }

8 // SAT assignment

9 abort();

10 s

Related Work: JFS (Just Fuzz-It Solver)

Inout SMT Formula

SMT to C++

Transpiler

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0;

7 }

8 // SAT assignment

9 abort();

10 s

Related Work: JFS (Just Fuzz-It Solver)

Inout SMT Formula

SMT to C++

Transpiler

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0;
7 }

8 // SAT assignment
9 —» abort();
10 s

Related Work: JFS (Just Fuzz-It Solver)

x+y=10 SMT to C++
X, y € FloatingPoint<32> — Transpiler
Inout SMT Formula
T Coverage-guided

Input Timeout Value

 ————

Fuzzer

L —

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0;
7 }

8 // SAT assignment
9 —» abort();
10 s

Related Work: JFS (Just Fuzz-It Solver)

Xx+y=10

X, y € FloatingPoint<32> —

Inout SMT Formula

T

Input Timeout Value

First crashing input

SMT to C++
Transpiler

Coverage-guided
Fuzzer

 ————

<

SAT

x=8.0f
y=2.0f

L —

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0;
7 }

8 // SAT assignment
9 —» abort();
10 s

Related Work: JFS (Just Fuzz-It Solver)

Xx+y=10

X, y € FloatingPoint<32> —

Inout SMT Formula

T

Input Timeout Value

First crashing input

SMT to C++

Transpiler

Coverage-guided
Fuzzer

 ————

<

SAT

x=8.0f
y=2.0f

UNK

L —

18

1 int smt_formula(float x, float y) {
2 —» float sum = X + y;

3 =—» bool sat = sum == 10.0f;

4 =—» if (!sat) {

5 // UNSAT assignment
6 return 0,
7 }

8 // SAT assignment
9 —p abort();
10 s

v No crashing input found

Our Work: JFSampler (Just Fuzz-it Sampler)

Our Work: JFSampler (Just Fuzz-it Sampler)

 JFSamplerNaive s JFS but it continues fuzzing after the first crashing input.

SMT to C++ Coverage-guided Many SAT

 ———_—

Fuzzer Assignments

SMT Formula —— ———+ C++Program ——

Transpiler

19

Our Work: JFSampler (Just Fuzz-it Sampler)

 JFSamplerNaive s JFS but it continues fuzzing after the first crashing input.

SMT to C++ Coverage-guided Many SAT

 ———_—

SMT Formula —— .
Fuzzer Assignments

—— C++Program ——

Transpiler

JFSamplerPE

New diversity encoding

19

Our Work: JFSampler (Just Fuzz-it Sampler)

 JFSamplerNaive s JFS but it continues fuzzing after the first crashing input.

SMT to C++ Coverage-guided Many SAT

e ———

SMT Formula —— .
Fuzzer Assignments

—— C++Program ——

Transpiler

JFSamplerPE JFSamplersM

New diversity encoding New sampling mutator

19

Coverage Saturation in JFSamplerNaive

Coverage Saturation in JFSamplerNaive

 The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

20

Coverage Saturation in JFSamplerNaive

 The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

* |In our example, all satisfying inputs will take the same path.

20

Coverage Saturation in JFSamplerNaive

 The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

* |In our example, all satisfying inputs will take the same path.

1 int smt_formula(float x, float y) {
- |2 float sum = x + vy;
—p |3 bool sat = sum == 10.0f;

4 if ('sat) {

5 return 0;

6 }
—> |7 abort();

8 s

20

Coverage Saturation in JFSamplerNaive

 The code coverage in the C++ function for satisfying assignments (samples) is very narrow.

* |In our example, all satisfying inputs will take the same path.

1 int smt_formula(float x, float y) {
- |2 float sum = x + vy;
—p |3 bool sat = sum == 10.0f;

4 if ('sat) {

5 return 0;

6 }
—> |7 abort();

8 s

* |f coverage saturates for satisfying assignments, the fuzzer cannot distinguish them.

20

SMT Coverage Metric

SMT Coverage Metric

* At a high-level, it captures how much of the formula’s logic has been
exercised by all the samples.

21

SMT Coverage Metric

* At a high-level, it captures how much of the formula’s logic has been
exercised by all the samples.

* |t keeps track of the subexpressions’ values across all samples.

21

SMT Coverage Metric

* At a high-level, it captures how much of the formula’s logic has been
exercised by all the samples.

* |t keeps track of the subexpressions’ values across all samples.

« SMTSampler defined it to measure sample diversity, used for evaluation but
not part of the algorithm.

21

JFSamplerPE (Diversity Encoding)

JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

22

JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

e Diverse satisfying assignments will now take different paths in the code.

22

JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

e Diverse satisfying assignments will now take different paths in the code.

// New code coverage for SAT assignments
SMT_COVERAGE (sum) ;
abort();

1 int smt_formula(float x, float y) {
2 float sum = X + vy;

3 bool sat = sum == 10.0fT,;

4 if (!'sat) {

5 return 0;

6 s

7

8

9

=
S
v

22

JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

e Diverse satisfying assignments will now take different paths in the code.

// New code coverage for SAT assignments
SMT_COVERAGE (sum) ;
abort();

1 int smt_formula(float x, float y) {
2 float sum = X + vy;

3 bool sat = sum == 10.0fT,;

4 if (!'sat) {

5 return 0;

6 3

7

8

9

=
S
v

22

JFSamplerPE (Diversity Encoding)

 JFSamplerPE makes the coverage-guided fuzzer aware of the SMT coverage metric.

e Diverse satisfying assignments will now take different paths in the code.

1 int smt_formula(float x, float y) { 11 #define SMT_COVERAGE(F) {
2 float sum = x + y; 12 // New C++ code that, if covered,
3 bool sat = sum == 10.0f: 13 // means an increase in diversity
4 if (1sat) { L4
5 return 0; 15
) :
7 // New code coverage for SAT assignments 18
8 SMT_COVERAGE (sum) ; 19 /\
9 abort(); >0 .
10} 21 A 5
22 s

22

Bespoke Mutator for SMT Sampling

Bespoke Mutator for SMT Sampling

 JFSamplerNave gnd JFSamplerPE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

23

Bespoke Mutator for SMT Sampling

 JFSamplerNave gnd JFSamplerPE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

« SMTSampler defined a bit-level combining heuristic that can likely merge
three satistfying assignments into a new one.

23

Bespoke Mutator for SMT Sampling

 JFSamplerNave gnd JFSamplerPE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

« SMTSampler defined a bit-level combining heuristic that can likely merge
three satistfying assignments into a new one.

COMBINE(A1,As,A3) = A1 @ ((A1 @ A2) V (A1 @ A3))

23

Bespoke Mutator for SMT Sampling

 JFSamplerNave gnd JFSamplerPE both rely on the set of byte-level mutators
that the underlying coverage-guided fuzzer has.

« SMTSampler defined a bit-level combining heuristic that can likely merge
three satistfying assignments into a new one.

COMBINE(A1,As,A3) = A1 @ ((A1 @ A2) V (A1 @ A3))

« SMTSampler blindly applies the heuristic without any feedback; it could
combine uninteresting satisfying assignments.

23

JFSamplersM (Sampling Mutator)

JFSamplersM (Sampling Mutator)

 JFSamplerSMincorporates the SMTSampler’s heuristic as a new mutator in
the fuzzer.

24

JFSamplersM (Sampling Mutator)

 JFSamplerSMincorporates the SMTSampler’s heuristic as a new mutator in
the fuzzer.

* The sampling mutator benefits from the code-coverage feedback and is
applied to test cases deemed interesting by the fuzzer.

24

JFSamplersM (Sampling Mutator)

 JFSamplerSMincorporates the SMTSampler’s heuristic as a new mutator in
the fuzzer.

* The sampling mutator benefits from the code-coverage feedback and is
applied to test cases deemed interesting by the fuzzer.

keep new-coverage input New Coverage coverage feedback
Analysis)
Sampling »
Mutator
' New
Built-in Input
00

Input Current

Corpus Input Built-in Crashing IEIE
Mutator B Corpus Oracle

SYAICIHE —

24

JFSamplersM+DE

JFSamplerSM+DE

 JFSamplerSM+DE combines all of our features:

25

JFSamplerSM+DE

 JFSamplerSM+DE combines all of our features:

* the sampling mutator for the coverage-guided fuzzer

25

JFSamplerSM+DE

 JFSamplerSM+DE combines all of our features:
* the sampling mutator for the coverage-guided fuzzer

* the new C++ encoding for the SMT coverage metric

25

JFSamplersM+DE

 JFSamplersSM+DE combines all of our features:
* the sampling mutator for the coverage-guided fuzzer
* the new C++ encoding for the SMT coverage metric

* We expect this mode to perform the best in terms of diversity and throughput.

25

Evaluation

20

Evaluation

e Qur evaluation was conducted in the SMT-LIB benchmark.

20

Evaluation

e Qur evaluation was conducted in the SMT-LIB benchmark.

 We evaluated the FP and FP+BV suites (total of 862 formulas).

20

FP Suite

Throughput (the higher, the better)

25M

20M

-
Ul
<

-
-
=

Satisfying Assignments

U1
=

SMTSampler JFSamplerNaive JFSamplersM

27

JFSampler®t

JFSampler>M+DE

FP Suite

Throughput (the higher, the better)

/Total sat. assignments sampled from a single SMT formula

25M

= N
U o
=< =<

-
-
=

Satisfying Assignments

U1
=

SMTSampler

JFSamplerNaive

JFSampler>M JFSampler®t JFSampler>M+DE

27

FP Suite

Throughput (the higher, the better)

/Total sat. assignments sampled from a single SMT formula

25M

o N
U -
< <

-
-
=

Satisfying Assignments

U1
=

SMTSampler

JFSamplerNaive

JFSampler>V JFSamplerPE JFSampler>M+DE

Median value across all formulas

27

FP Suite

Diversity (the higher, the better)

100%

80%

60%

40%

Diversity Score

20%

0%

SMTSampler JFSamplerNhaive JFSamplersM JFSamplerP®® JFSamplerSM+DE

28

FP Suite

Diversity (the higher, the better)

/Diverisity score achieved from sampling a single SMT formula

100%
80%
L
o
v 60%
ey
L
2 40%
)
20%
0%

SMTSampler JFSamplerNaive JFSamplersM JFSamplerPE JFSamplersM+DE

28

Conclusions

29

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

* We hope our results can help in the adoption of SMT sampling for testing
techniques.

29

https://srg.doc.ic.ac.uk/projects/jfs/

Conclusions

 We designed and implemented, JFSampler, the first SMT sampling technique
using coverage-guided fuzzing.

 JFSamplerSM+DE gutperforms the SMTSampler in the FP domain.

* We hope our results can help in the adoption of SMT sampling for testing
techniques.

* QOur tool: https://srg.doc.ic.ac.uk/projects/|fs/

29

https://srg.doc.ic.ac.uk/projects/jfs/

