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Dynamic Symbolic Execution 

• Dynamic symbolic execution is a technique for 

automatically exploring paths through a program 

• Determines the feasibility of each explored path using a 

constraint solver 

• Checks if there are any values that can cause an error on 

each explored path 

• For each path, can generate a concrete input triggering 

the path 
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Dynamic Symbolic Execution 
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• Received significant interest in the last few years 

• Many dynamic symbolic execution/concolic tools 

available as open-source: 

– CREST, KLEE, SYMBOLIC JPF, etc. 

• Started to be adopted/tried out in the industry: 

– Microsoft (SAGE, PEX) 

– NASA (SYMBOLIC JPF, KLEE)  

– Fujitsu (SYMBOLIC JPF, KLEE/KLOVER)  

– IBM (APOLLO) 

– etc. etc. 
Symbolic Execution for Software Testing in Practice: 
Preliminary Assessment. Cadar, Godefroid, Khurshid, 
Pasareanu, Sen, Tillmann, Visser, [ICSE Impact 2011] 



magic ≠  

0xEEEE 

magic = 

0xEEEE 

img =  

Toy Example 

TRUE 

int main(int argc, char** argv) { 

  ... 

  image_t img = read_img(file); 

  if (img.magic != 0xEEEE) 

    return -1; 

  if (img.h > 1024) 

    return -1; 

  w = img.sz / img.h; 

  ... 

} 

magic ≠  

0xEEEE 

return -1 

h > 1024 
TRUE 

h > 1024 
return -1 

h ≤ 1024 

w = sz / h 

struct image_t { 

 unsigned short magic; 

     unsigned short h, sz; 

     ... 



magic ≠  

0xEEEE 

magic = 

0xEEEE 

img =  

AAAA0000… 

img1.out 

TRUE 
return -1 

h > 1024 
TRUE 

h > 1024 
return -1 

h ≤ 1024 

EEEE1111… 

img2.out 

h = 0 
TRUE 

h = 0 

Div by 
zero! 

h ≠ 0 

EEEE0A00… img4.out 

EEEE0000… 

img3.out 

w = sz / h 

magic ≠  

0xEEEE 

Each path is explored separately! 

int main(int argc, char** argv) { 

  ... 

  image_t img = read_img(file); 

  if (img.magic != 0xEEEE) 

    return -1; 

  if (img.h > 1024) 

    return -1; 

  w = img.sz / img.h; 

  ... 

} 

struct image_t { 

 unsigned short magic; 

     unsigned short h, sz; 

     ... 

Toy Example 



Scalability Challenges 



Rest of the talk 

Constraint solving in symex for: 

(1) Bug-finding in systems and security-

critical code 

(2) Recovery of broken documents 

(3) Testing and bounded verification of   

program optimisations (if time) 
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Bug-Finding 
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Joint work with: 

Daniel Dunbar, Dawson Engler [OSDI 2008] 

Junfeng Yang, Can Sar, Paul Twohey, Dawson Engler [IEEE S&P 2008] 

Paul Marinescu [ICSE 2012] 

Hristina Palikareva [CAV 2013] 

JaeSeung Song, Peter Pietzuch [IEEE TSE 2014] 



Bug Finding with EGT, EXE, KLEE: 
Focus on Systems and Security Critical Code 

• Most bugs fixed promptly 
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Applications 

Text, binary, shell and file 

processing tools 

GNU Coreutils, findutils, binutils, diffutils, 

Busybox, MINIX (~500 apps) 

Network servers Bonjour, Avahi, udhcpd, lighttpd, etc. 

Library code libdwarf, libelf, PCRE, uClibc, etc. 

File systems ext2, ext3, JFS for Linux 

Device drivers pci, lance, sb16 for MINIX 

Computer vision code OpenCV (filter, remap, resize, etc.) 

OpenCL code Parboil, Bullet, OP2 



md5sum -c t1.txt 

mkdir -Z a b 

mkfifo -Z a b 

mknod -Z a b p 

seq -f %0 1 

printf %d ‘ 

pr -e t2.txt 

tac -r t3.txt t3.txt 

paste -d\\ abcdefghijklmnopqrstuvwxyz 

ptx -F\\ abcdefghijklmnopqrstuvwxyz 

ptx x t4.txt 

cut –c3-5,8000000- --output-d=: file 

 

                                              

Coreutils Commands of Death 

[OSDI 2008,  ICSE 2012] 

t1.txt:    \t \tMD5( 

t2.txt:    \b\b\b\b\b\b\b\t 

t3.txt:    \n 

t4.txt:    A   



Disk of Death (JFS, Linux 2.6.10) 

Offset Hex Values 

00000 0000 0000 0000 0000 0000 0000 0000 0000 

. . . . . . 

08000 464A 3135 0000 0000 0000 0000 0000 0000 

08010 1000 0000 0000 0000 0000 0000 0000 0000 

08020 0000 0000 0100 0000 0000 0000 0000 0000 

08030 E004 000F 0000 0000 0002 0000 0000 0000 

08040 0000 0000 0000 . . .  

• 64th sector of a 64K disk image 

• Mount it and PANIC your kernel 

[IEEE S&P 2008] 



Packet of Death (Bonjour) 

Offset Hex Values 

0000 0000 0000 0000 0000 0000 0000 0000 0000 

0010 

0020 00FB 0000 14E9 002A 0000 0000 0000 0001 

0030 0000 0000 0000 055F 6461 6170 045F 7463 

0040 7005 6C6F 6361 6C00 000C 0001 

003E 0000 4000 FF11 1BB2 7F00 0001 E000 

• Causes Bonjour to abort, potential DoS attack 

• Confirmed by Apple, security update released 

[IEEE TSE 2014] 



Constraint Solving: Accuracy 

• Bit-level modeling of memory is critical in C code 

– Many bugs and security vulnerabilities could only be found if 
we reason about arithmetic overflows, type conversions, etc. 

• Mirror the (lack of) type system in C 

– Model each memory block as an array of 8-bit BVs 

– Bind types to expressions, not bits 

• Need a QF_ABV solver 

– We mainly use STP 



Constraint Solving: Speed 

To be effective, DSE needs to explore lots of 
paths  solve lots of queries, fast 

• Real program generate complex queries 

• Queries performed at every branch 



Some Constraint Solving Statistics  

UNIX utilites (and many 

other benchmarks) 

• Large number of queries 

• Most queries <0.1s 

• Typical timeout: 30s 

• Most time spent in the 

solver (before and after 

optimizations!) 

Application Instrs/s Queries/s Solver % 

[ 695 7.9 97.8 

base64 20,520 42.2 97.0 

chmod 5,360 12.6 97.2 

comm 222,113 305.0 88.4 

csplit 19,132 63.5 98.3 

dircolors 1,019,795 4,251.7 98.6 

echo 52 4.5 98.8 

env 13,246 26.3 97.2 

factor 12,119 22.6 99.7 

join 1,033,022 3,401.2 98.1 

ln 2,986 24.5 97.0 

mkdir 3,895 7.2 96.6 

Avg: 196,078 675.5 97.1 

1h runs using KLEE with 
STP, in DFS mode 

[CAV’13] 



Constraint Solving Performance 

We already benefit from the optimisations 
performed by SAT and SMT solvers 

Essential to exploit the characteristics of the 
constraints generated during symex, e.g.: 

1) Conjunctions of constraints 

2) Path condition (PC) always satisfiable 

3) Large sequences of (similar) queries 

4) Must generate counterexamples 
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1) Conjunction of constraints 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

h(x) = 0 

PC: f(x) = 0  /\  g(x) ≠ 0  /\  h(x) = 0 

 We explore one path at a time 



2) PC always satisfiable 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

 We check for satisfiability at each 

branch 

 We only explore feasible paths 

h(x) = 0 

PC: f(x) = 0  /\  g(x) ≠ 0  /\  h(x) = 0 



3) Large sequence of (similar) queries 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

 Check for satisfiability at each 

branch 

 Constraints obtained from a fixed 

set of static branches 

PC1: f(x) = 0  

PC2: f(x) = 0  /\  g(x) ≠ 0 

PC3: f(x) = 0  /\  g(x) ≠ 0  /\  h(x) = 0 

PC4: f(x) = 0  /\  g(x) ≠ 0  /\  h(x) ≠ 0 

 

h(x) ≠ 0 h(x) = 0 



4) Must generate counterexamples 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

• Essential for reproducing bugs, 

transitioning between symbolic 

and concrete 

• Can also be exploited for faster 

solving 

h(x) ≠ 0 h(x) = 0 



Example optimisation 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

PCa: f(x) = 0 /\ g(x) ≠ 0 

PCb: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0 

PCc: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) ≠ 0 

 

h(x) ≠ 0 h(x) = 0 

PCa satisfiable  at least one of 

PCb or PCc satisfiable 

PCb UNSAT  PCc SAT (valid) 

PCc UNSAT  PCb SAT (valid) 

PCb SAT  ? 

 

 



Example optimisation 
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f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) ≠ 0 

PCa: f(x) = 0 /\ g(x) ≠ 0 

PCb: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0 

PCc: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) ≠ 0 

 

h(x) ≠ 0 h(x) = 0 

For each SAT query, we ask for a CEX! 

PCa SAT with CEX x = 10  

 x = 10 a solution for either PCb or PCc 

Cheap to check! 



Cex Caching: generalisation 

2  y < 100 

x > 3 

x + y > 10 

x = 5 

y = 15 

2  y < 100 

x + y > 10 

2  y < 100 

x > 3 

x + y > 10 

x < 10 

Eliminating constraints 
cannot invalidate solution 

Adding constraints often  
does not invalidate solution 

x = 5 

y = 15 

x = 5 

y = 15 

35 
[OSDI’08] 



Total queries vs STP queries 

[CAV’13] 

Application Queries/s Queries STP queries 

[ 7.9 30,838 30,613 

base64 42.2 184,348 47,600 

chmod 12.6 46,438 37,911 

comm 305.0 1,019,973 21,720 

csplit 63.5 285,655 33,623 

dircolors 4,251.7 5,609,093 2,077 

echo 4.5 16,318 764 

env 26.3 96,425 38,047 

factor 22.6 80,975 6,189 

join 3,401.2 5,362,587 4,963 

ln 24.5 91,812 40,868 

mkdir 7.2 26,631 25,622 



 

Docovery: recovering 

broken documents 
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Joint work with: 

Tomasz Kuchta, Miguel Castro, Manuel Costa [ASE 2014] 



Motivation 



Storage failure, network transfer 
failure, power outage 

Corrupt Documents 



Buffer overflows, assertion failures, exceptions 

Incompatibility across versions / applications 

Application Bugs 



Is it possible to fix a broken document, without 

assuming any input format,  

in a way that preserves the original contents as 

much as possible?  

 

Research Question 



Docovery 

[ASE 2014] 



Docovery 

[ASE 2014] 



Docovery 

[ASE 2014] 



Constraint Solving Challenges 

1) Huge number of constraints 

• we don’t choose the input size! 

 

 

(Partial) solution: initial taint tracking stage to identify 

problematic bytes 

 



Constraint Solving Challenges 

2) Need counterexamples similar to the initial bytes! 

• no such mechanism in existing solvers (AFAWK) 

 

Algorithm(PC, bytes b, initial values v) 

for each bK with initial value vK  

      if (bK = vK) is satisfiable (solver call) 

          then PC = PC ∧ (bK = vK) 

          else get new value for bK from solver 

 

One solver call for each byte…  can the solver help? 



pr – a pagination utility 

pine – a text-mode e-mail client 

dwarfdump – a debug information display tool 

readelf – an ELF file information display tool 

 

 

Initial study on 4 medium-sized apps 

Benchmark Document type Document Sizes 

pr Plain text up to 256 pages / 1080 KB 

pine MBOX mailbox up to 320 e-mails / 2.3 MB 

dwarfdump DWARF executables up to 1.1 MB 

readelf ELF object files up to 1.5 MB 



Known, real-world bugs 

pr, pine, readelf – buffer overflow 

dwarfdump – division by zero 

 

 
Benchmark ‘Buggy’ sequence 

pr Lorem ipsum...0x08 0x08...0x09 EOF 

pine ...From: "\"\"\"\"\"\"\"\...\"\"\"\""@host.fubar... 

dwarfdump ...GCC: (Ubuntu/Linaro 4.6.3...0x00 0x00... 

readelf ...0xFD 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF... 

Examined issues caused by 

application bugs 



Results 

Benchmar

k 
Document sizes 

Candidates/d

ocument/run 

Number of  

changed bytes  

pr up to 256 pages / 1080 KB 3 1 

pine up to 320 e-mails / 2.3 MB 8 – 27 1 – 24 

dwarfdump up to 1.1 MB 2 1 

readelf up to 1.5 MB 1 – 3 1 – 8 

Number of candidates and changed bytes 
not influenced by document size 



All the candidates avoid the crash and print the text correctly 

 

 

 

 

 

Document ‘Buggy’ sequence 

Original Lorem ipsum...0x08 0x08...0x09 EOF 

Candidate A Lorem ipsum...0x08 0x08...0x00 EOF 

Candidate B Lorem ipsum...0x08 0x08...0x0C EOF 

Candidate C Lorem ipsum...0x08 0x08...0x0A EOF 

Pr: recovery candidates 



Document ‘Buggy’ sequence 

Original From: "\"\"\"\"................\""@host.fubar 

Candidate A From: "\"\...\0x0E...\0x0E\"...\""@host.fubar 

Candidate B From: "\"\...\\\0x0E..\0x0E\"..\""@host.fubar 

Candidate C From: "\"\...\0x00\"...........\""@host.fubar 

Pine: recovery candidates 

All the candidates avoid the crash and display mailbox 

 

 

 

 



Docovery: limitations 

• Large documents where taint tracking not 
that successful 

• Highly-structured documents 

 

• Huge number of possible candidates 

• Huge constraint sets 

 

• On-going work to make it scale to PDF docs 
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Testing and Verifying 

Optimizations 
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Joint work with: 

Peter Collingbourne, Paul Kelly [EuroSys 2011, HVC 2011] 



Testing Semantics-Preserving 

Evolution via Crosschecking 

Lots of available opportunities as code is: 

Optimized frequently          Refactored frequently 
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We can find any mismatches in their behavior by: 

1. Using symbolic execution to explore multiple paths 

2. Comparing the (symbolic) output b/w versions  

Unoptimized version 

Optimized version 

Symbolic 

execution 

engine 

Mismatches 



Crosschecking Two Software Versions 
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if (x == 10) 

   return 12; 

 

if (x >= 0) { 

   if (x%2 == 0) 

      x++; 

   x++; 

} 

return x; 

if (x < 0) 

    x -= 2; 

else 

    if (x%2 != 0) 

      x--; 

return x+2; 

x =  

x < 0 

x == 10 
FALSE 

Infeasible 

x >= 0 

TRUE 

Infeasible 

TRUE 

FALSE 
x 

x < 0 

x-2+2 

TRUE 



Crosschecking Two Software Versions 
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if (x == 10) 

   return 12; 

 

if (x >= 0) { 

   if (x%2 == 0) 

      x++; 

   x++; 

} 

return x; 

if (x < 0) 

    x -= 2; 

else 

    if (x%2 != 0) 

      x--; 

return x+2; 

x =  

FALSE 

x+2 

x == 10 
FALSE 

x >= 0 

TRUE 

Infeasible 

TRUE 

FALSE 

x < 0 x%2≠0 

FALSE 

x ≥  0 

x%2 = 0 

12 x%2=0 
Infeasible 

FALSE 

x+1+1 

TRUE 

x = 10 

x ≠ 10 



Crosschecking: Discussion 

• Can find semantic errors 

• No need to write (additional) specifications 

• Crosschecking queries can be solved faster 

• Can support constraint types not (efficiently)  

handled by the underlying solver, e.g., floating-point 

 

 Many crosschecking queries can be 

syntactically proven to be equivalent 
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1 

<< 

2 

* 

Crosschecking: Advantages 

Many crosschecking queries can be syntactically 

proven to be equivalent via simple rewrite rules 
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• Any work on designing constraint solving 

algorithms for crosschecking queries? 

 



SIMD Optimizations 

Most processors offer support 

for SIMD instructions 

• Can operate on multiple data 

concurrently 

• Many algorithms can make 

use of them (e.g., computer 

vision algorithms) 

[EuroSys 2011] 



OpenCV 

Popular computer vision 

library from Intel and 

Willow Garage  

[Corner detection algorithm] 
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Computer vision 

algorithms were 

optimized to make 

use of SIMD 



OpenCV Results 

• Crosschecked 51 SIMD-optimized versions 

against their reference scalar implementations 

• Verified the correctness of 41 of them up to a certain image 

size (bounded verification) 

• Key idea: 

• Tame path explosion by statically merging paths 

[EuroSys 2011] 



OpenCV Results 

• Crosschecked 51 SIMD-optimized versions 

against their reference scalar implementations 

• Found mismatches in 10 

• Most mismatches due to tricky FP-related issues: 

• Precision 

• Rounding  

• Associativity  

• Distributivity 

• NaN values 

[EuroSys 2011] 



OpenCV Results 

Surprising find: min/max not commutative nor associative! 

min(a,b) = a < b ? a : b 
 
a < b (ordered)  always returns false if one   
                            of the operands is NaN 
 
min(NaN, 5) = 5 
min(5, NaN) = NaN 
 
min(min(5, NaN),  100) = min(NaN, 100) = 100 
min(5, min(NaN, 100))  = min(5, 100) = 5 
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GPGPU Optimizations 

Scalar  vs.  GPGPU code 

[HVC 2011] 



Constraint Solving in  

Symbolic Execution  

• Constraint solving plays a key role in symbolic execution 

• Important to take advantage of the characteristics of the 

queries generated during symbolic execution 

• Bug-finding in low-level systems and security-critical 

code: need to solve lots of sat and cex queries fast 

• Recovery of broken documents: need to generate 

counterexamples similar to the original bytes 

• Testing and bounded verification of optimisations: 

many queries can be solved fast via simple syntactic 

rewrite rules 

 


