
Constraint Solving in Symbolic Execution 

Cristian Cadar 
Department of Computing 

Imperial College London 

Invited talk at SMT 2015 
18 July, San Francisco, CA, USA 



Dynamic Symbolic Execution 

ÅDynamic symbolic execution is a technique for 

automatically exploring paths through a program 

ÅDetermines the feasibility of each explored path using a 

constraint solver 

ÅChecks if there are any values that can cause an error on 

each explored path 

ÅFor each path, can generate a concrete input triggering 

the path 

2 



Dynamic Symbolic Execution 

3 

ÅReceived significant interest in the last few years 

ÅMany dynamic symbolic execution/concolic tools 

available as open-source: 

ïCREST, KLEE , SYMBOLIC  JPF, etc. 

ÅStarted to be adopted/tried out in the industry: 

ïMicrosoft (SAGE, PEX) 

ïNASA (SYMBOLIC  JPF, KLEE )  

ïFujitsu (SYMBOLIC  JPF, KLEE /KLOVER )  

ïIBM (APOLLO ) 

ïetc. etc. 
Symbolic Execution for Software Testing in Practice: 
Preliminary Assessment. Cadar, Godefroid, Khurshid, 
Pasareanu, Sen, Tillmann, Visser, [ICSE Impact 2011] 



magic Í  

0xEEEE 

magic = 

0xEEEE 

img = * 

Toy Example 

TRUE 

int main(int argc, char** argv) { 

  ... 

  image_t img = read_img(file); 

  if (img.magic != 0xEEEE) 

    return -1; 

  if (img.h > 1024) 

    return -1; 

  w = img.sz / img.h; 

  ... 

} 

magic Í  

0xEEEE 

return -1 

h > 1024 
TRUE 

h > 1024 
return -1 

h Ò 1024 

w = sz / h 

struct image_t { 

 unsigned short magic; 

     unsigned short h, sz; 

     ... 



magic Í  

0xEEEE 

magic = 

0xEEEE 

img = * 

AAAA0000é 

img1.out 

TRUE 
return -1 

h > 1024 
TRUE 

h > 1024 
return -1 

h Ò 1024 

EEEE1111é 

img2.out 

h = 0 
TRUE 

h = 0 

Div by 
zero! 

h Í 0 

EEEE0A00é img4.out 

EEEE0000é 

img3.out 

w = sz / h 

magic Í  

0xEEEE 

Each path is explored separately! 

int main(int argc, char** argv) { 

  ... 

  image_t img = read_img(file); 

  if (img.magic != 0xEEEE) 

    return -1; 

  if (img.h > 1024) 

    return -1; 

  w = img.sz / img.h; 

  ... 

} 

struct image_t { 

 unsigned short magic; 

     unsigned short h, sz; 

     ... 

Toy Example 



Scalability Challenges 



Rest of the talk 

Constraint solving in symex for: 

(1) Bug-finding in systems and security-

critical code 

(2) Recovery of broken documents 

(3) Testing and bounded verification of   

program optimisations (if time) 

 

9 



 

Bug -Finding  

 

10 

Joint work with: 

Daniel Dunbar, Dawson Engler [OSDI 2008] 

Junfeng Yang, Can Sar, Paul Twohey, Dawson Engler [IEEE S&P 2008] 

Paul Marinescu [ICSE 2012] 

Hristina Palikareva [CAV 2013] 

JaeSeung Song, Peter Pietzuch [IEEE TSE 2014] 



Bug Finding with EGT, EXE, KLEE: 
Focus on Systems and Security Critical Code 

Å Most bugs fixed promptly  

12 

Applications 

Text, binary, shell and file 

processing tools 

GNU Coreutils, findutils, binutils, diffutils, 

Busybox, MINIX (~500 apps) 

Network servers Bonjour, Avahi, udhcpd, lighttpd, etc. 

Library code libdwarf, libelf, PCRE, uClibc, etc. 

File systems ext2, ext3, JFS for Linux 

Device drivers pci, lance, sb16 for MINIX 

Computer vision code OpenCV (filter, remap, resize, etc.) 

OpenCL code Parboil, Bullet, OP2 



md5sum - c t1.txt  

mkdir  - Z a b  

mkfifo  - Z a b  

mknod - Z a b p  

seq  - f %0 1 

printf  %d ó 

pr  - e t2.txt  

tac  - r t3.txt t3.txt  

paste - d\\ abcdefghijklmnopqrstuvwxyz  

ptx  - F\\ abcdefghijklmnopqrstuvwxyz  

ptx  x t4.txt  

cut ïc3 - 5,8000000 -  -- output - d=: file  

 

                                              

Coreutils Commands of Death 

[OSDI 2008,  ICSE 2012] 

t1.txt:    \t \tMD5(  

t2.txt:    \b\b\b\b\b\b\b\t  

t3.txt:    \n 

t4.txt:    A   



Disk of Death (JFS, Linux 2.6.10) 

Offset  Hex Values 

00000  0000  0000  0000  0000  0000  0000  0000  0000  

. . . . . . 

08000  464A  3135 0000  0000  0000  0000  0000  0000  

08010 1000 0000  0000  0000  0000  0000  0000  0000  

08020  0000  0000  0100 0000  0000  0000  0000  0000  

08030  E004 000F  0000  0000  0002  0000  0000  0000  

08040  0000  0000  0000  . . .  

Å64th sector of a 64K disk image 

ÅMount it and PANIC your kernel  

[IEEE S&P 2008] 



Packet of Death (Bonjour) 

Offset  Hex Values 

0000  0000  0000  0000  0000  0000  0000  0000  0000  

0010 

0020  00FB 0000  14E9 002A  0000  0000  0000  0001 

0030  0000  0000  0000  055F  6461 6170 045F  7463  

0040  7005  6C6F 6361 6C00 000C 0001 

003E 0000  4000  FF11 1BB2 7F00  0001 E000  

ÅCauses Bonjour to abort, potential DoS attack 

ÅConfirmed by Apple, security update released 

[IEEE TSE 2014] 



Constraint Solving: Accuracy 

ÅBit-level modeling of memory is critical in C code 

ïMany bugs and security vulnerabilities could only be found if 
we reason about arithmetic overflows, type conversions, etc. 

ÅMirror the (lack of) type system in C 

ïModel each memory block as an array of 8-bit BVs 

ïBind types to expressions, not bits 

ÅNeed a QF_ABV solver 

ïWe mainly use STP 



Constraint Solving: Speed 

To be effective, DSE needs to explore lots of 
paths Č solve lots of queries, fast 

ÅReal program generate complex queries 

ÅQueries performed at every branch 



Some Constraint Solving Statistics  

UNIX utilites (and many 

other benchmarks) 

Å Large number of queries 

Å Most queries <0.1s 

Å Typical timeout: 30s 

Å Most time spent in the 

solver (before and after 

optimizations!) 

Application Instrs/s Queries/s Solver % 

[ 695 7.9 97.8 

base64 20,520 42.2 97.0 

chmod 5,360 12.6 97.2 

comm 222,113 305.0 88.4 

csplit 19,132 63.5 98.3 

dircolors 1,019,795 4,251.7 98.6 

echo 52 4.5 98.8 

env 13,246 26.3 97.2 

factor 12,119 22.6 99.7 

join 1,033,022 3,401.2 98.1 

ln 2,986 24.5 97.0 

mkdir 3,895 7.2 96.6 

Avg: 196,078 675.5 97.1 

1h runs using KLEE with 
STP, in DFS mode 

[CAVõ13] 



Constraint Solving Performance 

We already benefit from the optimisations 
performed by SAT and SMT solvers 

Essential to exploit the characteristics of the 
constraints generated during symex, e.g.: 

1) Conjunctions of constraints 

2) Path condition (PC) always satisfiable 

3) Large sequences of (similar) queries 

4) Must generate counterexamples 

26 



1) Conjunction of constraints 

27 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

h(x) = 0 

PC: f(x) = 0  /\  g(x) Í 0  /\  h(x) = 0 

ÁWe explore one path at a time 



2) PC always satisfiable 

28 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

ÁWe check for satisfiability at each 

branch 

ÁWe only explore feasible paths 

h(x) = 0 

PC: f(x) = 0  /\  g(x) Í 0  /\  h(x) = 0 



3) Large sequence of (similar) queries 

29 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

ÁCheck for satisfiability at each 

branch 

ÁConstraints obtained from a fixed 

set of static branches 

PC1: f(x) = 0  

PC2: f(x) = 0  /\  g(x) Í 0 

PC3: f(x) = 0  /\  g(x) Í 0  /\  h(x) = 0 

PC4: f(x) = 0  /\  g(x) Í 0  /\  h(x) Í 0 

 

h(x) Í 0 h(x) = 0 



4) Must generate counterexamples 

30 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

ÅEssential for reproducing bugs, 

transitioning between symbolic 

and concrete 

ÅCan also be exploited for faster 

solving 

h(x) Í 0 h(x) = 0 



Example optimisation 

33 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

PCa: f(x) = 0 /\ g(x) Í 0 

PCb: f(x) = 0 /\ g(x) Í 0 /\ h(x) = 0 

PCc: f(x) = 0 /\ g(x) Í 0 /\ h(x) Í 0 

 

h(x) Í 0 h(x) = 0 

PCa satisfiable Č at least one of 

PCb or PCc satisfiable 

PCb UNSAT Č PCc SAT (valid) 

PCc UNSAT Č PCb SAT (valid) 

PCb SAT Č ? 

 

 



Example optimisation 

34 

f(x) = 0 

g(x) = 0? 

f(x) = 0? 

. . .  

h(x) = 0? 

g(x) Í 0 

PCa: f(x) = 0 /\ g(x) Í 0 

PCb: f(x) = 0 /\ g(x) Í 0 /\ h(x) = 0 

PCc: f(x) = 0 /\ g(x) Í 0 /\ h(x) Í 0 

 

h(x) Í 0 h(x) = 0 

For each SAT query, we ask for a CEX! 

PCa SAT with CEX x = 10  

Ą x = 10 a solution for either PCb or PCc 

Cheap to check! 



Cex Caching: generalisation 

2 * y < 100 

x > 3 

x + y > 10 

x = 5 

y = 15 

2 * y < 100 

x + y > 10 

2 * y < 100 

x > 3 

x + y > 10 

x < 10 

Eliminating constraints 
cannot invalidate solution 

Adding constraints often  
does not invalidate solution 

x = 5 

y = 15 

x = 5 

y = 15 

35 
[OSDIõ08] 



Total queries vs STP queries 

[CAVõ13] 

Application Queries/s Queries STP queries 

[ 7.9 30,838 30,613 

base64 42.2 184,348 47,600 

chmod 12.6 46,438 37,911 

comm 305.0 1,019,973 21,720 

csplit 63.5 285,655 33,623 

dircolors 4,251.7 5,609,093 2,077 

echo 4.5 16,318 764 

env 26.3 96,425 38,047 

factor 22.6 80,975 6,189 

join 3,401.2 5,362,587 4,963 

ln 24.5 91,812 40,868 

mkdir 7.2 26,631 25,622 



 

Docovery : recovering 

broken documents  

 

39 

Joint work with: 

Tomasz Kuchta, Miguel Castro, Manuel Costa [ASE 2014] 



Motivation 



Storage failure, network transfer 
failure, power outage 

Corrupt Documents 



Buffer overflows, assertion failures, exceptions 

Incompatibility across versions / applications 

Application Bugs 



Is it possible to fix a broken document, without 

assuming any input format,  

in a way that preserves the original contents as 

much as possible?  

 

Research Question 



Docovery 

[ASE 2014] 



Docovery 

[ASE 2014] 



Docovery 

[ASE 2014] 



Constraint Solving Challenges 

1) Huge number of constraints 

Åwe donôt choose the input size! 

 

 

(Partial) solution: initial taint tracking stage to identify 

problematic bytes 

 



Constraint Solving Challenges 

2) Need counterexamples similar to the initial bytes! 

Åno such mechanism in existing solvers (AFAWK) 

 

Algorithm(PC, bytes b, initial values v) 

for each bK with initial value vK  

      if (bK = vK) is satisfiable (solver call) 

          then PC = PC  ᷈(bK = vK) 

          else get new value for bK from solver 

 

One solver call for each byteé  can the solver help? 



pr  ï a pagination utility 

pine  ï a text-mode e-mail client 

dwarfdump  ï a debug information display tool 

readelf  ï an ELF file information display tool 

 

 

Initial study on 4 medium-sized apps 

Benchmark Document type Document Sizes 

pr  Plain text up to 256 pages / 1080 KB 

pine  MBOX mailbox up to 320 e-mails / 2.3 MB 

dwarfdump  DWARF executables up to 1.1 MB 

readelf  ELF object files up to 1.5 MB 



Known, real-world bugs 

pr, pine, readelf ï buffer overflow 

dwarfdump  ï division by zero 

 

 
Benchmark óBuggyô sequence 

pr  Lorem  ipsum ... 0x08 0x08...0x09  EOF 

pine  ...From: " \ " \ " \ " \ " \ " \ " \ " \ ... \ " \ " \ " \ " "@host.fubar ...  

dwarfdump  ...GCC: ( Ubuntu / Linaro  4.6.3... 0x00 0x00 ...  

readelf  ... 0xFD 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF ...  

Examined issues caused by 

application bugs 



Results 

Benchmar

k 
Document sizes 

Candidates/d

ocument/run 

Number of  

changed bytes  

pr  up to 256 pages / 1080 KB 3 1 

pine  up to 320 e-mails / 2.3 MB 8 ï 27 1 ï 24 

dwarfdump  up to 1.1 MB 2 1 

readelf  up to 1.5 MB 1 ï 3 1 ï 8 

Number of candidates and changed bytes 
not influenced by document size 



All the candidates avoid the crash and print the text correctly 

 

 

 

 

 

Document óBuggyô sequence 

Original Lorem  ipsum ... 0x08 0x08... 0x09  EOF 

Candidate A Lorem  ipsum ... 0x08 0x08... 0x00  EOF 

Candidate B Lorem  ipsum ... 0x08 0x08... 0x0C EOF 

Candidate C Lorem  ipsum ... 0x08 0x08... 0x0A  EOF 

Pr: recovery candidates 



Document óBuggyô sequence 

Original From: " \ " \ " \ " \ "................ \ " "@host.fubar  

Candidate A From: " \ " \ ... \ 0x0E... \ 0x0E \ "... \ "" @host.fubar  

Candidate B From: " \ " \ ... \ \ \ 0x0E.. \ 0x0E \ ".. \ "" @host.fubar  

Candidate C From: " \ " \ . .. \ 0x00 \ " ........... \ " "@host.fubar  

Pine: recovery candidates 

All the candidates avoid the crash and display mailbox 

 

 

 

 



Docovery: limitations 

ÅLarge documents where taint tracking not 
that successful 

ÅHighly-structured documents 

 

ÅHuge number of possible candidates 

ÅHuge constraint sets 

 

ÅOn-going work to make it scale to PDF docs 

 

 

57 



 

Testing and Verifying 

Optimizations  

 

59 

Joint work with: 

Peter Collingbourne, Paul Kelly [EuroSys 2011, HVC 2011] 



Testing Semantics-Preserving 

Evolution via Crosschecking 

Lots of available opportunities as code is: 

Optimized frequently          Refactored frequently 

60 

We can find any mismatches in their behavior by: 

1. Using symbolic execution to explore multiple paths 

2. Comparing the (symbolic) output b/w versions  

Unoptimized version 

Optimized version 

Symbolic 

execution 

engine 

Mismatches 



Crosschecking Two Software Versions 

61 

if (x == 10)  

   return 12;  

 

if (x >= 0) {  

   if (x%2 == 0)  

      x++;  

   x++;  

}  

return x;  

if (x < 0)  

    x - = 2;  

else  

    if (x%2 != 0)  

      x -- ;  

return x+2;  

x = * 

x < 0 

x == 10 
FALSE 

Infeasible 

x >= 0 

TRUE 

Infeasible 

TRUE 

FALSE 
x 

x < 0 

x-2+2 

TRUE 



Crosschecking Two Software Versions 

62 

if (x == 10)  

   return 12;  

 

if (x >= 0) {  

   if (x%2 == 0)  

      x++;  

   x++;  

}  

return x;  

if (x < 0)  

    x - = 2;  

else  

    if (x%2 != 0)  

      x -- ;  

return x+2;  

x = * 

FALSE 

x+2 

x == 10 
FALSE 

x >= 0 

TRUE 

Infeasible 

TRUE 

FALSE 

x < 0 x%2Í0 

FALSE 

x Ó  0 

x%2 = 0 

12 x%2=0 
Infeasible 

FALSE 

x+1+1 

TRUE 

x = 10 

x Í 10 



Crosschecking: Discussion 

ÅCan find semantic errors 

ÅNo need to write (additional) specifications 

ÅCrosschecking queries can be solved faster 

ÅCan support constraint types not (efficiently)  

handled by the underlying solver, e.g., floating-point 

 

 Many crosschecking queries can be 

syntactically proven to be equivalent 

63 



1 

<< 

2 

*  

Crosschecking: Advantages 

Many crosschecking queries can be syntactically 

proven to be equivalent via simple rewrite rules 

64 

Å Any work on designing constraint solving 

algorithms for crosschecking queries? 

 



SIMD Optimizations 

Most processors offer support 

for SIMD instructions 

ÅCan operate on multiple data 

concurrently 

ÅMany algorithms can make 

use of them (e.g., computer 

vision algorithms) 

[EuroSys 2011] 



OpenCV 

Popular computer vision 

library from Intel and 

Willow Garage  

[Corner detection algorithm]  

67 

Computer vision 

algorithms were 

optimized to make 

use of SIMD 



OpenCV Results 

ÅCrosschecked 51 SIMD-optimized versions 

against their reference scalar implementations 

ÅVerified the correctness of 41 of them up to a certain image 

size (bounded verification) 

ÅKey idea: 

ÅTame path explosion by statically merging paths 

[EuroSys 2011] 



OpenCV Results 

ÅCrosschecked 51 SIMD-optimized versions 

against their reference scalar implementations 

ÅFound mismatches in 10 

ÅMost mismatches due to tricky FP-related issues: 

ÅPrecision 

ÅRounding  

ÅAssociativity  

ÅDistributivity 

ÅNaN values 

[EuroSys 2011] 



OpenCV Results 

Surprising find: min/max not commutative nor associative! 

min(a,b) = a < b ? a : b 
 
a < b (ordered) Ą always returns false if one   
                            of the operands is NaN  
 
min(NaN, 5) = 5  
min(5, NaN) = NaN  
 
min(min(5, NaN),  100) = min(NaN, 100) = 100 
min(5, min(NaN, 100))  = min(5, 100) = 5  
 

70 



GPGPU Optimizations 

Scalar  vs.  GPGPU code 

[HVC 2011] 



Constraint Solving in  

Symbolic Execution  

ÅConstraint solving plays a key role in symbolic execution 

ÅImportant to take advantage of the characteristics of the 

queries generated during symbolic execution 

ÅBug-finding in low-level systems and security-critical 

code: need to solve lots of sat and cex queries fast 

ÅRecovery of broken documents: need to generate 

counterexamples similar to the original bytes 

ÅTesting and bounded verification of optimisations: 

many queries can be solved fast via simple syntactic 

rewrite rules 

 


