
Program Analysis for Safe and Secure
Software Evolution

Cristian Cadar

University of Stuttgart
Stuttgart, Germany

15 April 2025

Funded by

2

B
y
 F

u
z
z
y

p
ig

g
y
,

W
ik

ip
e

d
ia

@
 Im

p
e

ria
l C

o
lle

g
e

 L
o

n
d

o
n

http://srg.doc.ic.ac.uk

Karine Even-
Mendoza

Anastasios
Andronidis

Frank Busse

Cristian
Cadar

Manuel
Carrasco

Martin
Nowack

Jordy Ruiz Daniel
Schemmel

Arindam
Sharma

Bachir
Bendrissou

Ahmed Zaki

Current and recent members

3

4

B
y
 J

u
li

a
n

 H
e

rz
o

g
,

C
C

 B
Y

 4
.0

@
 U

n
iversity o

f Stu
ttgart / Sve

n
 C

ich
o

w
icz

5

Evolving Software

• Poorly validated code changes often introduce bugs & vulnerabilities

• Some with catastrophic impact

Heartbleed

(2014)
Shellshock

(2014)

Stagefright

(2016)

Crowdstrike

(2024)

6

Channel
File 291
Incident

ISSTA 2014

• 6 popular open-source systems

• Analysed 250 revisions per app

• Conclusion: LOTS of code added or
modified without being tested

A decade later: Have things changed?

7

ICST 2025

8

Data for Covrig paper (250 revisions)

3–14 years of development/project
78 development years in total

Code increases of
2.5K – 33K ELOC,

24% – 268%

ELOC/time

+5K ELOC

+8K ELOC

+6.5K ELOC

+33K ELOC +7.5K ELOC +8.5K ELOC

+22K ELOC

+21K ELOC

+2.5K ELOC

+41%

+32%

+26%

+43% +38% +268%

+130%

+24%

+48%

9

10

Line coverage increases by 2.8 – 22.7pp
It decreases in Redis by 9.2pp

Coverage
Evolution

+3.7pp +13.1pp
+3.3pp

+2.8pp

+16.4pp
+1.8pp

-9.2pp +22.7pp
+10.7pp

Line coverage

Branch coverage
10

5/9 projects have
under 50% branch coverage

11

Patch
Coverage

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ
11

Percentage of ELOC in

a patch covered by the

test suite

Low bar: reaching the patch
does not mean testing it

12

Can Program Analysis Tools Help?

13

AFL++Clang Static Analyzer

14

AFL++Clang Static Analyzer

Designed for whole program testing

Whole-Program Testing
i.e. Testing from Scratch

Expensive and wasteful
• Lots of wasteful repetition across versions
• New bugs are often missed with patch sometimes not even reached
• Same bugs found over and over again, with the need for deduplication
• Bugs reported with significant delay: expensive context switching

18

Developers need feedback within minutes of patch submission
Quick directed testing campaigns required in a CI/CD context

Testing Evolving Software

Reuse testing results

of previous versions

Direct testing effort

toward the changes

19

Greybox Fuzzing:
Coverage-guided Mutation-based Fuzzing

Img

<a><b

<x><y></x></y>

23F@fe@#$Fce

<p>AbC

…

Input Queue

Pick input

<x><y></x></y>

Mutate
<x><y></z>a</y>

<x></y><x></y>

<x><ww></x></y>

…

20

Img

<a><b

<x><y></x></y>

23F@fe@#$Fce

<p>AbC

<x><y></z>a</y>

…

Input Queue

Pick input

<x><y></x></y>

Mutate
<x><y></z>a</y>

<x></y><x></y>

<x><ww></x></y>

…

If new coverage, add to queue

21

Greybox Fuzzing:
Coverage-guided Mutation-based Fuzzing

AFLGo:
State-of-the-Art Directed Greybox Fuzzing

• AFLGo is a pioneering tool for directed greybox fuzzing
• It extends traditional fuzzing by targeting specific code areas
• Computes distance estimates to prioritize inputs close to the target

22

• But distance computation can be expensive
• Fuzzing budget may be exhausted before any fuzzing is done

PaZZER = Patch + Fuzzer

• Designed to be practical for short CI/CD runs
• Aims to find a sweet spot between time spent in

distance computation and effectiveness
• Relies on less precise but quick distance

estimates (using only the call graph)
• Computes distances incrementally

(LPA*, Anytime-D*)

24

Pazzer Case Study

ObjDump (>0.5 million LOC)
CVE-2018-8392

AFLGo
Distance Fuzzing Total

34 min 4 min 38 min

Time-to-Exposure (TTE)

Pazzer (non-incremental)
Distance Fuzzing Total

< 3 min < 5 min 7 min

Pazzer (incremental)
Distance Fuzzing Total

14 sec < 5 min 5 min

25

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:

• Bug finding
• Test generation

• Vulnerability detection and
exploitation

• Equivalence checking
• Debugging

• Program repair
• Bounded verification
• etc. etc.

27

Dynamic Symbolic Execution

29

x > 5

x > 10
x > 10 x 10

x 5x > 5

x

then

int foo(unsigned x) {
int r = x + 1;

if (x > 10)
r = 2 * r;

if (x > 5)
r = r - 24;

return x / r;
}

x > 5
x 5x > 5

Infeasible

2(x+1) – 24 = 0?

x = 11

(x+1) – 24 = 0? x+1 = 0?

[x = 23?] [x = UINT_MAX?]

No div 0 No div 0

r = x + 1

r = r - 24

return x / r

r = 2 * r

else

then then elseelse

return x / r

r = r - 24

return x / r

Dynamic Symbolic Execution

• Systematically explores
unique control-flow paths

• Produces test cases

• No false positives

• Efficiently solving lots of
constraints

• Path explosion, particularly
in the presence of loops

• Reasons about all possible
values on each explored path

• Per-path verification

Key advantages: Key challenges:

30

Popular dynamic symbolic executor primarily developed
and maintained at Imperial
Works at the LLVM level: C (full support), C++, Rust

Active user and developer base:
• 100+ contributors to KLEE and its subprojects
• 400+ mailing list subscribers
• 600+ forks
• 2500+ stars
• 400+ participants across the first four KLEE workshops

https://klee-se.org/

https://github.com/klee/

32

33

Academic impact:
• ACM SIGOPS Hall of Fame Award

and ACM CCS Test of Time Award
• Over 4,500 citations to original KLEE

paper (OSDI 2008)
• From many different research

communities: testing, verification,
systems, software engineering,
PL, security, etc.

• Many different systems using KLEE:
AEG, Angelix , BugRedux , Cloud9,
GKLEE, KleeNet, KLEE-UC, S2E,
SemFix, etc.

https://klee-se.org/

https://github.com/klee/

34

Growing impact in industry:
• Baidu: [KLEE 2018]
• Fujitsu: [PPoPP 2012], [CAV 2013],

[ICST 2015], [IEEE Software 2017],
[KLEE 2018]

• Google: [2x KLEE 2021]
• Hitachi: [CPSNA 2014], [ISPA 2015],

[EUC 2016], [KLEE 2021]
• Intel: [WOOT 2015]
• NASA Ames: [NFM 2014]
• Samsung: 2 x [KLEE 2018], [KLEE 2024]
• Trail of Bits [blog.trailofbits.com/]
• etc.

35

1. Use distance estimates to favour paths close to the change
2. Prioritise paths that explore the changes in behaviour

DSE for Evolving Software
Direct DSE Effort Toward Testing the Change

37

KLEE for Evolving Software

KATCH = + PATCH

• Use distance estimates to the patch

guide path exploration

• Use constraint and program analysis to

smartly backtrack, when exploration

cannot make progress toward the patch

Developers’ Patch Testing

Covered Uncovered

100%63%0%

FindUtils:
125 patches

over 26m

Covered

100%0%

BinUtils:
181 patches

over 16m

Uncovered

18%

Covered Uncovered

100%35%0%

DiffUtils:
175 patches

over 30m

Patch Coverage (basic block level)

44

KATCH Patch Testing

Covered + KATCH Un

87% 100%63%0%

10min/BB

Covered + KATCH Uncovered

73% 100%35%0%

10min/BB

Cov’d

100%33%0%

+K Uncovered

18%

15min/BB

FindUtils:
125 patches

over 26m

BinUtils:
181 patches

over 16m

DiffUtils:
175 patches

over 30m

14 distinct crash bugs
(12 still present and fixed, 10 related to patches) 45

Reaching the Patch is Not Sufficient

x = 6 x = 7 x = 8

???
x = 9

?

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

Consider the patch:

Previous Current

No further uses of x No further uses of x

64

x = 6 x = 7 x = 8

???
x = 9

?

Consider the patch:

Previous Current

Full branch coverage in the current version
65

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

No further uses of x No further uses of x

Reaching the Patch is Not Sufficient

x = 6 x = 7 x = 8

???
x = 9

?

However, totally useless for testing the patch!

Previous Current

Consider the patch:

66

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

No further uses of x No further uses of x

Reaching the Patch is Not Sufficient

x = 6 x = 7 x = 8

???
x = 9

?

previous → then
current → else

previous → else
current → then

Previous Current

Consider the patch:

67

if (x % 2 == 0)

. . .

if (x % 3 == 0)

. . .

No further uses of x No further uses of x

Reaching the Patch is Not Sufficient

Symbolic Execution
on Both Versions

Concurrently

(x % 2 = 0) ∧ (x % 3 ≠ 0)

TRUE FALSE

x = 8

(x % 2 ≠ 0) ∧ (x % 3 = 0)

x = 9

Previous Current

68

if (x % 3 == 0)

. . .

if (x % 2 == 0)

. . .

• Can prune large parts of the search space, for which the two versions

behave identically

• Provides the ability to simplify path constraints

• Is memory-efficient by sharing large parts of the symbolic constraints

• Does not execute unchanged computations twice

69

Shadow Symbolic Execution

Case Study: cut

Need for specifications!

Input Old New

cut –c1-3,8- -output-d=: file

(file is “abcdefg”)

abc abc + buffer overflow

cut -c1-7,8- --output-d=: file

file contains “abcdefg”

abcdef abcdef + buffer
overflow

cut -b0-2,2- --output-d=: file

file contains “abc”

abc signal abort

cut -s -d: -f0- file

(file is “:::\n:1”)

:::\n:1 \n\n

cut –d: -f1,0- file

(file is “a:b:c”)

a:b:c a

70

Test cases as documentation!

Challenge: Joining the Two Versions

. . .
if (x % 2 == 0)

. . .

. . .
if (x % 3 == 0)

. . .

Old New

. . .
if (x % shadow_expr(2, 3) == 0)

. . .

71

Product Programs

Used to reason about hyperproperties in a security context
• Particularly non-interference

• Product program of program P with itself

G. Barthe, J. M. Crespo, C. Kunz, “Relational verification using product programs”
Proc. of the 17th International Symposium on Formal Methods (FM’11)

72

We use them as a mechanism for merging multiple program versions
into a single program

Example

x_prev = y_prev – 1;

x = y - 1;

z_prev = x_prev / 4;

z = x >> 2;

x = y - 1;

z = x / 4;

x = y - 1;

z = x >> 2;

Previous version Current version

Product program

73

• Designed P3 to generate product programs for
real-world C code and different program versions

• P3 can transform ANY program analyser into a
differential program analyser

• We were able to find the all the bugs found via
shadow symbolic execution using P3 + KLEE

• We found different bugs using P3 + AFL++

74

AFL++

P3

KLEE

Specifications encoding
cross-patch properties

75

x_prev = y_prev – 1;

x = y - 1;

z_prev = x_prev / 4;

z = x >> 2;

assert(z == z_prev);

Preliminary Experience

• Wrote patch specs for several patches from
CoreBench: collection of complex real-world
patches [Böhme and Roychoudhury]

• We used P3 with AFL++ and KLEE to look for
violations of the patch specs

76

AFL++

P3

KLEE

static char * make_link_name (char const *name,

char const *linkname);

make_link_name(”A/B/f.txt", "g.txt") = ”A/B/g.txt"

“Do not hard-code ’/’. Use IS_ABSOLUTE_FILE_NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

77

Patch in ls

if (*linkname == '/')

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);

strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

size_t prefix_len = dir_len (name);

if (prefix_len == 0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

return p;

assert(strcmp(p, p_prev) == 0);

Bug made it into a
release, was reported
by a user and fixed

78

Patch in ls P3 with both AFL++
and KLEE found a
spec violation:

name = /a

linkname = x

if (*linkname == '/')

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);

strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

size_t prefix_len = dir_len (name);

if (prefix_len == 0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

return p;

assert(strcmp(p, p_prev) == 0);

79

Code patch to
fix reported bug

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

P3 with both AFL++
and KLEE found
new spec violation:

name = /x//y

linkname = a

Patch in ls

if (*linkname == '/')

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);

strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

size_t prefix_len = dir_len (name);

if (prefix_len == 0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

return p;

80

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

Patch in ls
No more spec
violations found
if path-based
equality is used

assert(patheq(p, p_prev) == 0);

Additional Directions

• Pruning paths that are unrelated to the change
[Trabish et al, ICSE 2018], [Trabish et al, ESEC/FSE 2020]

• Generating test drivers to start close to the change using program
analysis and LLMs
[Zaki et al, SANER 2025], ongoing work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Evolving Software
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Can Program Analysis Tools Help?
	Slide 13
	Slide 14
	Slide 18: Whole-Program Testing i.e. Testing from Scratch
	Slide 19: Testing Evolving Software
	Slide 20: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 21: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 22: AFLGo: State-of-the-Art Directed Greybox Fuzzing
	Slide 24: PaZZER = Patch + Fuzzer
	Slide 25: Pazzer Case Study
	Slide 27: Dynamic Symbolic Execution (DSE)
	Slide 29: Dynamic Symbolic Execution
	Slide 30: Dynamic Symbolic Execution
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37: DSE for Evolving Software Direct DSE Effort Toward Testing the Change
	Slide 38: KLEE for Evolving Software
	Slide 44: Developers’ Patch Testing
	Slide 45: KATCH Patch Testing
	Slide 64: Reaching the Patch is Not Sufficient
	Slide 65: Reaching the Patch is Not Sufficient
	Slide 66: Reaching the Patch is Not Sufficient
	Slide 67: Reaching the Patch is Not Sufficient
	Slide 68: Symbolic Execution on Both Versions Concurrently
	Slide 69: Shadow Symbolic Execution
	Slide 70: Case Study: cut
	Slide 71: Challenge: Joining the Two Versions
	Slide 72: Product Programs
	Slide 73: Example
	Slide 74
	Slide 75
	Slide 76: Preliminary Experience
	Slide 77: Patch in ls
	Slide 78: Patch in ls
	Slide 79: Patch in ls
	Slide 80: Patch in ls
	Slide 81: Additional Directions
	Slide 94

