
Computing Summaries of String Loops in C
for Better Testing and Refactoring

Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky,
Noam Rinetzky, Cristian Cadar

2

␣

This
talk

3

Why?

● Give clarity to the meaning of loops

● Refactoring
● Program analysis

○ Symbolic execution
● Compiler optimisations

4

Motivation: Refactoring

5

summary

Motivation: Refactoring

6

Motivation: Refactoring

● Real examples from and
● C code contains lots of loops

replicating libc functions
○ Different handling of edge cases

7

Motivation: Program analysis

● Easier to reason about a known function
than an arbitrary loop

Example symbolic execution of
Two approaches:

1. Unroll loop and gather constraints
character by character

2. Model it as in theory of
strings

8

Scope: Memoryless Loops

● Loops conforming to an interface:
○ Argument: single pointer to a buffer
○ Returns: pointer to an offset in the buffer

● Only reads the character under current pointer

● Need a vocabulary to express these loops

9

Remember?

␣

10

In our vocabulary

␣

STRSPN_OPCODE ␣ DATA TERMINATOR RETURN_OPCODE

Loop summary!
11

We just used characters!

␣

STRSPN_OPCODE DATA TERMINATOR RETURN_OPCODE

Loop summary!

P \0 F␣

12

Vocabulary for expressing simple loops

● Vocabulary has meaning in
an

● and (F)
● Adding a new vocabulary as

simple as adding a new

13

Vocabulary for expressing simple loops

string.h functions

●
●
●
●
●
●

conditionals

●
●

pointer manipulation

●
●
●

special

●
●

14

Loop Summarisation

Find sequences of characters that when
executed by our interpreter have the
same behaviour as the original loop

15

Counter-example guided synthesis

Synthesizer Verifier

Loop to
summarize

Done

Success

Fail - generate counterexample

Generate a sequence of characters
fitting all counterexamples

16

Synthesizer

● Symbolic execution
● Use a symbolic string (program)
● Constrain it to be equivalent on

current counterexamples
● Ask an SMT solver for a solution

Verifier

● Symbolic execution
○ Bounded equivalence

checking strings of length ≤ 3
● Loops in our scope

○ checking lengths ≤ 3 sufficient
to show equivalence for any
length (proof in the paper)

17

Synthesizer

● Symbolic execution
● Use a symbolic string (program)
● Constrain it to be equivalent on

current counterexamples
● Ask an SMT solver for a solution

Single run of symbolic execution

Verifier

● Symbolic execution
○ Bounded equivalence

checking strings of length ≤ 3
● Loops in our scope

○ checking lengths ≤ 3 sufficient
to show equivalence for any
length (proof in the paper)

18

Synthesizer Verifier

CEX: []
19

Synthesizer Verifier

CEX: []

Program: F

20

Synthesizer Verifier

CEX: []
Counterexample: ␣ 21

Synthesizer Verifier

CEX: [␣]

Program: P␣ F

␣

22

Synthesizer Verifier

CEX: [␣]
Counterexample:

␣

23

Synthesizer Verifier

CEX: [␣]

Program: P␣ F

␣

24

Synthesizer Verifier

CEX: [␣]
P␣ F

Done!

␣

25

Synthesis Evaluation

● 13 open source programs
● Semi-automatic process
● Extracted 115 loops fitting

our scope
● In total 88/115 synthesised

26

27

2h/loop synthesis timeout: 77/115 loops

Impact of timeout and program size

28

Vocabulary optimisation

● Find a subset of vocabulary that
synthesises more loops

● Gaussian process optimization
● 5 minute timeout
● 81/115 loops with 5min timeout
● 7 additional loops found with full

vocabulary and 2h timeout

Best performing vocabulary

●
●
●
●
●
●

29

88/115 total

Improving symbolic execution

● Use loop summaries to gather more efficient constraints
● Intercept calls to functions and encode them in theory of strings
● Compare with character by character constraints

○ Theory of strings should have an advantage for longer strings
● Implemented in KLEE
● Compared (only) on the loops we extracted

30

31

Improving symbolic execution

32

Improving symbolic execution

Compiler optimisation potential?

● Compare the loop summaries (libc library functions) with
compiled loops

33

Refactoring

● Use summaries to create patches and send them to developers
● Developers of , and accepted the patches

- for(; *tmp == ' ' || *tmp == '\t'; tmp++){
- }
- for(; *tmp == '\n' || *tmp == '\r'; tmp++){
- } /* skip LWS */
+ tmp += strspn(tmp, " \t");
+ tmp += strspn(tmp, "\n\r");

34

Conclusion

● Counterexample guided synthesis based technique for summarisation
of simple loops in C

● 88/115 loops synthesized
● Applications:

○ Program analysis (symbolic execution)
○ Compiler optimisations
○ Refactoring

35

36

2h/loop synthesis timeout: 77/115 loops

37

utility Total loops Inner loops
Loops without
pointer call Read only loops

Loops with a
read from single
pointer

bash 1085 944 438 264 45
diff 186 140 60 40 14
gawk 608 502 210 105 17
git 2904 2598 725 495 108
grep 222 172 72 42 9
m4 328 286 126 78 12
make 334 262 129 102 13
patch 207 172 88 67 20
sed 125 104 35 19 1
ssh 604 544 227 84 12
tar 492 432 155 106 33
torture_test 100 95 39 30 25
wget 228 197 115 83 14
SUM 7423 6448 2419 1515 32338

Has Goto 2
IOsideeffects 3
Non Pointer Return 74
Return In Loop 70
Too Many Arguments 28

Too Many Return Values 31
SUM 208

39

Impact of timeout and program size - 30s timeout

40

Impact of timeout and program size

41

Impact of timeout and program size

42

