
Summaries of C String Loops for More Effective
Symbolic Execution (and Refactoring)

Joint work with
Timotej Kapus (Imperial College London)

Oren Ish-Shalom and Noam Rinetzky (Tel Aviv University)
Shachar Itzhaky (Technion)

Cristian Cadar
Imperial College London

Shonan Meeting on Fuzzing and Symbolic Execution
24-27 September 2019

Motivation

● Strings everywhere!
● Lots of work on building string constraint solvers from the SMT

community
● E.g., Z3, CVC4, HAMPI

● Let’s use them for symbolic execution!

2

Problem
● Developers often use custom loops instead of string functions

3

#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p;
for (p = line; p && *p && whitespace (*p); p++)

;

char *p = path + strlen (path);
for (; *p != '/' && p != path; p--)

;

while (*s != '\n’)
s++;

while (('␣' == *pbeg) || ('\r' == *pbeg)
|| ('\n' == *pbeg) || ('\t' == *pbeg))
pbeg++;

Objective
● Replace custom loops with sequence of primitive pointer operations and calls

to standard string functions

4

#define whitespace(c) (((c) == '␣') || ((c) == '\t'))
char *p = line + strspn(line, "␣\t")

p = strrchr(path, '/’);
p = p == NULL ? path : p;

s = rawmemchr(s, '\n');

pbeg += strspn(pbeg, "␣\r\n\t");

How?
● Counterexample-guided inductive synthesis (based on symex)
● Proof of bounded equivalence (up to a certain string length)
● Mathematical proof of unbounded equivalence

5

Scope: Memoryless Loops

● Loops conforming to an interface:
○ Argument: single pointer to a string
○ Returns: pointer to an offset in the string

● Only reads the character under current pointer

6

char* loopSummary(char*);

Vocabulary for summarizing string loops

string.h functions

● strspn
● strcspn
● memchr
● strchr
● strrchr
● strpbrk

conditionals

● is null
● is start

pointer manipulation

● increment
● set to start
● set to end

special

● backward traverse
● return

7

char *p = line + strspn(line, "␣\t")

STRSPN_OPCODE ␣\t DATA TERMINATOR RETURN_OPCODE

Loop summary!
8

char *p;
for (p = line; p && *p && whitespace (*p); p++)

;

Counter-example guided synthesis

Synthesizer Verifier

Loop to
summarize

Done

Success

Fail - generate counterexample

Generate a sequence of tokens
fitting all counterexamples

9

Synthesizer

● Symbolic execution
● Symbolic input: sequence of tokens
● Constrain it to be equivalent on

current (counter)examples
● Ask an SMT solver for a solution

Verifier

● Symbolic execution
○ Bounded equivalence checking

strings of length ≤ 3
● For memoryless loops:

○ checking lengths ≤ 3 sufficient to
show equivalence for any length
(proof in the paper)

○ Intuitively the proof depends on
the fact that each iteration is
independent from previous ones

10

Synthesis Evaluation

● 13 open source programs
● Extracted 115 memoryless

loops
● 88/115 successfully

synthesized within 2h*
● 81 within 5 minutes

*Gaussian process optimization to
optimize the vocabulary

diff

make

m4

patch
libosip

11

12

Impact of string solvers (KLEE+Z3str) on Sym Ex
Average across loops, 2min timeout

Can reason
about unbounded
string lengths

Refactoring
● Used summaries to create patches and send them to developers
● Submitted patches to 5 applications
● Patches accepted in libosip, patch and wget

- for(; *tmp == ' ' || *tmp == '\t'; tmp++){
- }
- for(; *tmp == '\n' || *tmp == '\r'; tmp++){
- } /* skip LWS */
+ tmp += strspn(tmp, " \t");
+ tmp += strspn(tmp, "\n\r");

13

Conclusion

● C developers often use custom loops to operate on strings
● Developed synthesis technique to transform such loops into

sequences of primitive operations and calls to standard string library
● Potential to significantly speed up symbolic execution of string-

intensive code
● Applications to refactoring and compiler optimisations

14

