
Varan and Mx: Safe Software Updates
via Multi-version Execution

Petr Hosek Cristian Cadar
Software Reliability Group
Department of Computing

28th January 2015 Hong Kong University of Science and Technology

2

Motivation

Software evolves, with new versions and patches being
released frequently
Software updates often present a high risk
Many users refuse to upgrade their software…
…relying instead on outdated versions flawed with
vulnerabilities or missing useful features and bug fixes

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W.
Staged deployment in Mirage, an integrated software upgrade testing and distribution system. SOSP’07

Many admins (70% of those interviewed) refuse to upgrade

The fundamental problem with program maintenance is
that fixing a defect has a substantial (20-50%) chance
of introducing another. So the whole process is two
steps forward and one step back.

— Fred Brooks, 1975

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L.
How Do Fixes Become Bugs? In ESEC/FSE’11

≥14.8~24.4% for major operating system fixes

“
”

3

4

One solution: Patch Testing
[joint work with Marinescu, ESEC/FSE’13]

KATCH automatically tests each submitted patch, looking
for potential bugs it introduces.
Study on all patches in 19 applications over a combined
period of 6 years:

•  Significantly improved patch coverage
•  Found previously unknown bugs

Of course, bugs inevitably make it into released code

Paul Marinescu, Cristian Cadar
KATCH: High-Coverage Testing of Software Patches. In ESEC/FSE’13

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

Powers several popular sites such as YouTube, Wikipedia, Meebo

Single-threaded event-driven web server

File (re)compression in mod_compress_physical

if (use_etag)

}
 etag_mutate(con->physical.etag, srv->tmp_buf);

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

April 2009

Old bug fixed,
New bug introduced

Safe Updates via Multi-Version Execution

7

RE
DI

S
 v

1

RE
DS

v 2

RE
DS

v 3

RE
DS

v N

 -1

. . .

RE
DS

v N

When a new version becomes available
Run it in parallel with the old versions!

N = available (idle) cores

Safe Updates via Multi-Version Execution

8

RE
DI

S
 v

1

RE
DS

v 2

RE
DS

v 3

RE
DS

v N

 -1

. . .

RE
DS

v N

When a new version becomes available
Run it in parallel with the old versions!
Synchronise all versions to act as one to the outside world

Safe Updates via Multi-Version Execution

9

RE
DI

S
 v

1

RE
DS

v 2

RE
DS

v 3

RE
DS

v N

 -1

. . .

RE
DS

v N

When a new version becomes available
Run it in parallel with the old versions!
Synchronise all versions to act as one to the outside world
Transparently survive crashes occurring in some versions

Safe Updates via Multi-Version Execution

10

RE
DI

S
 v

1

RE
DS

v 2

RE
DS

v 3

RE
DS

v N

 -1

. . .

RE
DS

v N

Could do so until enough confidence is gained in the new version(s)
Or as long as enough idle cores are available

MultiCore CPUs becoming standard
...with no benefit to inherently sequential apps

Idle parallel resources, with no benefit to inherently sequential applications

11
Cristian Cadar, Peter Pietzuch, Alex Wolf Multiplicity computing: A vision of software

engineering for next-generation computing platform applications. FoSER’10

Similar Idea:
Automatically Generated Variants

12

Va
ria

nt
1

Va
ria

nt
2

Va
ria

nt
3

Va
ria

nt
N

 -1

. . .

Va
ria

nt
v N

Run two variants with stacks growing in different directions [Orchestra]
Any divergence is a possible attack: fail safe

Run multiple variants with different placement of objs in mem [DieHard]
Survive some errors due to memory corruption

Challenges of Multi-Version
and Multi-Variant Execution

Common challenges:
Synchronise and virtualise the executions of
multiple versions efficiently

Specific to multi-version execution
 Allow for (small) differences in behaviour

13

Our proposed solution addresses both of these

Synchronisation

Possible at different levels of abstraction/granularity
 Application inputs/outputs
 Library calls

 System calls

14

Synchronisation at System Call Level

15

v1

Monitor

Operating System
System calls

System calls System calls

Advantages
General
System calls the only
way to interact with
outside world
Small number of
system call types

v2 vN

System calls

. . .

System Calls Define External Behavior

16

...
write(1, “3\n", 2) = 2
write(1, “1\n", 2) = 2
...

int arr[] = { 6, 3, 2, 4 };
even_odd(arr, 4);

Version 1
void even_odd(int *a, size_t len) {
 int i, even = 0;

 for (i=0; i<len; i++)
 if (a[i] % 2 == 0)
 even++;

 printf("%d\n", even);
 printf("%d\n", len - even);
}

Version 2
void even_odd(int *a, size_t len) {
 int i, odd = 0;

 for (i=len-1; i>=0; i--)
 if (a[i] % 2 != 0)
 odd++;

 printf("%d\n", len - odd);
 printf("%d\n", odd);
}

17

95% of lighttpd revisions introduce no change*

*Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in [ICSE’13])
Measured using lighttpd regression suite on 164 revisions (~10 months)

External Behavior Evolves Sporadically

0

53

106

159

212

265

318

371

Ed
it

di
st

an
ce

 b
et

w
ee

n
sy

st
em

 c
al

l t
ra

ce
s

1014

42
24 7

273

1

18

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Wait for other version
Notify monitor

19

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Notify monitor Compare syscalls

20

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Perform syscall

21

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Propagate results

22

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Wait for other version

Notify monitor

23

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Notify monitor Compare syscalls

24

VE
RS

IO
N

 2

VE
RS

IO
N

 1

t t

M
O

N
IT

O
R

Perform syscalls

ptrace(PTRACE_GETREGS, 7, {...}, NULL)
ptrace(PTRACE_SETREGS, 7, {...}, {...})
ptrace(PTRACE_SYSCALL, 7, {...}, NULL)
read(8, “PING\r\n”, 1024)
ptrace(PTRACE_GETREGS, 7, {...}, NULL)
process_vm_writev(7, {?}, 1, {?}, 1, 0)
ptrace(PTRACE_SETREGS, 7, {...}, {...})
ptrace(PTRACE_SYSCALL, 7, {...}, NULL)

--- SIGTRAP ---
read(6, “PING\r\n”, 1024)
--- SIGTRAP ---

APPLICATION

--- SIGTRAP ---
getpid()
--- SIGTRAP ---
read(6, “PING\r\n”, 1024)

25

Writeback results

System call nullification

System call enter

System call exit

MONITOR

Disadvantages of ptrace

Slow
For each system call run by each version, the
monitor runs several system calls (and traps)
Does not scale well to large number of versions
Multi-version execution runs no faster than the
slowest version

Inflexible
Lockstep execution requires the same sequence
of system calls

26

27

28 http://godzilla.wikia.com/wiki/Varan

Varan
Distributed Highly-Concurrent
Multi-Version Monitor

Varan

Performance
Low performance overhead
Scales to large number of versions

Flexibility
 Does not require lockstep execution
 Tolerance to minor differences
 Enables novel applications

29

0xdeadbeef <__libc_read>:

2a: mov $0x0,%eax
2f: syscall

0xdeadbeef <__libc_read>:

2a: jmpq $0x13cd0

0x4050f0 <anetRead>:

405130: callq <read@plt>

30

0x13cd0 <syscall_enter>:

. . .

Selective binary rewriting

REDIS

GLIBC

MONITOR

LEADER

MONITOR

31

Shared memory
ring buffer

LEADER

MONITOR

32

Shared memory
ring buffer

LEADER

MONITOR

33

Shared memory
ring buffer

LEADER

MONITOR

34

FOLLOWER

MONITOR

FOLLOWER

MONITOR

Asynchronous execution

LEADER

MONITOR

35

FOLLOWER

MONITOR

FOLLOWER

MONITOR

Asynchronous execution

FOLLOWER

MONITOR

LEADER

MONITOR

36

FOLLOWER

MONITOR

CLOCK

CLOCK’

THREAD1 THREAD’1

LEADER

MONITOR

FOLLOWER

MONITOR

THREAD2 THREAD’2

Enforcing causal ordering

t

VARAN: Performance Evaluation

37

Varan

Performance
 Low performance overhead
 Does not require lockstep execution
 Scales to large number of versions

38

ptrace(PTRACE_GETREGS, 7, {...}, NULL)
ptrace(PTRACE_SETREGS, 7, {...}, {...})
ptrace(PTRACE_SYSCALL, 7, {...}, NULL)
read(8, “PING\r\n”, 1024)
ptrace(PTRACE_GETREGS, 7, {...}, NULL)
process_vm_writev(7, {?}, 1, {?}, 1, 0)
ptrace(PTRACE_SETREGS, 7, {...}, {...})
ptrace(PTRACE_SYSCALL, 7, {...}, NULL)

--- SIGTRAP ---
read(6, “PING\r\n”, 1024)
--- SIGTRAP ---

REDIS

--- SIGTRAP ---
getpid()
--- SIGTRAP ---
read(6, “PING\r\n”, 1024)

39

Writeback results

System call nullification

System call enter

System call exit

MONITOR

1.00
1.07

1.11 1.14
1.23 1.24 1.25

1.29

1.11

1.55 1.57
1.66

1.71
1.76 1.79 1.81

1.00

1.12 1.14 1.14 1.14 1.15 1.15

1.47

1.03

1.26
1.35

1.41

1.52
1.56

1.63

1.29

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
ov

er
he

ad
 (n

or
m

al
iz

ed
)

Number of versions run in parallel

Redis Beanstalkd Lighttpd Nginx

Taken on 3.40 GHz Intel Core i7-2600 with 8 GB of RAM, Linux kernel 3.11.0

40

C10k servers

 Safe updates via
 multi-version execution
 Handling crashes in some of the versions

41

April 2009

Old bug fixed,
New bug introduced

File (re)compression in mod_compress_physical

if (use_etag)

}
 etag_mutate(con->physical.etag, srv->tmp_buf);

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

HTTP ETag hash value computation in etag_mutate

LIGHTTPD 2438

Monitor Monitor

43

LIGHTTPD 2437

Monitor

Case 1: Follower crashes

Remove from
followers list

Latency perceived
by the client

remains ~5ms

LIGHTTPD 2438

Monitor

LIGHTTPD 2437

Monitor Monitor

LIGHTTPD 2437

Monitor

44

Leader re-election

...

Case 2: Leader crashes

Latency perceived
by the client

remains ~5ms

45

Powers several popular services such as GitHub and Flickr

Advanced key-value store server

46

robj *o = lookupKeyRead(c->db, c->argv[1]);
if (o == NULL) {
 addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
 for (i = 2; i < c->argc; i++) {
 addReply(c,shared.nullbulk);
 }
 return;
} else {
 if (o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return;
 }
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));

HMGET command hmgetCommand function
robj *o, *value;
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && o->type != REDIS_HASH) {
 addReply(c,shared.wrongtypeerr);
 return; <- missing return
}
addReplySds(c,sdscatprintf(sdsempty(),
 "*%d\r\n",c->argc-2));
for (i = 2; i < c->argc; i++) {
 if (o != NULL && (value = hashGet(o,c-
>argv[i])) != NULL) {
 addReplyBulk(c,value);
 decrRefCount(value);
 } else {
 addReply(c,shared.nullbulk);
 }
}

Refactor

Apr 13, 2010

Bug introduced

Bug may result in loosing some
or even all of the stored data

47

...
 Latency perceived

by the client
remains ~42.36μs

REDIS 7fb16ba

Monitor Monitor

Case 1: Follower crashes

REDIS a71f072

Monitor

REDIS 8ca3e9d

Monitor

REDIS bc55456

Monitor

REDIS e6cca5d

Monitor

REDIS 5413c40

Monitor

REDIS 9a22de8

Monitor

REDIS fb765a0

Monitor

REDIS fb765a0

Monitor

48

...

REDIS a71f072

Monitor

REDIS 8ca3e9d

Monitor

Case 2: Leader crashes

Latency increases
from 42.36μs to

122.62μs

REDIS 7fb16ba

Monitor Monitor

REDIS a71f072

Monitor

REDIS e6cca5d

Monitor

...
 REDIS 5413c40

Monitor

REDIS 9a22de8

Monitor

Handling divergences
between versions
Using rewrite rules

49

0

53

106

159

212

265

318

371

Ed
it

di
st

an
ce

 b
et

w
ee

n
sy

st
em

 c
al

l t
ra

ce
s

1014

42
24 7

273

1

50

95% of lighttpd revisions introduce no change*

*Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in [ICSE’13])
Measured using lighttpd regression suite on 164 revisions (~10 months)

External Behavior Evolves Sporadically

51

if (!i_am_root &&
 (geteuid() == 0 || getegid() == 0)) {

LIGHTTPD 2435 LIGHTTPD 2436

Extra system calls

#ifdef HAVE_GETUID
ifndef HAVE_ISSETUGID

static int l_issetugid() {
 return (geteuid() != getuid() ||
 getegid() != getgid());
}

define issetugid l_issetugid
endif
#endif

if (!i_am_root && issetugid()) {

Lighttpd 2436

Monitor

52

Lighttpd 2435

Monitor

ld event[0]
jeq #108, getegid /* __NR_getegid */
jeq #2, open /* __NR_open */
jmp bad
getegid:
ld [0] /* offsetof(struct event_data, nr) */
jeq #102, good /* __NR_getuid */
open:
ld [0] /* offsetof(struct event_data, nr) */
jeq #104, good /* __NR_getgid */
bad: ret #0 /* SECCOMP_RET_KILL */
good: ret #0x7fff0000 /* SECCOMP_RET_ALLOW */

Skip event

BPF filter

Handling different crashes in
multiple versions
Via failure recovery

57

58

Scope: Surviving crash errors occurring
at different times

v1

crash point1

v2

crash point2

Current limitation: implemented in a ptrace-
based system, with lockstep execution

59

Failure Recovery: Runtime Code Patching

v1

System call X

v2

System call Y

… …

60

GET /projects/mx HTTP/1.1
Host: srg.doc.ic.ac.uk
Accept-Encoding: gzip

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

Synchronisation and failure recovery mechanism

LI
G

H
TT

PD
 1

.4
.2

2

LI
G

H
TT

PD
 1

.4
.2

3

Crash
Segmentation fault

Synchronisation
Compare individual
system calls and their
arguments

Checkpointing
Use clone to take a

snapshot of a
process

Failure recovery
Restart from the
checkpoint and
replace the code with
the code of the new
version

Reconvergence
Return to the original

code and continue
execution

GET /index.html HTTP/1.1
Host: srg.doc.ic.ac.uk

Failure Recovery: Suitable Scenarios

Errors with a small propagation distance
“Localized” around a small portion of code

Applications which provide “natural” synchronization points
E.g., servers structured around a main dispatch loop

Changes which do not affect memory layout
E.g., refactorings, security patches

64

Failure Recovery: Guarantees?

Assumes that recovery is successful if versions exhibit
the same external behavior after recovery

If unrecoverable, drops the crashed version
(By design, Mx does not attempt to survive errors it
cannot handle)

65

66

Runtime code patching and fault recovery
OS-level checkpointing (using clone syscall)
Code segment replacement*
Runtime stack manipulation
Breakpoint insertion and handling (for indirect fun calls)

Failure Recovery – Details

MxM

Mx

SEA

SEAREM

*Currently with compiler support

67

Stack Patching

…

read
0xDEADBEEF

Ret Addr:

Ret Addr:

foo
0xAAAACCCC

…

read
0xBEEFDEAD

Ret Addr:

Ret Addr:

foo
0xAAAABBBB

Version 1
 void foo() {
 ...
 read(1, buf, 3);
 ...
 }

Version 2 (patched)
 void foo() {
 ...
 read(1, buf, 3);
 ...
 }

0xDEADBEEF: 0xBEEFDEAD:

0xDEADBEEF

0xAAAACCCC

68

Indirect Calls

Version 1
 fptr = bar;
 ...

 void bar(int x) {

 ...
 }

 void foo() {

 ...
 fptr(1);
 ...
 }

0x012345678: 0x87654321:

Version 2 (patched)
 fptr = bar;
 ...

 void bar(int x) {

 ...
 }

 void foo() {

 ...
 fptr(1);
 ...
 }

INT 3

INT 3

Memory
 0x12345678

fptr:
Memory

 0x876543210
fptr:

69

Static Binary Analyzer

Create various mappings between the two version
binaries

Static analysis of binary executables
Extracting function symbols from binaries (libbfd)
Machine code disassembling and analysis (libopcodes)
Binary call graph reconstruction and matching

MxM

Mx

REM

SEASEA

Evaluation: survived several crash bugs

71

Application Bug
md5sum
sha1sum Buffer overflow

mkdir
mkfifo
mknod

NULL-ptr dereference

cut Buffer overflow
lighttpd #1 Loop index underflow
lighttpd #2 Off-by-one error

redis Missing return

U
TI

LI
TI

ES

SE
RV

ER
S

77

Mx and Varan
Promising new approach for improving software updates

Based on multi-version execution
Our prototypes can survive crash bugs in real software
updates
Varan’s novel architecture incurs a low performance
overhead and can handle system call divergences

Many opportunities for future work
Support for more complex code changes in Mx &
more complex divergences in Varan
Improve memory consumption
Explore new other applications, e.g., live sanitization

Can multiple software versions be effectively combined to increase software reliability and security?

Mx and Varan: Safe Software Updates
via Multi-version Execution

[ASPLOS 2015] Hosek and Cadar, VARAN the
 Unbelievable An Efficient N-version
 Execution Framework

[ICSE 2013] Hosek and Cadar, Safe Software
 Updates via Multi-version Execution

[HotSwUp 2012] Cadar and Hosek, Multi-version
 software updates

28th January 2015 Hong Kong University of Science and Technology

