Varan and Mx: Safe Software Updates via Multi-version Execution

Petr Hosek <u>Cristian Cadar</u>

Software Reliability Group Department of Computing

Imperial College London

Hong Kong University of Science and Technology

28th January 2015

Motivation

Software evolves, with new versions and patches being released frequently

Software updates often present a high risk

Many users refuse to upgrade their software...

...relying instead on outdated versions flawed with vulnerabilities or missing useful features and bug fixes

Many admins (70% of those interviewed) refuse to upgrade

Crameri, O., Knezevic, N., Kostic, D., Bianchini, R., Zwaenepoel, W. Staged deployment in Mirage, an integrated software upgrade testing and distribution system. SOSP'07

The fundamental problem with program maintenance is that fixing a defect has a substantial (20-50%) chance of introducing another. So the whole process is two steps forward and one step back.

- Fred Brooks, 1975

 \geq 14.8~24.4% for major operating system fixes

Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and Bairavasundaram, L. How Do Fixes Become Bugs? In ESEC/FSE' 11

One solution: Patch Testing [joint work with Marinescu, ESEC/FSE'13]

KATCH automatically tests each submitted patch, looking for potential bugs it introduces.

Study on all patches in 19 applications over a combined period of 6 years:

- Significantly improved patch coverage
- Found previously unknown bugs

Of course, bugs inevitably make it into released code

Single-threaded event-driven web server

Powers several popular sites such as YouTube, Wikipedia, Meebo

HTTP ETag hash value computation in etag_mutate

for (h = 0, i = 0; i < etag->used; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

April 2009

Old bug fixed, New bug introduced

HTTP ETag hash value computation in etag_mutate

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

File (re)compression in mod_compress_physical

```
if (use_etag)
    etag_mutate(con->physical.etag, srv->tmp_buf);
}
```

When a new version becomes available

Run it in parallel with the old versions!

N = available (idle) cores

When a new version becomes available

Run it in parallel with the old versions!

Synchronise all versions to act as one to the outside world

When a new version becomes available

Run it in parallel with the old versions!

- Synchronise all versions to act as one to the outside world
- Transparently survive crashes occurring in some versions

Could do so until enough confidence is gained in the new version(s) Or as long as enough idle cores are available

MultiCore CPUs becoming standardwith no benefit to inherently sequential apps

Idle parallel resources, with no benefit to inherently sequential applications

Cristian Cadar, Peter Pietzuch, Alex Wolf *Multiplicity computing: A vision of software* engineering for next-generation computing platform applications. FoSER'10

Similar Idea: Automatically Generated Variants

Run two variants with stacks growing in different directions [Orchestra]

Any divergence is a possible attack: fail safe

Run multiple variants with different placement of objs in mem [DieHard]

Survive some errors due to memory corruption

Challenges of Multi-Version and Multi-Variant Execution

Common challenges:

Synchronise and virtualise the executions of multiple versions <u>efficiently</u>

Specific to multi-version execution

Allow for (small) differences in behaviour

Our proposed solution addresses both of these

Possible at different levels of abstraction/granularity

- Application inputs/outputs
- Library calls
- System calls

Synchronisation at System Call Level

Advantages

General

System calls the only way to interact with outside world

Small number of system call types

System Calls Define External Behavior

Version 1	Version 2
<pre>void even_odd(int *a, size_t len) { int i, even = 0;</pre>	<pre>void even_odd(int *a, size_t len) { int i, odd = 0;</pre>
<pre>for (i=0; i<len; %="" (a[i]="" 0)="" 2="=" even++;<="" i++)="" if="" pre=""></len;></pre>	<pre>for (i=len-1; i>=0; i) if (a[i] % 2 != 0) odd++;</pre>
<pre>printf("%d\n", even); printf("%d\n", len - even); }</pre>	<pre>printf("%d\n", len - odd); printf("%d\n", odd); }</pre>

```
int arr[] = { 6, 3, 2, 4 };
even_odd(arr, 4);
...
write(1, "3\n", 2) = 2
write(1, "1\n", 2) = 2
...
```

External Behavior Evolves Sporadically

Measured using lighttpd regression suite on 164 revisions (~10 months) *Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in [ICSE'13])

Disadvantages of ptrace

Slow

For each system call run by each version, the monitor runs several system calls (and traps)

Does not scale well to large number of versions

Multi-version execution runs no faster than the slowest version

Inflexible

Lockstep execution requires the same sequence of system calls

Varan

Distributed Highly-Concurrent Multi-Version Monitor

http://godzilla.wikia.com/wiki/Varan

Varan

Performance

Low performance overhead

Scales to large number of versions

Flexibility

Does not require lockstep execution Tolerance to minor differences Enables novel applications

Shared memory ring buffer

VARAN: Performance Evaluation

Varan

Performance

- Low performance overhead
- **Does not require lockstep execution**
- Scales to large number of versions

■ 0 ■ 1 ■ 2 ■ 3 ■ 4 ■ 5 ■ 6

Taken on 3.40 GHz Intel Core i7-2600 with 8 GB of RAM, Linux kernel 3.11.0

Safe updates via multi-version execution

Handling crashes in some of the versions

April 2009

Old bug fixed, New bug introduced

HTTP ETag hash value computation in etag_mutate

for (h = 0, i = 0; i < etag->used - 1; ++i)
 h = (h << 5) ^ (h >> 27) ^ (etag->ptr[i]);

File (re)compression in mod_compress_physical

```
if (use_etag)
    etag_mutate(con->physical.etag, srv->tmp_buf);
}
```


Case I: Follower crashes

Case 2: Leader crashes

Advanced key-value store server

Powers several popular services such as GitHub and Flickr

HMGET command hmgetCommand function

```
robj *o = lookupKeyRead(c->db, c->argv[1]);
if (o == NULL) {
    addReplySds(c,sdscatprintf(sdsempty(),
                "*%d\r\n",c->argc-2));
    for (i = 2; i < c->argc; i++) {
        addReply(c,shared.nullbulk);
    }
    return;
} else {
   if (o->type != REDIS HASH) {
        addReply(c,shared.wrongtypeerr);
        return;
    }
}
addReplySds(c,sdscatprintf(sdsempty(),
            "*%d\r\n",c->argc-2));
```

```
robj *o, *value;
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && o->type != REDIS HASH) {
    addReply(c,shared.wrongtypeerr);
    return; <- missing return</pre>
}
addReplySds(c,sdscatprintf(sdsempty(),
            "*%d\r\n",c->argc-2));
for (i = 2; i < c > argc; i++)  {
    if (o != NULL && (value = hashGet(o,c-
>argv[i])) != NULL) {
        addReplyBulk(c,value);
        decrRefCount(value);
    } else {
        addReply(c,shared.nullbulk);
    }
}
```

Refactor

Bug may result in loosing some or even all of the stored data

Handling divergences between versions

Using rewrite rules

External Behavior Evolves Sporadically

Measured using lighttpd regression suite on 164 revisions (~10 months) *Taken on Linux kernel 2.6.40 and glibc 2.14 using strace tool and custom post-processing (details in [ICSE'13])

#ifdef HAVE_GETUID
ifndef HAVE_ISSETUGID

return (geteuid() != getuid() II

getegid() != getgid();

static int l_issetugid() {

if (!i_am_root &&
 (geteuid() == 0 II getegid() == 0)) {

define issetugid l_issetugid
endif
#endif

1

if (!i_am_root && issetugid()) {

LIGHTTPD 2436

Extra system calls

LIGHTTPD 2435

Handling different crashes in multiple versions

Via failure recovery

Scope: Surviving crash errors occurring at different times

Current limitation: implemented in a ptracebased system, with lockstep execution

Failure Recovery: Runtime Code Patching

Synchronisation and failure recovery mechanism

Failure Recovery: Suitable Scenarios

Errors with a small propagation distance

"Localized" around a small portion of code

Applications which provide "natural" synchronization points

E.g., servers structured around a main dispatch loop

Changes which do not affect memory layout

E.g., refactorings, security patches

Failure Recovery: Guarantees?

Assumes that recovery is successful if versions exhibit the same external behavior after recovery

If unrecoverable, drops the crashed version

(By design, Mx does not attempt to survive errors it cannot handle)

Failure Recovery – Details

Runtime code patching and fault recovery

- OS-level checkpointing (using clone syscall)
- Code segment replacement*
- Runtime stack manipulation
- Breakpoint insertion and handling (for indirect fun calls)

Stack Patching

Indirect Calls

68

Static Binary Analyzer

Create various mappings between the two version binaries

- Static analysis of binary executables
- Extracting function symbols from binaries (libbfd)
- Machine code disassembling and analysis (libopcodes)
- Binary call graph reconstruction and matching

Evaluation: survived several crash bugs

	Application	Bug
UTILITIES	md5sum sha1sum	Buffer overflow
	mkdir mkfifo mknod	NULL-ptr dereference
Servers	cut	Buffer overflow
	lighttpd #1	Loop index underflow
	lighttpd #2	Off-by-one error
	redis	Missing return

<u>Mx and Varan</u>

Promising new approach for improving software updates

Based on multi-version execution

Our prototypes can survive crash bugs in real software updates

Varan's novel architecture incurs a low performance overhead and can handle system call divergences

Many opportunities for future work

Support for more complex code changes in Mx & more complex divergences in Varan

Improve memory consumption

Explore new other applications, e.g., live sanitization

Mx and Varan: Safe Software Updates via Multi-version Execution

[ASPLOS 2015] Hosek and Cadar, VARAN the Unbelievable An Efficient N-version Execution Framework

[ICSE 2013] Hosek and Cadar, Safe Software Updates via Multi-version Execution

[HotSwUp 2012] Cadar and Hosek, Multi-version software updates