
Compiler Fuzzing:

How Much Does It Matter?

~ research published at the SPLASH’19 OOPSLA conference ~

*Michaël Marcozzi1 *Qiyi Tang2 Alastair F. Donaldson3,1 Cristian Cadar1

*The presented experimental study has been carried out equally by M. Marcozzi and Q. Tang.

1

2 3

Séminaire VERIMAG
Grenoble, 21/02/2020

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Compiler Bugs
• Software developers intensively rely on compilers, often with blind confidence

• Compilers are software: they have bugs too (~150 fixed bugs/month in LLVM compiler)

• In worst case, unnoticed miscompilation (silent generation of wrong code)

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?3

History of LLVM Bug Tracking System (2003-2015) [Sun et al., ISSTA’16]

Compiler Validation (1/2)
• Classical software validation approaches have been applied to compilers

• Formal verification: CompCert verified compiler, Alive optimisation prover, etc.

• Testing: commercial C test suites, LLVM test suite, etc.

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?4

Compiler Validation (2/2)
• Recent surge of interest in compiler fuzzing:

• Automatic and massive random generation of test programs

• Each program P is fed to the complier, automatic miscompilation detection via…

• differential testing (compile P with N compilers, run the N binaries, detect different outputs)
• metamorphic testing (compile and run P and P’, check output of P’ vs P is as expected)

• e.g. 200+ miscompilations found in LLVM by Csmith1, EMI2, Orange3 and Yarpgen4

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?5

1 [Yang et al., PLDI’11] [Regehr et al., PLDI’12] [Chen et al., PLDI’13]

2 Equivalence Modulo Inputs [Le et al., PLDI’14, OOPSLA’15] [Sun et al.,OOPSLA’16]

3 [Nagai et al., T-SLDM] [Nakamura et al., APCCAS’16]

4 https://github.com/intel/yarpgen

https://github.com/intel/yarpgen

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Importance of Fuzzer-Found Miscompilations (1/2)

• Audience of our talks on compiler fuzzers often question the importance of found bugs

• In our experience, this is a contentious debate and people can be poles apart:

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?7

I would suggest that compiler developers stop responding to researchers
working toward publishing papers on [fuzzers]. Responses from compiler

maintainers is being becoming a metric for measuring the performance of
[fuzzers], so responding just encourages the trolls.

’The Shape of Code’ weblog author
(former UK representative at ISO International C Standard)

In my opinion, compiler bugs are extremely dangerous, period.
Thus, regardless of the real-world impact of compiler bugs, I think that
techniques that can uncover (and help fix) compiler bugs are
extremely valuable.

One anonymous reviewer of this paper at a top P/L conference

Importance of Fuzzer-Found Miscompilations (2/2)

• In this work, we consider a mature compiler in a non-critical environment:

• The compiler has been intensively tested by its developers and users

• Trade-offs between software reliability and cost are acceptable and common

• In this context, doubting the impact of fuzzer-found bugs is reasonable:

 It is unclear if mature compilers leave much space to find severe bugs

 Fuzzers find bugs with randomly generated code, whose patterns may not occur in real code

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?8

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Goal and Challenges
• In this work, our objectives are to:

 Show specifically that compiler fuzzing matters or does not matter

 Study the impact of miscompilation bugs in a mature compiler over real apps

 Compare impact of bugs from fuzzers with others (e.g. found by compiling real code)

• Operationally, we aim at overcoming the following challenges:

• Take steps towards a methodology to measure the impact of a miscompilation bug

• Apply it over a significant but tractable set of bugs and real applications

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?10

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?
2. How much does a triggered bug change the binary code?

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?
2. How much does a triggered bug change the binary code?
3. Can the binary changes lead to differences in binary runtime behaviour?

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())
 /* Code transformation */fix for

LLVM bug
#26323

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())
 /* Code transformation */fix for

LLVM bug
#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2()
 && Not != C->getValue()))

 warn("Bug triggered!");
 else /* Code transformation */ }

Warning-Laden Compiler

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())
 /* Code transformation */fix for

LLVM bug
#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2()
 && Not != C->getValue()))

 warn("Bug triggered!");
 else /* Code transformation */ }

Warning-Laden Compiler

CCC

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())
 /* Code transformation */fix for

LLVM bug
#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2()
 && Not != C->getValue()))

 warn("Bug triggered!");
 else /* Code transformation */ }

Warning-Laden Compiler

grep logs

"Fixing patch reached!"

| "Bug triggered!"

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

Check for
syntactic differences

in assemblyCCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

Check for
syntactic differences

in assemblyCCC

mov $5, %eax addl $4, %esp

Textual comparison
opcode-by-opcode

?

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

Check for
syntactic differences

in assemblyCCC

mov $5, %eax addl $4, %esp

Textual comparison
opcode-by-opcode

?

→ Limit false positives

 (registers, etc.)

→ No false negatives

 with our bugs

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2()
 && Not != C->getValue())

Check for
syntactic differences

in assemblyCCC

mov $5, %eax addl $4, %esp

Textual comparison
opcode-by-opcode

?

→ Limit false positives

 (registers, etc.)

→ No false negatives

 with our bugs

If non-reproducible
build process,
some assembly

differences might
not be caused

by the fixing patch

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Count divergent
test results

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Count divergent
test results

Test divergence
≠

Miscompilation
(flaky tests)

No test divergence
≠

No miscompilation
(test suite strength)

Stage 3: Dynamic Binary Analysis

Compiler Fuzzing: How Much Does It Matter?16M. Marcozzi

Stage 3: Dynamic Binary Analysis

Compiler Fuzzing: How Much Does It Matter?16M. Marcozzi

mov $5, %eax addl $4, %esp

addl $4, %esp mov $5, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax

Sample of
syntactic differences

in assembly
from Stage 2

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp

Stage 3: Dynamic Binary Analysis

Compiler Fuzzing: How Much Does It Matter?16M. Marcozzi

mov $5, %eax addl $4, %esp

addl $4, %esp mov $5, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax

Sample of
syntactic differences

in assembly
from Stage 2

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp

Stage 3: Dynamic Binary Analysis

Compiler Fuzzing: How Much Does It Matter?16M. Marcozzi

mov $5, %eax addl $4, %esp

addl $4, %esp mov $5, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax

Sample of
syntactic differences

in assembly
from Stage 2

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp12. x = f(x,y);

1. int func(){

 ...

CCC

Stage 3: Dynamic Binary Analysis

Compiler Fuzzing: How Much Does It Matter?16M. Marcozzi

mov $5, %eax addl $4, %esp

addl $4, %esp mov $5, %eax

mov $5, %eax
addl $4, %esp

addl $4, %esp
mov $5, %eax

Sample of
syntactic differences

in assembly
from Stage 2

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp

Manual crafting of local or global inputs
to trigger runtime divergence

addl $4, %esp
mov $5, %eax
mov $4, %eax

mov $5, %eax
addl $4, %esp12. x = f(x,y);

1. int func(){

 ...

CCC

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Experiments (1/2)
We apply our bug impact measurement methodology over a sample of:

• 45 miscompilations bugs in the open-source LLVM compiler (C/C++ → x86_64)

• 27 fuzzer-found bugs (12% of miscompilations from Csmith, EMI, Orange and Yarpgen)

• 10 bugs detected by compiling real code and 8 bugs from Alive formal verification tool

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?18

We apply our bug impact measurement methodology over a sample of:

• 309 Debian packages totalling 10M+ lines of C/C++ code

• Not part of the LLVM test suite and with a reproducible build process

• Diverse set of applications w.r.t. type, size, popularity and maturity

Experiments (2/2)

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?19

> grep

A lot of manual effort and 5 months of computation happen here

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?21

Stage 1a Stage 2 Stage 3Stage 1b

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?22

Stage 1a Stage 2 Stage 3Stage 1b

Stage 1
All bug-finding approaches discover bugs

frequently reached and sometimes triggered

when compiling real code

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?22

Stage 1a Stage 2 Stage 3Stage 1b

Stage 1
All bug-finding approaches discover bugs

frequently reached and sometimes triggered

when compiling real code

Yet, bug triggering detection

had often to be over-approximated!

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?23

Stage 1a Stage 2 Stage 3Stage 1b

Stage 2
Binary differences only affect

a small fraction of package builds,
deeper inspection shows that only a tiny

fraction of package functions are touched

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?23

Stage 1a Stage 2 Stage 3Stage 1b

Stage 2
Binary differences only affect

a small fraction of package builds,
deeper inspection shows that only a tiny

fraction of package functions are touched

Bu
g

id
en

tifi
er

Csmith #11964
Csmith #11977
Csmith #12189
Csmith #12901
Csmith #17179
Csmith #17473
Csmith #27392

EMI #26323
EMI #28610
EMI #29031
EMI #30935

Orange #15959
Alive #20189
Alive #21242
Real #27903
Real #33706

Number of affected functions (out of 202k)

0 1000 2000 3000 4000 5000 6000

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?24

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?24

Stage 1a Stage 2 Stage 3Stage 1b

One test failure in zsh
(+ one extra test failure in SQLite)

Stage 3
In total, miscompilations caused

only three package test failures

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?24

Stage 1a Stage 2 Stage 3Stage 1b

One test failure in zsh
(+ one extra test failure in SQLite)

One test failure in leveldb

Stage 3
In total, miscompilations caused

only three package test failures

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?25

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?25

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

COMPILE TIME

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?25

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

COMPILE TIME
79

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?25

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

COMPILE TIME
79

78

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?25

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

COMPILE TIME
79

78

Wrong modulo binary code generated

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?26

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
78

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?26

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

TEST RUN TIME
78

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?26

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

TEST RUN TIME
232 78

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?26

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

TEST RUN TIME
232 78

254 (out of range)

Test Failure in SQLite

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?26

• Miscompilation is caused by LLVM bug #13326, found by Csmith

• Bug affects translation of 8-bits unsigned integer division from IR (udiv) to x86

• When divisor is constant, translation is wrong for 6 of 65k possible divisor values

• In SQLite, the following line of source code is miscompiled, triggering a test failure:

zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];

TEST RUN TIME
232 78

254 (out of range)

Garbage value

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?27

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?27

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Is it due to very weak test coverage?

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?27

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Sample of Package Test Suites

47% average statement coverage

Half suites > 50% statement coverage

Is it due to very weak test coverage?

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?27

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Sample of Package Test Suites

47% average statement coverage

Half suites > 50% statement coverage

Is it due to very weak test coverage?

SQLite

98% statement coverage of 151kLoC

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?28

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?28

Stage 1a Stage 2 Stage 3Stage 1b

Stage 3
In total, miscompilations caused

only three package test failures

What does manual inspection
of assembly differences reveal?

Manual Inspection of Assembly Differences

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?29

• We inspected about 50 differences in package assembly code

• For each, we tried and failed to craft inputs triggering a runtime divergence

• In practice, differences have no or little impact over package semantics:

• Compiler maintainers often deactivate whole parts of features instead of fixing them

• Specific runtime circumstances often necessary for miscompilation to cause failure

mov $5, %eax addl $4, %esp

?

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Conclusions
• Our two major take-aways are that miscompilations bugs in a mature compiler…

• seldom impact app reliability (as probed by test suites and manual inspection)

• have similar impact no matter they were found in real or fuzzer-generated code

• A possible explainer for these results is that, in a mature compiler…

 all the bugs affecting patterns frequent in real code have already been fixed

 only corner-case bugs remain, affecting real and generated code similarly

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?31

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

7. Future work

Future Work
• Our main research directions for even better evaluation of compiler bugs impact:

1. Better probe differences in assembly: symbolic execution + multi-version execution

2. Exploit methodology and artefact: replication, more bugs, less mature compiler, etc.

3. Consider impact on non-functional properties: speed, compiler-induced backdoors, etc.

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?33

Thank you for listening!
> Open access to paper
 https://dl.acm.org/doi/10.1145/3360581

 www.marcozzi.net @michaelmarcozzi

> Fully reusable artefact
 https://doi.org/10.5281/zenodo.3403703

https://dl.acm.org/doi/10.1145/3360581
https://doi.org/10.5281/zenodo.3403703

