
Constraint Solving in Symbolic Execution

Cristian Cadar
Department of Computing

Imperial College London

Invited talk at SMT 2015
18 July, San Francisco, CA, USA

Dynamic Symbolic Execution

• Dynamic symbolic execution is a technique for

automatically exploring paths through a program

• Determines the feasibility of each explored path using a

constraint solver

• Checks if there are any values that can cause an error on

each explored path

• For each path, can generate a concrete input triggering

the path

2

Dynamic Symbolic Execution

3

• Received significant interest in the last few years

• Many dynamic symbolic execution/concolic tools

available as open-source:

– CREST, KLEE, SYMBOLIC JPF, etc.

• Started to be adopted/tried out in the industry:

– Microsoft (SAGE, PEX)

– NASA (SYMBOLIC JPF, KLEE)

– Fujitsu (SYMBOLIC JPF, KLEE/KLOVER)

– IBM (APOLLO)

– etc. etc.
Symbolic Execution for Software Testing in Practice:
Preliminary Assessment. Cadar, Godefroid, Khurshid,
Pasareanu, Sen, Tillmann, Visser, [ICSE Impact 2011]

magic ≠

0xEEEE

magic =

0xEEEE

img =

Toy Example

TRUE

int main(int argc, char** argv) {

 ...

 image_t img = read_img(file);

 if (img.magic != 0xEEEE)

 return -1;

 if (img.h > 1024)

 return -1;

 w = img.sz / img.h;

 ...

}

magic ≠

0xEEEE

return -1

h > 1024
TRUE

h > 1024
return -1

h ≤ 1024

w = sz / h

struct image_t {

 unsigned short magic;

 unsigned short h, sz;

 ...

magic ≠

0xEEEE

magic =

0xEEEE

img =

AAAA0000…

img1.out

TRUE
return -1

h > 1024
TRUE

h > 1024
return -1

h ≤ 1024

EEEE1111…

img2.out

h = 0
TRUE

h = 0

Div by
zero!

h ≠ 0

EEEE0A00… img4.out

EEEE0000…

img3.out

w = sz / h

magic ≠

0xEEEE

Each path is explored separately!

int main(int argc, char** argv) {

 ...

 image_t img = read_img(file);

 if (img.magic != 0xEEEE)

 return -1;

 if (img.h > 1024)

 return -1;

 w = img.sz / img.h;

 ...

}

struct image_t {

 unsigned short magic;

 unsigned short h, sz;

 ...

Toy Example

Scalability Challenges

Rest of the talk

Constraint solving in symex for:

(1) Bug-finding in systems and security-

critical code

(2) Recovery of broken documents

(3) Testing and bounded verification of

program optimisations (if time)

9

Bug-Finding

10

Joint work with:

Daniel Dunbar, Dawson Engler [OSDI 2008]

Junfeng Yang, Can Sar, Paul Twohey, Dawson Engler [IEEE S&P 2008]

Paul Marinescu [ICSE 2012]

Hristina Palikareva [CAV 2013]

JaeSeung Song, Peter Pietzuch [IEEE TSE 2014]

Bug Finding with EGT, EXE, KLEE:
Focus on Systems and Security Critical Code

• Most bugs fixed promptly

12

Applications

Text, binary, shell and file

processing tools

GNU Coreutils, findutils, binutils, diffutils,

Busybox, MINIX (~500 apps)

Network servers Bonjour, Avahi, udhcpd, lighttpd, etc.

Library code libdwarf, libelf, PCRE, uClibc, etc.

File systems ext2, ext3, JFS for Linux

Device drivers pci, lance, sb16 for MINIX

Computer vision code OpenCV (filter, remap, resize, etc.)

OpenCL code Parboil, Bullet, OP2

md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

printf %d ‘

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

cut –c3-5,8000000- --output-d=: file

Coreutils Commands of Death

[OSDI 2008, ICSE 2012]

t1.txt: \t \tMD5(

t2.txt: \b\b\b\b\b\b\b\t

t3.txt: \n

t4.txt: A

Disk of Death (JFS, Linux 2.6.10)

Offset Hex Values

00000 0000 0000 0000 0000 0000 0000 0000 0000

.

08000 464A 3135 0000 0000 0000 0000 0000 0000

08010 1000 0000 0000 0000 0000 0000 0000 0000

08020 0000 0000 0100 0000 0000 0000 0000 0000

08030 E004 000F 0000 0000 0002 0000 0000 0000

08040 0000 0000 0000 . . .

• 64th sector of a 64K disk image

• Mount it and PANIC your kernel

[IEEE S&P 2008]

Packet of Death (Bonjour)

Offset Hex Values

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010

0020 00FB 0000 14E9 002A 0000 0000 0000 0001

0030 0000 0000 0000 055F 6461 6170 045F 7463

0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack

• Confirmed by Apple, security update released

[IEEE TSE 2014]

Constraint Solving: Accuracy

• Bit-level modeling of memory is critical in C code

– Many bugs and security vulnerabilities could only be found if
we reason about arithmetic overflows, type conversions, etc.

• Mirror the (lack of) type system in C

– Model each memory block as an array of 8-bit BVs

– Bind types to expressions, not bits

• Need a QF_ABV solver

– We mainly use STP

Constraint Solving: Speed

To be effective, DSE needs to explore lots of
paths solve lots of queries, fast

• Real program generate complex queries

• Queries performed at every branch

Some Constraint Solving Statistics

UNIX utilites (and many

other benchmarks)

• Large number of queries

• Most queries <0.1s

• Typical timeout: 30s

• Most time spent in the

solver (before and after

optimizations!)

Application Instrs/s Queries/s Solver %

[695 7.9 97.8

base64 20,520 42.2 97.0

chmod 5,360 12.6 97.2

comm 222,113 305.0 88.4

csplit 19,132 63.5 98.3

dircolors 1,019,795 4,251.7 98.6

echo 52 4.5 98.8

env 13,246 26.3 97.2

factor 12,119 22.6 99.7

join 1,033,022 3,401.2 98.1

ln 2,986 24.5 97.0

mkdir 3,895 7.2 96.6

Avg: 196,078 675.5 97.1

1h runs using KLEE with
STP, in DFS mode

[CAV’13]

Constraint Solving Performance

We already benefit from the optimisations
performed by SAT and SMT solvers

Essential to exploit the characteristics of the
constraints generated during symex, e.g.:

1) Conjunctions of constraints

2) Path condition (PC) always satisfiable

3) Large sequences of (similar) queries

4) Must generate counterexamples

26

1) Conjunction of constraints

27

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

h(x) = 0

PC: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0

 We explore one path at a time

2) PC always satisfiable

28

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

 We check for satisfiability at each

branch

 We only explore feasible paths

h(x) = 0

PC: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0

3) Large sequence of (similar) queries

29

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

 Check for satisfiability at each

branch

 Constraints obtained from a fixed

set of static branches

PC1: f(x) = 0

PC2: f(x) = 0 /\ g(x) ≠ 0

PC3: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0

PC4: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) ≠ 0

h(x) ≠ 0 h(x) = 0

4) Must generate counterexamples

30

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

• Essential for reproducing bugs,

transitioning between symbolic

and concrete

• Can also be exploited for faster

solving

h(x) ≠ 0 h(x) = 0

Example optimisation

33

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

PCa: f(x) = 0 /\ g(x) ≠ 0

PCb: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0

PCc: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) ≠ 0

h(x) ≠ 0 h(x) = 0

PCa satisfiable at least one of

PCb or PCc satisfiable

PCb UNSAT PCc SAT (valid)

PCc UNSAT PCb SAT (valid)

PCb SAT ?

Example optimisation

34

f(x) = 0

g(x) = 0?

f(x) = 0?

. . .

h(x) = 0?

g(x) ≠ 0

PCa: f(x) = 0 /\ g(x) ≠ 0

PCb: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) = 0

PCc: f(x) = 0 /\ g(x) ≠ 0 /\ h(x) ≠ 0

h(x) ≠ 0 h(x) = 0

For each SAT query, we ask for a CEX!

PCa SAT with CEX x = 10

 x = 10 a solution for either PCb or PCc

Cheap to check!

Cex Caching: generalisation

2 y < 100

x > 3

x + y > 10

x = 5

y = 15

2 y < 100

x + y > 10

2 y < 100

x > 3

x + y > 10

x < 10

Eliminating constraints
cannot invalidate solution

Adding constraints often
does not invalidate solution

x = 5

y = 15

x = 5

y = 15

35
[OSDI’08]

Total queries vs STP queries

[CAV’13]

Application Queries/s Queries STP queries

[7.9 30,838 30,613

base64 42.2 184,348 47,600

chmod 12.6 46,438 37,911

comm 305.0 1,019,973 21,720

csplit 63.5 285,655 33,623

dircolors 4,251.7 5,609,093 2,077

echo 4.5 16,318 764

env 26.3 96,425 38,047

factor 22.6 80,975 6,189

join 3,401.2 5,362,587 4,963

ln 24.5 91,812 40,868

mkdir 7.2 26,631 25,622

Docovery: recovering

broken documents

39

Joint work with:

Tomasz Kuchta, Miguel Castro, Manuel Costa [ASE 2014]

Motivation

Storage failure, network transfer
failure, power outage

Corrupt Documents

Buffer overflows, assertion failures, exceptions

Incompatibility across versions / applications

Application Bugs

Is it possible to fix a broken document, without

assuming any input format,

in a way that preserves the original contents as

much as possible?

Research Question

Docovery

[ASE 2014]

Docovery

[ASE 2014]

Docovery

[ASE 2014]

Constraint Solving Challenges

1) Huge number of constraints

• we don’t choose the input size!

(Partial) solution: initial taint tracking stage to identify

problematic bytes

Constraint Solving Challenges

2) Need counterexamples similar to the initial bytes!

• no such mechanism in existing solvers (AFAWK)

Algorithm(PC, bytes b, initial values v)

for each bK with initial value vK

 if (bK = vK) is satisfiable (solver call)

 then PC = PC ∧ (bK = vK)

 else get new value for bK from solver

One solver call for each byte… can the solver help?

pr – a pagination utility

pine – a text-mode e-mail client

dwarfdump – a debug information display tool

readelf – an ELF file information display tool

Initial study on 4 medium-sized apps

Benchmark Document type Document Sizes

pr Plain text up to 256 pages / 1080 KB

pine MBOX mailbox up to 320 e-mails / 2.3 MB

dwarfdump DWARF executables up to 1.1 MB

readelf ELF object files up to 1.5 MB

Known, real-world bugs

pr, pine, readelf – buffer overflow

dwarfdump – division by zero

Benchmark ‘Buggy’ sequence

pr Lorem ipsum...0x08 0x08...0x09 EOF

pine ...From: "\"\"\"\"\"\"\"\...\"\"\"\""@host.fubar...

dwarfdump ...GCC: (Ubuntu/Linaro 4.6.3...0x00 0x00...

readelf ...0xFD 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF...

Examined issues caused by

application bugs

Results

Benchmar

k
Document sizes

Candidates/d

ocument/run

Number of

changed bytes

pr up to 256 pages / 1080 KB 3 1

pine up to 320 e-mails / 2.3 MB 8 – 27 1 – 24

dwarfdump up to 1.1 MB 2 1

readelf up to 1.5 MB 1 – 3 1 – 8

Number of candidates and changed bytes
not influenced by document size

All the candidates avoid the crash and print the text correctly

Document ‘Buggy’ sequence

Original Lorem ipsum...0x08 0x08...0x09 EOF

Candidate A Lorem ipsum...0x08 0x08...0x00 EOF

Candidate B Lorem ipsum...0x08 0x08...0x0C EOF

Candidate C Lorem ipsum...0x08 0x08...0x0A EOF

Pr: recovery candidates

Document ‘Buggy’ sequence

Original From: "\"\"\"\"................\""@host.fubar

Candidate A From: "\"\...\0x0E...\0x0E\"...\""@host.fubar

Candidate B From: "\"\...\\\0x0E..\0x0E\"..\""@host.fubar

Candidate C From: "\"\...\0x00\"...........\""@host.fubar

Pine: recovery candidates

All the candidates avoid the crash and display mailbox

Docovery: limitations

• Large documents where taint tracking not
that successful

• Highly-structured documents

• Huge number of possible candidates

• Huge constraint sets

• On-going work to make it scale to PDF docs

57

Testing and Verifying

Optimizations

59

Joint work with:

Peter Collingbourne, Paul Kelly [EuroSys 2011, HVC 2011]

Testing Semantics-Preserving

Evolution via Crosschecking

Lots of available opportunities as code is:

Optimized frequently Refactored frequently

60

We can find any mismatches in their behavior by:

1. Using symbolic execution to explore multiple paths

2. Comparing the (symbolic) output b/w versions

Unoptimized version

Optimized version

Symbolic

execution

engine

Mismatches

Crosschecking Two Software Versions

61

if (x == 10)

 return 12;

if (x >= 0) {

 if (x%2 == 0)

 x++;

 x++;

}

return x;

if (x < 0)

 x -= 2;

else

 if (x%2 != 0)

 x--;

return x+2;

x =

x < 0

x == 10
FALSE

Infeasible

x >= 0

TRUE

Infeasible

TRUE

FALSE
x

x < 0

x-2+2

TRUE

Crosschecking Two Software Versions

62

if (x == 10)

 return 12;

if (x >= 0) {

 if (x%2 == 0)

 x++;

 x++;

}

return x;

if (x < 0)

 x -= 2;

else

 if (x%2 != 0)

 x--;

return x+2;

x =

FALSE

x+2

x == 10
FALSE

x >= 0

TRUE

Infeasible

TRUE

FALSE

x < 0 x%2≠0

FALSE

x ≥ 0

x%2 = 0

12 x%2=0
Infeasible

FALSE

x+1+1

TRUE

x = 10

x ≠ 10

Crosschecking: Discussion

• Can find semantic errors

• No need to write (additional) specifications

• Crosschecking queries can be solved faster

• Can support constraint types not (efficiently)

handled by the underlying solver, e.g., floating-point

 Many crosschecking queries can be

syntactically proven to be equivalent

63

1

<<

2

*

Crosschecking: Advantages

Many crosschecking queries can be syntactically

proven to be equivalent via simple rewrite rules

64

• Any work on designing constraint solving

algorithms for crosschecking queries?

SIMD Optimizations

Most processors offer support

for SIMD instructions

• Can operate on multiple data

concurrently

• Many algorithms can make

use of them (e.g., computer

vision algorithms)

[EuroSys 2011]

OpenCV

Popular computer vision

library from Intel and

Willow Garage

[Corner detection algorithm]

67

Computer vision

algorithms were

optimized to make

use of SIMD

OpenCV Results

• Crosschecked 51 SIMD-optimized versions

against their reference scalar implementations

• Verified the correctness of 41 of them up to a certain image

size (bounded verification)

• Key idea:

• Tame path explosion by statically merging paths

[EuroSys 2011]

OpenCV Results

• Crosschecked 51 SIMD-optimized versions

against their reference scalar implementations

• Found mismatches in 10

• Most mismatches due to tricky FP-related issues:

• Precision

• Rounding

• Associativity

• Distributivity

• NaN values

[EuroSys 2011]

OpenCV Results

Surprising find: min/max not commutative nor associative!

min(a,b) = a < b ? a : b

a < b (ordered) always returns false if one
 of the operands is NaN

min(NaN, 5) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(5, 100) = 5

70

GPGPU Optimizations

Scalar vs. GPGPU code

[HVC 2011]

Constraint Solving in

Symbolic Execution

• Constraint solving plays a key role in symbolic execution

• Important to take advantage of the characteristics of the

queries generated during symbolic execution

• Bug-finding in low-level systems and security-critical

code: need to solve lots of sat and cex queries fast

• Recovery of broken documents: need to generate

counterexamples similar to the original bytes

• Testing and bounded verification of optimisations:

many queries can be solved fast via simple syntactic

rewrite rules

