
CSMITHEDGE: More Effective Compiler Testing
by Handling Undefined Behaviour Less
Conservatively

Empirical Software Engineering 27, 129 (2022)

Karine Even-Mendoza, Cristian Cadar, Alastair F. Donaldson

Imperial College London

ASE JF 2022 - October 2022

Compiler correctness is extremely important

(1) Crashes/hangs or (2) silently produces incorrect code

➔ broad impact on the quality of software

COMPILER
helloworld

.exe

2

Differential compiler testing has been extremely effective!

Multiple C
compilers

Cross check
execution results

Mismatches
indicate bugs

1.exe 2.exe

Well-defined
C program

LLVM

3

Differential compiler testing has been extremely effective!

Csmith has found hundreds of bugs in GCC
and LLVM

But …

Csmith team won Most Influential PLDI 2011
Paper Award (at PLDI 2021)

4

Compilers have become immune to Csmith

Similar story for other compiler fuzzing tools

Prof John Regehr
(Csmith research group
lead) in 2019:

5

CsmithEdge: closer to the edge

• New fuzzer: compilers not yet immune to it but … takes long time to develop

• Idea: can we adapt existing fuzzers to find new bugs?

6

• CsmithEdge ➔ gets closer to the edge of the language semantics

• By being less conservative about undefined behaviours

• 9 new bugs in C compilers + detected several old bugs

• None of these bugs can be found by regular Csmith!

Fuzzing, compilers and undefined behaviours

• Main challenge: generating interesting + UB-free-programs

• Undefined Behaviours (UB)

7

Division in
zero

Null pointer
dereference

Accessing
array out of

bound

Integer
overflow

…

Fuzzing, compilers and undefined behaviours

• Main challenge: generating interesting + UB-free-programs

• Undefined Behaviours (UB)

7

Division in
zero

Null pointer
dereference

Accessing
array out of

bound

Integer
overflow

…

UB = behaviour that the does not respect the language specification

and for which the International Standard imposes no requirements

Fuzzing, compilers and undefined behaviours

• Main challenge: generating interesting + UB-free-programs

• Undefined Behaviours (UB)

• Programs with UB: unpredictable result ➔ mismatches meaningless
➔ compiler developers specifically request not to file such reports

7

Division in
zero

Null pointer
dereference

Accessing
array out of

bound

Integer
overflow

…

• Csmith introduces constraints for
UB-free program generation

• Example: avoid UB related to division
in zero via “safe math” wrappers

8

Fuzzing, compilers and undefined behaviours

𝑎/𝑏 𝑏 == 0 ? 𝑎 ∶ 𝑎/𝑏

Unsafe division Safe division wrapper

• Csmith introduces constraints for
UB-free program generation

• Example: avoid UB related to division
in zero via “safe math” wrappers

8

Fuzzing, compilers and undefined behaviours

𝑎/𝑏 𝑏 == 0 ? 𝑎 ∶ 𝑎/𝑏

Unsafe division Safe division wrapper

• Csmith introduces constraints for
UB-free program generation

• Example: avoid UB related to division
in zero via “safe math” wrappers

8

Fuzzing, compilers and undefined behaviours

𝑎/𝑏 𝑏 == 0 ? 𝑎 ∶ 𝑎/𝑏

Unsafe division Safe division wrapper

• Csmith introduces constraints for
UB-free program generation

• Example: avoid UB related to division
in zero via “safe math” wrappers

8

Fuzzing, compilers and undefined behaviours

𝑎/𝑏 𝑏 == 0 ? 𝑎 ∶ 𝑎/𝑏

Unsafe division Safe division wrapper

CsmithEdge – research hypothesis

Observation
Resulting program never contains certain expressions/statements

Problem
Some of the code optimizations in the compiler can be inapplicable

Hypothesis
Generation constraints limit the form of programs we can generate and thus the
bugs we can find

9

• Observation + Hypothesis ➔ found new bugs in GCC, LLVM and Visual Studio

10

CsmithEdge vs Csmith

➔Replace safe_mode with the operator itself

➔Arithmetic operators can appear now

outside the ternary operator

int main(){
const long ONE = 1L;
long y = 0L;
long x = ((long) (ONE || (y = 1L)) % 8L);
printf("x = %ld, y = %ld\n", x, y);

}

➔Bug: violation of the short-circuiting op. rule:

if the first operand is sufficient to determine the

overall result, then the second operand should

not be evaluated, in case it commits side effects

or exhibits UB.

CsmithEdge:
being less
conservative

Modify Csmith to create
more interesting programs
by weaken constraints
related to UB avoidance

(1) Weaken generation
constraints

11

CsmithEdge:
being less
conservative

Modify Csmith to create
more interesting programs
by weaken constraints
related to UB avoidance

(1) Weaken generation
constraints

(2) Weaken post
generation constraints

11

`

CsmithEdge:
being less
conservative

Modify Csmith to create
more interesting programs
by weaken constraints
related to UB avoidance

(1) Weaken generation
constraints

(2) Weaken post
generation constraints

11

`

CsmithEdge: weaken generation constraints

• These constraints guard against

• Use set of probabilities to decide separately per generated testcase:

(1) a sub-set of constraint to weaken

(2) The probabilities each of the selected constraint can be weaken

• Example: allow null pointer deference with 10% of the times (that is, enforce the
constraint 90% of the times), and allow accessing array out of bound 23% of the times;
the rest of the constraint are enforced all the time

12

Dangling
pointers

Null pointer
dereference

Accessing
array out of

bound

Use without
initialization

…

CsmithEdge: weaken post generation constraints

• Post generation constraints: safe_math wrappers for arithmetic operators

• Given a testcase: CsmithEdge’s dynamic analysis detects and replaces
redundant safe_math uses with the corresponding arithmetic operator

13

Relax arithmetic
checks

Evaluation

• 7 new bugs in GCC, 1 new bug in LLVM, 1 new bug in Visual Studio, and
several bugs in older versions

• Each of which required a different subset of relaxations

Six-month evaluation in the wild

• 1.6x overhead due to the use of sanitizers (50 s + lazy use of sanitizers)

• Depends on timeout settings and sanitizers ➔ full details in the paper!

Throughput

14

Additional Coverage – 135 K programs

15

