
Sparse Symbolic Loop Execution
Frank Busse · Martin Nowack · Cristian Cadar

3rd International Fuzzing Workshop
16 September 2024, Vienna

Symbolic Execution

strcmp(✸✸✸✸, foo0)

f✸✸✸
f✸✸✸

if (!strcmp(s, ”foo”))
…

3

int strcmp(const char *l, const char *r) {
for (; *l==*r && *l; l++, r++);
return *(unsigned char *)l - *(unsigned char *)r;

}

✸ unconstrained byte
f byte is not ‘f’
f byte is ‘f’

● starts with symbolic inputs

● aims to explore as many feasible paths as possible

● uses SMT solver to check path feasibility + error conditions,
and create concrete inputs for selected paths

Symbolic Execution

strcmp(✸✸✸✸, foo0)

f✸✸✸
f✸✸✸

fo✸✸
fo✸✸

foo✸
foo✸

foo0 foo0

4

int strcmp(const char *l, const char *r) {
for (; *l==*r && *l; l++, r++);
return *(unsigned char *)l - *(unsigned char *)r;

}

● 1 + 4 branches to explore

● loops contribute to path explosion

true branch

✸ unconstrained byte
f byte is not ‘f’
f byte is ‘f’

if (!strcmp(s, ”foo”))
…

Sparse Symbolic Loop Execution

strcmp(✸✸✸✸, foo0)

f✸✸✸
f✸✸✸

fo✸✸
fo✸✸

foo✸
foo✸

foo0 foo0

5

int strcmp(const char *l, const char *r) {
for (; *l==*r && *l; l++, r++);
return *(unsigned char *)l - *(unsigned char *)r;

}

Idea: pick “interesting” paths and ignore the rest.

Goal: lose as little coverage as possible.

✸ unconstrained byte
f byte is not ‘f’
f byte is ‘f’

if (!strcmp(s, ”foo”))
…

Sparse Symbolic Loop Execution

strcmp(✸✸✸✸, foo0)

f✸✸✸
f✸✸✸

fo✸✸
fo✸✸

foo✸
foo✸

foo0 foo0

fr✸✸

 r
fo✸✸

fro✸
fro✸

fro0 fro0

strcmp(fo✸✸, fro0)

if (!strcmp(s, ”foo”))
puts(“foo”);

if (!strcmp(s, ”fro”))
puts(“fro”);

6

true branch

true branch

✸ unconstrained byte
f byte is not ‘f’
f byte is ‘f’

Sparse Symbolic Loop Execution

7

● statically “taints” all values that could be affected
by a loop

s tainted

if (!strcmp(s, ”foo”))
puts(“foo”);

if (!strcmp(s, ”fro”))
puts(“fro”);

if (!strcmp(s, ”foo”))
puts(“foo”);

if (!strcmp(s, ”fro”))
puts(“fro”);

Sparse Symbolic Loop Execution

8

● statically “taints” all values that could be affected
by a loop

● computes loop-impact barriers, where no relevant
decision points can be reached anymore

s tainted

barriers

Sparse Symbolic Loop Execution

9

● tracks behaviour (branch) at decision points up to barrier

● filters states (paths) at barriers according to the uniqueness
of their behaviour at relevant decision points

if (!strcmp(s, ”foo”))
puts(“foo”);

if (!strcmp(s, ”fro”))
puts(“fro”);

s tainted

Path iffoo iffro

foo0 true false

fro0 false true

f✸✸✸, ..., foo0 false false

keep only one or sample e.g. 1st, 2nd, 4th,
…

barriers

Research Questions

10

RQ1: Is SSLE an effective approach to postpone or filter states, thereby reducing path
explosion?

RQ2: How does SSLE compare to less complex approaches?

Planned Evaluation

11

Prototype

● SparKLE implemented on top of KLEE (https://klee-se.org/)

Benchmarks

● ~50 benchmarks (Binutils, Coreutils, diff, gawk, gcal, gmake, gzip, libsndfile, libtiff, libxml)

● 1hr, 4GiB memory limit for symbolic executor

https://klee-se.org/

Planned Evaluation - Efficacy

12

RQ1

● comparison (coverage) against KLEE

● DFS search heuristic, several combinations of configuration flags

tainting thresholds ✕ filter strategies ✕ state revival rate

● rndcov search heuristic, 2 “best” DFS configurations, random subset of 10 benchmarks, 100 repetitions

tainting threshold taint x functions along call stack and y functions down call graph
filter strategy either keep only one witness or use bucketing approach (1, 2, 4, 8, …)
revival rate select n% of states from postponed set

Planned Evaluation - Lightweight Approaches

13

RQ2

Fixed Decision Points

● no taint analysis, just (configurable) fixed number of observed decision points

● proposed decision points limits: 1, 2, 4, 8, 16, 32, 64, 128, 256

● DFS search heuristic

Simple

● no taint analysis, no decision point tracking

● only sample paths based on iteration count (0, 1, 2, 3, 4, 8, 16, …, n)

● DFS search heuristic

Preliminary Results - Relative Coverage (DFS)

14

Preliminary Results - Relative Coverage (DFS)

15

95.3% of states postponed!

klee-se.org

