
Closer to the Edge: 

Testing Compilers More Thoroughly 

by Being Less Conservative About 

Undefined Behaviour

Karine Even-Mendoza, Cristian Cadar, Alastair F. Donaldson

Imperial College London

Speaker: Karine Even-Mendoza

ASE-NIER track 

22 September, 2020 



Fuzzing, Compilers and Undefined Behaviours

 Compiler testing: to expose mis-compilation, which can have a broad impact

 Compiler fuzzers: efficient and successful method for bug hunting

 Testcase = a program

 Result A != Result B ➔mis-compilation

2

.c
Compiler A 010

011
Execute 

Result A

010

011
Execute 

Result B



Fuzzing, Compilers and Undefined Behaviours

 Main challenge: generating UB-free-programs (to consider a valid bug)

 Undefined Behaviours (UB)

 E.g., UB in C: (i) int x=5÷0; or (ii) int x=INT_MAX + 7;

 Non-UB-free-program: unpredictable program’s result + describe a problem that is 
not a bug

3



Fuzzing, Compilers and Undefined Behaviours

 Fuzzing with Csmith: successful at finding many bugs in 
mature compilers [PLDI’11]

 During/post-generation solutions for UB-free-programs

 Arithmetic operators: avoid UBs via “safe math” wrappers

4



Compiler Fuzzers

 Fuzzing with Csmith: successful at finding many bugs in 
mature compilers [PLDI’11]

 During/post-generation solutions for UB-free-programs

 Arithmetic operators: avoid UBs via “safe math” wrappers

 Compilers became immune to these fuzzers

4



Code Fragment of a Csmith Testcase

5



What Code Can We Generate?

 Observation
None of these operators found outside ternary operator + use several times in a statement

 Problem
E.g., some of the code optimizations in the compiler can be inapplicable if enclosed in these checks

 Hypothesis
Safe math wrappers everywhere ➔ limits the form of programs we can generate

6



Compiler Fuzzers

 Fuzzing with Csmith: successful at finding many bugs in 
mature compilers [PLDI’11]

 During/post-generation solutions for UB-free-programs

 Arithmetic operators: avoid UBs via “safe math” wrappers

 Compilers became immune to these fuzzers

 Observation + Hypothesis➔ found new bugs in GCC 

7



Being Less Conservative

 CsmithEdge

 Modifies Csmith’s programs to create more interesting testcases

 Post-gen. dynamic analysis: to identify and eliminate redundant Csmith’s safe math wrappers

Generator
Dynamic 

Analyses
Relaxed testcaseConservative testcase

8



Preliminary Evaluation

9

 Two new bugs: GCC-10, P2 normal, tree-
optimisation, fixed promptly, discovered only 
by CsmithEdge

 GCC Bug #1: Skipping tree-side-effect 
evaluation of operator’s 2nd argument

 GCC Bug #2: Skipping tree-side-effects on 
internal calls

 We reported additional bugs since then

 Line coverage: 100,000 test-cases, 
compared against Csmith, with 4k lines
uniquely-covered

228,000

230,000

232,000

234,000

236,000

238,000

240,000

242,000

244,000

246,000

248,000

0 20,000 40,000 60,000 80,000 100,000

GCC - Lines Hit

Csmith-Funs CsmithEdge-Macros

Line coverage in GCC-10.0.1



Future Work

 Bug-hunting: trying different compilers (e.g., LLVM or Microsoft Visual Studio)

 Post-generation/during testing: extends the possible modification we allow in post-generation

 During generation: relax restrictions + (after) detect and discard those with UBs

 E.g., can skip variables initialization when declared, or allow null pointers

Generator
Dynamic 

Analyses
Relaxed testcaseConservative testcase

10




