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Abstract

Model checking is an automatic formal verification technique for establishing
correctness of systems. It has been widely used in industry for analysing and
verifying complex safety-critical systems in application domains such as avionics,
medicine and computer security, where manual testing is infeasible and even
minor errors could have dire consequences.

In our increasingly parallelised world, concurrency has become pivotal and seam-
lessly woven within programming paradigms, however, extremely challenging
when it comes to modelling and establishing correctness of intended behaviour.
Tools for model checking concurrent systems face severe limitations due to scal-
ability problems arising from the need to examine all possible interleavings
(schedules) of executions of parallel components. Moreover, concurrency poses
additional challenges to model checking, giving rise to phenomena such as non-
determinism, deadlock, livelock, etc.

In this thesis we focus on adapting and developing novel model-checking tech-
niques for concurrent systems in the setting of the process algebra CSP and its
primary model checker FDR. CSP allows for a compact modelling and precise
analysis of event-based concurrency, grounded on synchronous message passing
as a fundamental mechanism of inter-component communication. In particular,
we investigate techniques based on symbolic model checking, static analysis and
abstraction, all of them exploiting the compositionality inherent in CSP and
targeting to increase the scale of systems that can be tractably analysed.

Firstly, we investigate symbolic model-checking techniques based on Boolean
satisfiability (SAT), which we adapt for the traces model of CSP. We tailor
bounded model checking (BMC), that can be used for bug detection, and tem-
poral k-induction, which aims at establishing inductiveness of properties and is
capable of both bug finding and establishing the correctness of systems.

Secondly, we propose a static analysis framework for establishing livelock free-
dom of CSP processes, with lessons for other concurrent formalisms. As opposed
to traditional exhaustive state-space exploration, our framework employs a sys-
tem of rules on the syntax of a process to calculate a sound approximation
of its fair/co-fair sets of events. The rules either safely classify a process as
livelock-free or report inconclusiveness, thereby trading accuracy for speed.

Finally, we develop a series of abstraction/refinement schemes for the traces,
stable-failures and failures-divergences models of CSP and embed them into a
fully automated and compositional CEGAR framework.

For each of those techniques we present an implementation and an experimental
evaluation on a set of CSP benchmarks.
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Chapter 1

Introduction

Model checking [CE81, QS82, CGP99, BK08] is a powerful automatic formal verification

technique for establishing correctness of systems. It has been widely used in industry, e.g.,

NASA, Microsoft, Intel, Cadence, Bell Labs, etc., for analysing and verifying complex safety-

critical systems in application domains such as avionics, medicine and computer security,

where manual testing is infeasible and even minor errors could have dire consequences.

The foundations of model checking were established by Clarke and Emerson [CE81] in

1981 and independently by Queille and Sifakis [QS82] in 1982. For the significance of their

work and contributions, in 2007 Clarke, Emerson and Sifakis won the prestigious ACM

Turing Award.

Model checking relies on rigorous mathematical formalisms and algorithms to formally

reason about the correctness of a program. In its general case, it requires a finite-state model

(or a finite abstraction) of a system, capturing its possible behaviours, and a specification

property, capturing the notion of correctness. Typically, the language description of the

program is automatically compiled into a formal model, i.e., a mathematical structure such

as an automaton, a transition system, a Kripke structure, a Petri net, etc. The specification

is traditionally defined as a formula in some kind of temporal logic, but it can also take the

form of an assertion statement in the program or, alternatively, be specified as an abstract

design in the formal language of the system. In the latter case, the verification problem is

called refinement checking.

The model checker performs analysis based on exhaustive systematic exploration of the

state space of the system’s model to either establish or refute that the system meets its

1
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specification. In the latter case, the model checker provides a counterexample—a witness

illustrating a violating behaviour of the program. Depending on the underlying formalisms,

the counterexample can take the form of a trace, a tree, a schedule, etc., that can be used

for reproducing and fixing the bug, which is extremely useful in practice. Moreover, model

checking is a representative of the push-button technology in the sense that in the vast

majority of cases it is fully automatic and requires no human supervision or expertise, as

opposed to other formal verification approaches such as theorem proving, for instance.

Model checking is very well suited not only for detecting bugs but also for formally

verifying the correctness of systems. For a finite-state model of a system, model checking is

complete, and therefore reliable when pronouncing a system correct. In case of infinite-state

systems, the completeness of the algorithm usually1 depends on whether or not the finite

abstraction of the system preserves the correctness property under consideration.

The main challenge in applying model checking in practice is that the state space of

the model of the system grows exponentially with the number and size of the variables it

employs and can easily become too large to handle efficiently. The so-called state-space

explosion problem puts serious restrictions on the size of systems that can be tractably

analysed.

To combat the state-space explosion problem, a significant number of techniques have

been proposed. Methods for decreasing the size of the generated state space and en-

hancing the model checking algorithm include abstraction [CGL94] (e.g., data, predicate,

counter abstraction) usually embedded in a CEGAR [CGJ+00] loop, invariant generation

[McM03, SSS00], symmetry reduction [ES93, CFJ93, God99], state-space compression and

hashing, etc. Many model checkers settle for a sound but incomplete algorithm by employing

techniques such as bounded model checking [BCCZ99] for detecting some but not neces-

sarily all the bugs in the system. Alternatively, model checkers based on static analysis

or abstract interpretation [CC77] generally adopt complete but unsound algorithms that

might raise false alarms but guarantee that a bug is never missed. Regarding state-space

representation, the major dichotomy is between explicit and symbolic [BCM+92, BCCZ99]

model checking. Explicit model checking is based on explicit enumeration and examination

1There are instances of correct and complete model-checking algorithms that terminate on infinite-state
structures based on reasoning on-the-fly about, e.g., well-quasi orders. Examples include Petri nets, lossy
counter machines, 1-clock timed alternating automata, various term-rewrite systems, etc.
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of individual states. Symbolic model checking relies on abstract representation of sets of

states, generally as Boolean formulas, and properties are validated using techniques such as

BDD manipulation or SAT-solving.

In our increasingly parallelised world, concurrency has become pivotal and seamlessly

woven within programming paradigms, however, extremely challenging when it comes to

modelling and establishing correctness of intended behaviour. Tools for model checking

concurrent systems face severe limitations due to scalability problems arising from the need

to examine all possible interleavings (schedules) of executions of parallel components. Ev-

ery subsequent parallel component adds a further exponential blow-up to the state space

of the system, amplifying enormously the state-space explosion problem. Moreover, con-

currency poses additional challenges to model checking, giving rise to phenomena such as

nondeterminism, deadlock, livelock, etc.

In addition to the above-mentioned model checking techniques, various techniques em-

ploying compositional reasoning have proven beneficial for moderating the severity of the

state-space explosion problem in the setting of concurrent systems. Partial-order reductions

[CGP99, Pel98, God95] exploit the interleaving model of concurrent systems and the notion

of independence of concurrent events. They build upon the observation that behaviours

that differ only in the order of independent concurrent events can be indistinguishable

by the specification and can therefore be considered equivalent. Hence, only a subset

of all possible interleavings can be explored. Other compositional techniques, targeted

specifically at the formal verification of concurrent systems, include assume-guarantee rea-

soning [GL91, HQR00, BPG08], hierarchical state-space compression [RGG+95, Ros11b],

τ -confluence reduction [WK07], etc. Further surveys on model checking techniques and

methods for state-space reduction can be found in [DKW08] and [Pel08].

Two fundamental paradigms for modelling concurrency are grounded upon communica-

tion using shared memory and communication using synchronous or asynchronous message

passing. Hybrid concurrency models are adopted by multi-core GPUs, for instance, which

exploit both shared memory and barrier synchronisation primitives. If parallel components

are distributed, however, there is no physical shared memory involved, so distributed sys-

tems rely exclusively on the message passing model of concurrency. If adopting synchronous
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message passing, parallel components communicate by handshaking on the execution of cer-

tain actions, while still being able to perform independently, i.e., interleave, on other actions.

Consequently, a sender process may use a channel to transmit data to a receiver process

only if the latter is ready to accept data through that channel. Asynchronous message

passing relies on typed channels of certain capacity (> 0). Hence, messages are buffered in

channels and no handshaking is necessary.

Process algebras are a family of mathematical formalisms for modelling and reason-

ing about concurrent (reactive, distributed) systems in terms of the interactions of their

component counterparts and the observable behaviours that they can exhibit, where the

atomic units of observation are actions, also called events. Traditionally, process algebras

are based on the synchronous message passing model of concurrency, i.e., component pro-

cesses communicate explicitly by handshaking on events, as opposed to by modifying values

of global shared variables. The most prominent process algebras to date are CCS (Calculus

of Communicating Systems) [Mil80, Mil89], CSP (Communicating Sequential Processes)

[Hoa85, Ros98, Ros11b], ACP (Algebra of Communicating Processes) [BK84] and the π-

calculus [Mil99]. In all of those, using a high-level language, processes are defined composi-

tionally, starting with atomic process constructs and combining those using operators such

as choice, parallel and sequential composition, hiding, etc. A distinguishing mark of process

algebras is that processes (programs) can be given formal algebraic semantics and can be

compared for equivalence through an inference system based on a set of equational algebraic

laws (axioms) that the basic operators satisfy. The algebraic laws provide a mechanism for

calculating behaviours of processes using equational reasoning, hence the name algebra or

calculus. A brief history and a survey of results in the field of process algebras can be found

in [Bae05] and [Ace03], respectively.

Developed in the late 1970’s by Tony Hoare, the process algebra CSP [Hoa85, Ros98,

Ros11b] allows for a concise description and precise analysis of event-based concurrency.

CSP is grounded on synchronous message passing as a fundamental means of inter-component

communication, as opposed to shared-variable languages. Nevertheless, other models of con-

currency are readily definable on top of CSP, e.g., shared-variable programs can be modelled

by defining shared variables as processes [Ros11b].
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In terms of syntax and semantics, among other differences with existing formalisms

for modelling concurrent systems, CSP supports the usage of recursion, broadcast (multi-

way) synchronisation, as well as hiding and renaming of events, both of which are powerful

mechanisms for abstraction. Using a high-level language, processes can be defined com-

positionally and compiled in a hierarchical structure. This allows for a way of describing

reactive systems that is usually very concise and much more economical in state space than

shared-variable languages.

In terms of semantics, the primary means of understanding the meaning of CSP pro-

cesses has been through denotational semantic models, although CSP also provides con-

gruent algebraic and operational semantics of processes [Ros98]. In contrast, other process

algebras mostly rely on algebraic (ACP) or operational semantics (CCS and the π-calculus).

Denotational models map syntactic descriptions of processes into ordered mathematical

structures. CSP supports a hierarchy of several such denotational semantic models that

capture different types of behaviours, recording more or less information about a process.

All denotational models are compositional in the sense that denotational values of compo-

nent processes can be computed in terms of the denotational values of their subcomponents.

Values of recursive processes can be obtained using standard fixed-point theory in the style

of Scott and Strachey [SS71].

Traditionally in model checking, correctness properties are specified in some kind of

temporal logic such as LTL, CTL, CTL∗. In process algebras, modal logics are employed,

e.g., the Hennessy-Milner logic [HM80] for CCS or other variants of modal logics for the

π-calculus [MPW93]. In CSP correctness properties are defined as abstract designs of the

systems, i.e., as processes, and the verification problem is called refinement checking. A

process I refines a process S in a semantic model M, denoted S vM I and interpreted as

I is a valid implementation of the specification S in M, if all behaviours of I observable

in M are also valid behaviours of S. The refinement relation on processes is defined as a

partial order in the semantic domain M and has a lot of useful properties to be exploited,

among others monotonicity and transitivity, which allow for formalising a compositional

and stepwise approach in development and verification.

Over the years, CSP has been widely used for modelling, analysis and verification of

reactive systems. Various extensions of core CSP also appear in literature and practice, e.g.,
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timed CSP [RR86, Oua00, Sch00, Ros11b], shared-variable CSP [Ros11b, SLD08], CSP with

mobility [Ros11b, Ros10, ST05, VST09], probabilistic CSP [Low93, GW05], etc.

FDR [Ros94, G+05], standing for Failures Divergence Refinement, is acknowledged as

the primary tool supporting CSP [Hoa85, Ros98, Ros11b]. Originally released in 1992, FDR

has evolved into a stable robust platform for modelling and reasoning about CSP processes

over a number of semantic models with different expressive power—the traces model, which

captures partial correctness properties, the stable-failures model, which additionally handles

nondeterminism and deadlock, and the failures-divergences model, which captures a wide

variety of total correctness properties2. The core of FDR is refinement checking in each of

the semantic models, which is carried out on the level of the operational representation of

the CSP processes. This is justified by the fact that semantic models are congruent to the

standard operational semantics which interprets processes as labelled transition systems.

The congruence theorems are presented and proven in [Ros98]. Refinement checking in

FDR has been implemented using explicit state enumeration supplemented by state hashing,

hierarchical state-space compression techniques [RGG+95] and the partial-order reduction

function chase.

Throughout the years, FDR has been widely used in research, teaching and indus-

try [AJS05, qin, ver, BC05] for analysing safety-critical systems, and is well known for its

use in security analysis [Low96]. Centered around FDR, Casper [Low98] is a prominent tool

for analysing and verifying the correctness of security protocols, underlying the discovery of

an attack on the Needham–Schroeder public key protocol in 1995 [Low95] and the verifica-

tion of correctness of a fixed version of it in 1996 [Low96]. In recent years FDR has been used

a number of times as the back-end of a verification engine aimed at notations other than

CSP. Examples include Casper (see above), the shared-variable analyser SVA (see Chapters

18 and 19 of [Ros11b]), tools for reasoning about Statemate statecharts [RW06] and UML

activity diagrams [ASST10], as well as a number of proprietary industrial tools. Attempts

were also made for compiling CSP to other notations, e.g., translating probabilistic CSP

[GW05] to input for the probabilistic model checker PRISM [HKNP06, KNP11].

2Recently, FDR has been extended to also support a number of more expressive CSP models, namely the
revivals and refusal testing models, together with their divergence-strict analogues [AGL+12].
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1.1 Contributions of the Thesis

The objective of the work presented in this thesis is to:

1. Adapt and develop novel verification techniques for concurrent systems in the setting

of the process algebra CSP.

2. Implement and integrate those techniques in FDR for enhancing its performance and

increasing the scale of systems that can be tractably analysed.

3. Empirically evaluate and gain insight about which classes of systems are tackled suc-

cessfully using each of those techniques.

In particular, we focus on techniques based on symbolic model checking, static analysis,

abstraction schemes and CEGAR, all of them exploiting the compositionality inherent in

CSP and targeting to combat the state-space explosion problem.

In the remainder of this section, we summarise our directions of research individually

one by one. We also state our contributions and give insight about how we have met the

objectives described above.

1.1.1 SAT-Based Trace Refinement Checking.

We investigate symbolic model-checking techniques based on Boolean satisfiability (SAT),

which we adapt for the traces model of CSP, sufficient for verifying safety properties.

Theoretical Contributions. We tailor state-of-the-art SAT-based model checking tech-

niques in a two-fold manner.

1. First, we adapt the bounded model checking framework (BMC) [BCCZ99] to the

context of CSP and FDR yielding bounded refinement checking [POR09, POR12].

In our setting, we exploit a SAT solver to decide bounded language inclusion as

opposed to bounded reachability of error states, as in most existing model check-

ers. Due to the harder problem to decide, the original syntactic translation of

BMC to SAT cannot be applied directly and we adopt a semantic translation

algorithm based on watchdog transformations [RGM+03]. As a further contri-

bution, we propose a new Boolean encoding of CSP processes resting on FDR’s
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hybrid two-level approach for calculating the operational semantics using super-

combinators.

2. Due to its limited scope, the bounded refinement framework is only suitable

for detecting bugs. We make our SAT framework complete by implementing

temporal k-induction [SSS00, ES03b] on top of it. The latter aims at establishing

inductiveness of properties and is capable of both bug finding and establishing

the correctness of systems.

Implementation. We have implemented both BMC and temporal k-induction in a tool

called SymFDR which builds upon FDR to obtain an alternative symbolic refinement

engine. The symbolic engine [POR09, POR12] adopts FDR’s implicit operational rep-

resentation based on supercombinators [Ros11b] but explores this using SAT rather

than explicitly. For both BMC and k-induction, SymFDR offers configurable sup-

port for a SAT solver (MiniSAT 2.0 [ES03a, EB05], PicoSAT 846 [Bie08] or ZChaff

[MMZ+01], all used in incremental mode), Boolean encoding (one-hot or binary),

traversal mode (forward or backward), etc. Within the BMC framework, SymFDR

also offers support for configuring a SAT-call frequency, which specifies how often a

SAT check is run to look for errors, relative to the number of steps to unfold the

transition relation.

To the best of our knowledge, our implementation of the k-induction algorithm is the

first attempt of applying unbounded SAT-based refinement checking to CSP, as well

as k-induction to concurrent software systems, in general.

Evaluation. The BMC engine sometimes substantially outperforms the original explicit

state-space exploration method adopted by FDR, especially for complex tightly-coupled

combinatorial problems, as reported in [POR09, POR12]. For k-induction, the com-

pleteness threshold blows up in all cases, due to concurrency, and, therefore, high

performance depends on whether or not the property is k-inductive for some small

value of k. Hence, the SAT engine generally scales better only when counterexamples

exist.
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1.1.2 Static Analysis for Establishing Livelock Freedom.

Theoretical Contributions. We propose two frameworks for establishing livelock free-

dom of CSP processes using static analysis. Both frameworks employ a collection of

rules based on the inductive syntactic structure of terms to either soundly classify a

process as livelock free or report an inconclusive result which might be a false positive.

Hence we trade accuracy for speed.

The general framework can handle the widest variety of CSP processes, including

infinite-state ones. The analysis is based on reasoning about fixed points in terms

of metric spaces, as well as on keeping track and overapproximating the fair sets of

events of a process. In the standard metric on processes, the hiding operator fails

to be nonexpansive. We introduce a new family of metrics parametrised by sets

of visible events under which all CSP operators other than recursion are at least

nonexpansive in all their arguments, including hiding. We prove that our semantic

model equipped with our new metric forms a complete ultrametric space, the set of

livelock-free processes being a closed subset thereof. We propose a system of rules that

inductively generate a sound but incomplete set of metrics that guarantee (witness)

that recursive processes have unique fixed points, and furthermore, that those unique

fixed points are livelock-free (if this is the case).

We identify a class of structurally finite-state CSP processes for which we devise a

simpler and more precise algorithm that forms the basis of our second framework.

We propose a system of compositional rules for inductively generating a livelock flag

together with a collection of fair/co-fair pairs of sets of events, the combination of

which can be viewed as an abstraction of the system preserving livelock freedom. For

minimal closed sequential components we compute exact abstractions by examining

their transition systems in isolation. We become conservative and start losing preci-

sion only in the compositional rules for handling compound CSP processes, thereby

allowing more elaborate and finer data to be computed efficiently. Our fairness notion

of a collection of fair/co-fair sets of events has not been studied in the verification

literature. As a further contribution, we suggest an algorithm for computing it given

a transition system of a process. We also propose methods for efficiently encoding
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this algorithm into a symbolic circuit of size polynomial in the syntactic description

of the process, which serves as a basis of our symbolic representation.

We note that the idea about using symbolic circuits for encoding polynomial-time

algorithms is not bound to our specific process-algebraic framework and can be gener-

alised and applied to various other contexts. A compact symbolic circuit can encode

the input-output relationship of a PTIME algorithm for all possible inputs of the

algorithm all at once. A translation of such a circuit into a BDD or into an input for

SAT can be plugged into any symbolic implementation.

Implementation. We have implemented both frameworks in a tool called slap, which is

an acronym for Static Livelock Analyser of Processes. Computationally, the

crux of our algorithms revolves around the generation and manipulation of sets. The

algorithms fit very naturally into a symbolic paradigm; hence slap is fully symbolic.

The choice of an underlying symbolic engine is configurable, with support for using

a SAT engine (based on MiniSAT 2.0), a BDD engine (based on CUDD 2.4.2), or

running a SAT and a BDD analyser in parallel and reporting the results of the first

one to finish.

We have also integrated the framework for analysing structurally finite-state processes

in FDR [AGL+12], where it now constitutes an alternative back-end for establishing

livelock freedom.

Evaluation. slap outperforms FDR by multiple orders of magnitude, while exhibiting

only a low level of inconclusive results on a large suite of benchmarks. In addition,

slap can also handle infinite-state processes, which are beyond the current capabilities

of FDR.

1.1.3 Abstraction Schemes and CEGAR Framework for CSP and FDR.

We adapt the counterexample-guided abstraction refinement framework [CGJ+00], also

known as CEGAR, to the setting of CSP and FDR. In this framework, an initially coarse

abstraction of the system is iteratively refined (i.e., made more precise) on the basis of

spurious counterexamples until either a genuine counterexample is derived or the property

is proven to hold.
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Theoretical Contributions. We develop a series of abstraction/refinement schemes for

the traces, stable-failures and failures-divergences models of CSP and embed them

into a fully automated and compositional CEGAR framework. We exploit the compo-

sitionality of CSP for the stages of initial abstraction, counterexample validation and

abstraction refinement, extending the framework proposed in [COYC03, CCO+05] and

facilitated by the fact that supercombinators act on a higher level to control how leaf

processes interact. Since abstracting models based on traces and abstracting models

based on stable failures are triggered by two opposite forces, we propose abstraction

and abstraction-refinement strategies for balancing those forces.

To the best of our knowledge, our work constitutes the first application of CEGAR,

in its automated form, to the setting of CSP.

Implementation. We have implemented our algorithms in a prototype tool developed

on top of FDR. Generally, we adopt lazy refinement strategies that yield coarser

abstractions even though it takes a greater number of iterations to converge. The

CEGAR framework will be available in subsequent releases of FDR.

Evaluation. Preliminary experiments indicate a significant enhancement in terms of per-

formance when verifying both safety and liveness properties, including checks for live-

lock and deadlock. Different test cases benefit from different abstraction/refinement

strategies, so we speculate that randomising the choice of those would produce con-

sistently more favourable results.

1.2 Published Work

Some of the work in this thesis has been previously published in jointly authored papers. In

this section, we map the contributions listed in Section 1.1 to the corresponding publications.

The SAT-based bounded trace refinement framework was first published in [POR09].

An extended version it, also reporting on the implementation and evaluation of the temporal

k-induction algorithm, appeared later in [POR12].

Our work on static analysis for establishing livelock freedom was first presented at

CONCUR 2011 [OPRW11], where it won the Best Paper Award. Subsequently, it got
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invited and accepted for publication at [OPRW13]. The extended journal version of the

paper includes all the proofs of correctness and presents more in detail the framework for

analysing structurally finite-state processes.

A tool paper reporting on various new substantial extensions of FDR appeared at CAV

2012 [AGL+12]. Among other techniques, the paper summarises and briefly evaluates all

three frameworks presented in this thesis: SAT-based refinement, static analysis for estab-

lishing livelock freedom and CEGAR. The paper also introduces FDR’s ability to handle

discrete and real-time processes, a few new semantic models of CSP, a new priority operator

and a new compression technique based on divergence-respecting weak bisimulation.

1.3 Layout of the Thesis

The remainder of the thesis is organised as follows.

In Chapter 2, we introduce the relevant background material on CSP and FDR, as

well as a number of mathematical formalisms and notations that we use throughout the

dissertation.

Chapters 3, 4 and 5 contain the main contributions of the thesis.

In Chapter 3, we present a SAT-based framework for carrying out trace refinement,

which includes both bounded refinement checking and temporal k-induction. We propose a

strategy based on watchdog transformations for reducing the problem of bounded language

containment, underlying CSP refinement checking, to the problem of bounded reachability,

traditional for bounded model checking. We also present a new Boolean encoding of CSP

processes mimicking FDR’s hybrid operational semantics based on supercombinators.

Chapter 4 introduces a novel static analysis framework for establishing livelock free-

dom of CSP processes. In Section 4.5, we define a new family of metrics on CSP processes,

parametric on sets of visible events, and state a number of theoretical results about them.

In Section 4.6, we present our general framework, which is capable of handling the widest

variety of CSP process. We provide a system of rules based on the syntactic structure of

CSP terms that inductively generate a sound approximation of the sets of metrics that

witness the existence of unique and livelock-free fixed points. In Section 4.7, we define



1.3. Layout of the Thesis 13

a class of structurally finite-state processes, for which we introduce an alternative collec-

tion of compositional rules that soundly generate a livelock flag together with fair/co-fair

characterisation of the infinite traces of a process. Given a transition system of a process,

we suggest an algorithm for computing an exact fair/co-fair characterisation of the infinite

traces of a process and we introduce an efficient encoding of the algorithm into a compact

symbolic circuit.

In Chapter 5, we introduce a fully automatic and compositional CEGAR framework

for CSP refinement checking. We present a series of abstraction/refinement schemes for the

traces, stable-failures and failures-divergences model of CSP. We describe the main stages

of the CEGAR loop and discuss techniques for carrying out them component-wisely.

In Chapter 6, we summarise and evaluate our work and propose a number of avenues

for future research.

Finally, Appendix A provides proofs of correctness of our static analysis framework for

establishing livelock freedom.



Chapter 2

Background Material

In this chapter we introduce the necessary background material for this thesis.

2.1 Formalisms and Notations

2.1.1 Alphabets, Words and Languages

A finite alphabet A is a finite non-empty set of symbols.

A finite word of length n over A is a sequence u = 〈a1, . . . , an〉 where n ∈ N and ai ∈ A

for 1 ≤ i ≤ n. In the special case when n = 0, ε = 〈〉 is called the empty word. An infinite

word w over A is an infinite sequence of elements of A, i.e., a function w : N → A. We

denote the set of all words of length n by An. We write A∗ =
⋃
n∈NA

n and Aω to denote

the set of all finite and infinite words, respectively. A word is a finite or an infinite word

and A∞ = A∗ ∪ Aω denotes the set of all words over A. Given a finite word u and a finite

or infinite word v, we denote by u_v the concatenation of u and v. We write u < v if u is

a prefix of v. If u is a word and C ⊆ A, the projection of u on C is denoted by u � C and

defined by:

〈〉 � C = 〈〉
〈c〉_u � C = c_(u � C) if c ∈ C
〈a〉_u � C = u � C if a /∈ C.

A language L over an alphabet A is a set of words over A. A language L is prefix-closed

if for every word w ∈ L and every v ∈ A∗, v < w implies that v ∈ L.

14



2.1. Formalisms and Notations 15

2.1.2 Labelled Transition Systems

Transition systems, along with automata and Kripke structures, are a fundamental formal-

ism for modelling software and hardware systems.

A labelled transition system (LTS) is a quadruple M = 〈S, init, A, T 〉, where S is a finite

set of states, init ∈ S is an initial state, A is a finite alphabet of labels (actions, events) and

T ⊆ S ×A× S is a transition relation.

Throughout this section, we assume a fixed LTS M = 〈S, s0, A, T 〉, unless specified

otherwise. For convenience, we often write s
a−→ s′ to denote (s, a, s′) ∈ T . Furthermore,

we write s
a−→ if there exists s′ ∈ S such that s

a−→ s′. We will write −→ ∗ and −→ +

to denote, respectively, the reflexive transitive and the transitive closure of the transition

relation.

Given a word w = 〈a1 . . . an . . .〉, an execution fragment ρ = 〈s0, a1, s1, a2 . . . an, sn . . .〉

of M is a finite or infinite alternating sequence of states and labels, such that for all i ≥ 0,

si
ai+1−→ si+1. For a finite word w, we require that the sequence ends with a state. We refer

to the sequence of states π = 〈s0 . . . sn . . .〉 as the path corresponding to ρ. A finite path

π = 〈s0 . . . sn〉 is simple if all states along π are pairwise different, i.e., if for all 0 ≤ i, j ≤ n,

i 6= j implies si 6= sj . An execution fragment is initial if s0 = init.

An execution of M is any initial execution fragment.

A state s ∈ S is reachable if there exists a finite execution of M ending in s. For any

n ∈ N, word w = 〈a1 . . . an〉 ∈ A∗ and states s, s′ ∈ S, we say that s′ is reachable from s

through w and write s
w−→∗s′, if there exists a sequence of states 〈s0 . . . sn〉 such that s0 = s,

sn = s′ and for all 0 ≤ i < n, si
ai+1−→ si+1. We denote by Reach(M, s,w) = {s′ | s w−→∗s′}

the set of states in M reachable from s through w. We say that s′ is reachable from s in

M if there exists a word w ∈ A∗ such that s′ ∈ Reach(M, s,w) . A set of states S′ ⊆ S is

strongly connected if any two states si, sj ∈ S′ are mutually reachable from each other. A

set of states S′ ⊆ S is a strongly connected component (SCC) if S′ is strongly connected

and no proper superset of S′ is strongly connected.

Throughout the dissertation we also use the following notation. For any s ∈ S and

a ∈ A, we denote by Post(s, a) = {s′ ∈ S | s a−→ s′} the set of all direct a-successors of

s and by Pre(s, a) = {s′ ∈ S | s′ a−→ s} the set of all its direct a-predecessors. We use
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the standard lifting of Post and Pre to sets of states: Post(S, a) =
⋃
s∈S Post(s, a) and

Pre(S, a) =
⋃
s∈S Pre(s, a).

The LTS M is deterministic if for all s ∈ S and a ∈ A there is at most one outgoing

a-transition from s, i.e., if |Post(s, a) | ≤ 1. M is total if for all s ∈ S and a ∈ A there is

at least one outgoing a-transition from s, i.e., if |Post(s, a) | ≥ 1. M is finitely-branching if

for all s ∈ S and a ∈ A the set Post(s, a) is finite. Under the assumption that the alphabet

A and the set of states S are finite, the LTS M is always finitely-branching.

2.1.3 Relations

For any n ∈ N with n ≥ 1, an n-ary relation on nonempty sets X1, . . . , Xn is a set of n-tuples

R ⊆ X1 × . . .×Xn, where the Cartesian product X1 × . . .×Xn is defined as follows:

X1 × . . .×Xn = {〈x1, . . . , xn〉 | xi ∈ Xi for i = 1, . . . , n}.

If X1 = . . . = Xn = X, then R is an n-ary relation on X.

For the rest of the section let us fix a non-empty set X and a binary relation R ⊆ X×X

on X. For any x, y ∈ X, we write x R y to denote (x, y) ∈ R. We say that R is:

reflexive if for all x ∈ X, x R x,

irreflexive if for all x ∈ X, ¬(x R x),

symmetric if for all x, y ∈ X, x R y implies y R x,

antisymmetric if for all x, y ∈ X, x R y and y R x implies x = y,

transitive if for all x, y, z ∈ X, x R y and y R z implies x R z.

For any A,B ⊆ X we denote by R(A) the set {b ∈ X | ∃ a ∈ A � a R b} and by

R−1(B) the set {a ∈ X | ∃ b ∈ B � a R b}. We use the standard lifting of R to words. If

a = 〈a1, . . . , ak〉 and b = 〈b1, . . . , bm〉 are finite words over X, we write a R b if k = m and

for all 1 ≤ i ≤ k, ai R bi. If a = 〈a1, . . . , ak, . . .〉 and b = 〈b1, . . . , bk, . . .〉 are infinite words

over X, we write a R b if for all i ∈ N, ai R bi.

2.1.3.1 Partial Orders and Lattices

In this section we recall standard definitions and facts concerning partial orders and lattices.

We follow the accessible texts in [Cou05] and [Ros98].
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Partial Orders. Let R be a binary relation on a non-empty set of elements X. We say

that R is a partial order on X if R is reflexive, antisymmetric and transitive. R is a strict

partial order on X if R is irreflexive and transitive. We usually denote partial orders by

≤, v or �, and strict partial orders by <, < or ≺. If ≤ is a partial order on X, then the

inverse relation ≥ defined as x ≥ y =̂ y ≤ x is also a partial order on X, and similarly for

strict partial orders.

Partial orders and strict partial orders are in one-to-one correspondence. If ≤ is a

partial order on X, then the relation < defined as

x < y =̂ y ≤ x and x 6= y,

is a strict partial order on X. Conversely, if < is a strict partial order on X, then the

relation ≤ defined as

x ≤ y =̂ y < x or x = y,

is a partial order on X. Therefore we will freely switch between the two formalisms.

Posets. A partially ordered set or a poset is a tuple 〈X,≤〉 where ≤ is a partial order on

X. The dual of a poset 〈X,≤〉 is the poset 〈X,≥〉, where ≥ is the inverse relation of ≤.

Let us fix a poset 〈X,≤〉. Two elements x, y ∈ X are comparable if x ≤ y or y ≤ x. A

subset C ⊆ X is a chain of 〈X,≤〉 if every two elements in C are comparable, i.e.,

∀x, y ∈ C � x ≤ y or y ≤ x.

A subset A ⊆ X is an antichain of 〈X,≤〉 if every two elements in A are incomparable, i.e.,

∀x, y ∈ A � x ≤ y implies x = y.

An element m ∈ X is a minimal element of 〈X,≤〉 if there is no x ∈ X with x < m.

Similarly, M ∈ X is a maximal element of 〈X,≤〉 if there is no x ∈ X with M < x.

In any poset 〈X,≤〉, minimum and maximum elements may or may not exist. An

element ⊥ ∈ X is the minimum or bottom element of 〈X,≤〉 if for all x ∈ X, ⊥ ≤ x.

Dually, > ∈ X is the maximum or top element of 〈X,≤〉 if for all x ∈ X, x ≤ >. If they

exist, bottom and top elements are unique because the relation ≤ is antisymmetric. If they

do not exist, the poset may contain multiple minimal or maximal elements.

Let 〈X,≤〉 be a poset and S ⊆ X. We say that an element a ∈ X is:
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• an upper bound for S if for every x ∈ S, x ≤ a,

• a lower bound for S if for every x ∈ S, a ≤ x,

• a least upper bound for S if it is an upper bound for S and, for any upper bound b of

S, a ≤ b,

• a greatest lower bound for S if it is a lower bound for S and, for any lower bound b of

S, b ≤ a.

The least upper bound and the greatest lower bound of S, if they exist, are denoted by
⊔
S

and
d
S, respectively. If they exist,

⊔
S and

d
S are unique.

Example 2.1.1. Let us take an arbitrary non-empty set S and consider the powerset P(S)

of S equipped with the subset relation ⊆. 〈P(S),⊆〉 is a poset with bottom element ⊥ = ∅

and top element > = S. If X ⊆ P(S), then both
⊔
X and

d
X exist and are equal to

⋃
X

and
⋂
X, respectively.

Semilattices and Lattices. A join semilattice is a triple 〈X,≤,t〉, where 〈X,≤〉 is a

poset and every two elements x, y ∈ X have a least upper bound x t y in X. A meet

semilattice is a triple 〈X,≤,u〉, where 〈X,≤〉 is a poset and every two elements x, y ∈ X

have a greatest lower bound xuy in X. The elements xty and xuy are called the meet and

join of x and y, respectively. A lattice is quadruple 〈X,≤,t,u〉, where 〈X,≤,t〉 is a join

semilattice and 〈X,≤,u〉 is a meet semilattice. The poset 〈P(S),⊆〉 from Example 2.1.1 is

a lattice and is called the powerset lattice of S. In general, if 〈X,≤,t,u〉 is a lattice and

Y ⊆ X is finite, then
⊔
Y and

d
Y exist. This is not necessarily the case if Y is infinite,

however.

CPOs and Complete Lattices. A partial order 〈X,≤〉 is a complete partial order (CPO)

if it has a bottom element ⊥ and every ascending chain x0 ≤ x1 ≤ x2 . . . in X has a least

upper bound
⊔
i xi in X. Similarly, a lattice 〈X,≤,t,u〉 is a complete lattice if any subset Y

of X, finite or infinite, has a least upper bound
⊔
Y in X, which is true precisely whenever

any subset Y of X has a greatest lower bound
d
Y in X. A complete lattice is always non-

empty and has both a top and a bottom element. The powerset lattice from Example 2.1.1

is a complete lattice. Every finite lattice is a complete lattice.
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Functions and Fixed Points. Let f : X 7→ X be a function on a non-empty set X. An

element a ∈ X is a fixed point of f if f(a) = a. An arbitrary function f can have 0, 1 or

multiple fixed points.

Let now f : X 7→ X be a function on X and 〈X,≤〉 be a partial order. We say that f

is monotone if for all x, y ∈ X, x ≤ y implies f(x) ≤ f(y). A fixed point a ∈ X is the least

fixed point of f if a is a fixed point of f , and for any fixed point b of f , a ≤ b. Dually, a

fixed point a ∈ X is the greatest fixed point of f if a is a fixed point of f , and for any fixed

point b of f , b ≤ a. We denote the least and the greatest fixed point of f , if they exist, by

µ f and νf , respectively.

Theorem 2.1.2 (Knaster-Tarski fixed-point theorem). Let 〈X,≤〉 be a complete lattice

and f : X 7→ X be a monotone function on X. Then f has a least fixed point given by
d
{x | f(x) ≤ x} and a greatest fixed point given by

⊔
{x | x ≤ f(x)}.

Let now f : X 7→ X be a function on X and 〈X,≤〉 be a CPO. We say that f

is continuous if, whenever x0 ≤ x1 ≤ x2 . . . is an ascending chain of elements from X,

f(
⊔
i xi) =

⊔
i f(xi). If f is continuous, then f is monotonic although the reverse is not

necessarily true.

Theorem 2.1.3 (Kleene’s fixed-point theorem). Let 〈X,≤〉 be a CPO and f : X 7→ X be a

continuous function on X. Then f has a least fixed point given by
⊔
{fn(⊥) | n ∈ N}.

2.1.3.2 Equivalence Relations and Partitions

Equivalence Relations. A binary relation R on X is an equivalence relation on X if

R is reflexive, symmetric and transitive. In case of equivalence relations, we often use the

symbols ∼ or ≡ instead of R.

For an arbitrary x ∈ X, the equivalence class of x under R is denoted by [x]R and

is defined as [x]R = {x′ ∈ X | x R x′}. Then for any x, y, z ∈ X, x R y if and only if

[x]R = [y]R, which in turn holds if and only if [x]R ∩ [y]R 6= ∅.

We write X/R to denote the quotient of X with respect to R, i.e., the set {[x]R | x ∈ X}

of all equivalence classes induced in X by R.
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Given equivalence relations R and R′ on X, we say that R′ is a refinement of R if for

every x ∈ X, [x]R
′ ⊆ [x]R. In this case we also say that R′ is finer than R or that R is

coarser than R′. R′ is a proper refinement of R if R′ is a refinement of R and R′ 6= R.

Partitions. Given a non-empty set X, a partition Π of X is a set of non-empty sets

{Xi | i ∈ I} such that
⋃
i∈I Xi = X and for every i, j ∈ I, if i 6= j, then Xi ∩Xj = ∅. In

other words, P is a set of non-empty pairwise-disjoint subsets of X that cover the whole of

X. The elements of Π are called blocks of the partition.

Similarly to equivalence relations, given two partitions Π and Π′ of X, we say that Π′

is a refinement of Π if every block B′ of Π′ is a subset of a block B of Π. If in addition

Π 6= Π′, then Π′ is a proper refinement of Π. In this case we say that Π′ is finer than Π or

that Π is coarser than Π′.

Correspondence Between Equivalence Relations and Partitions. In fact, equiv-

alence relations and partitions are in one-to-one correspondence. If R is an equivalence

relation on X, then the quotient X/R is a partition of X. Conversely, if Π = {Xi | i ∈ I} is

a partition of X, then the relation R defined as {(x, y) | ∃ i ∈ I �x, y ∈ Xi} is a well-defined

equivalence relation on X.

2.1.4 Propositional Logic

Let X be a countably-infinite set of Boolean variables and x ∈ X. The set of well-formed

Boolean formulas is defined inductively by the following grammar:

ϕ ::= true | false | x | ϕ1 ∧ ϕ2 | ¬ϕ .

Other Boolean operators such as or (∨), implies (→) and equivalent to (↔) are stan-

dardly derived using and (∧) and not (¬). A formula of the form x or ¬x is called a literal.

ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are the conjunction and the disjunction of ϕ1 and ϕ2, respectively.

An assignment or a valuation is a function ν mapping the variables in X to the set of

truth values {true, false}. Given a Boolean formula ϕ over a set of variables from X, we

use the standard semantics of propositional formulas to determine whether ϕ evaluates to

true under ν, which we denote by ν |= ϕ.
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ν |= true
ν 6|= false
ν |= x ⇔ ν(x) = true
ν |= ¬ϕ ⇔ ν 6|= ϕ
ν |= ϕ1 ∧ ϕ2 ⇔ ν |= ϕ1 and ν |= ϕ2

A formula ϕ is satisfiable if there exists an assignment of its variables under which it

evaluates to true. If no such assignment exists, ϕ is unsatisfiable (or a contradiction). A

formula ϕ is valid (or a tautology) if it evaluates to true under all possible assignments. As

a trivial consequence, ϕ is valid if and only if ¬φ is a contradiction.

We say that two formulas ϕ1 and ϕ2 are equivalent and write ϕ1 ≡ ϕ2 if for any

assignment ν, ν |= ϕ1 if and only if ν |= ϕ2. ϕ1 and ϕ2 are equisatisfiable if they are both

satisfiable or both unsatisfiable.

A formula is in negation normal form (NNF) if the only Boolean operators that it

contains are and, or and not, and negation occurs only in front of Boolean variables. By

repeatedly applying De Morgan’s rules and the double-negation rule, every Boolean formula

ϕ can be transformed into an equivalent formula in NNF of size linear in the size of ϕ.

A formula is in conjunctive normal form (CNF) if it is a conjunction
∧
i ci of clauses,

where each clause ci is a disjunction
∨
j li,j of literals. A clause containing just a single literal

is called a unary clause. It is well-known that every Boolean formula ϕ can be transformed

into an equivalent formula in CNF although potentially increasing ϕ’s size exponentially.

On the other hand, ϕ can be transformed to an equisatisfiable formula in CNF with only a

linear blow-up in its size. One way of carrying out the transformation is via an algorithm

known as Tseitin encoding [Tse68, BKWW08, KS08].

Tseitin encoding is an inductive algorithm for converting a Boolean formula ϕ into

an equisatisfiable formula in CNF. The algorithm works top-down on the structure of ϕ

by introducing a fresh Boolean variable xi for each non-literal subformula ϕi of ϕ and

generating clauses requiring that the variable be equivalent to the subformula. The original

formula ϕ is satisfiable if and only if the set of clauses generated in the above manner,

in conjunction with the unary clause containing the fresh variable introduced for ϕ, is

satisfiable. The formulas are equisatisfiable but not equivalent because of the fresh variables

introduced. For each subformula ϕi of ϕ the clauses used as constraints are generated with

respect to the (topmost) Boolean connective of ϕi. The rules are illustrated in Figure 2.1
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[BKWW08], where x denotes the fresh variable introduced for ϕi, and y and z correspond

to the variables that represent the subformulas of ϕi. They might be fresh variables as well,

introduced inductively by the algorithm, or literals, if leaves.

x↔ ¬y ≡ (¬x ∨ ¬y) ∧ (y ∨ x)
x↔ (y ∨ z) ≡ (¬y ∨ x) ∧ (¬z ∨ x) ∧ (¬x ∨ y ∨ z)
x↔ (y ∧ z) ≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x)
x↔ (y → z) ≡ (x ∨ y) ∧ (¬z ∨ x) ∧ (¬x ∨ ¬y ∨ z)
x↔ (y ↔ z) ≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ (¬y ∨ ¬z ∨ x) ∧ (y ∨ z ∨ x)

Figure 2.1: Tseitin encoding rules

In order to reduce the size of the CNF formulas obtained using Tseitin’s transformation

algorithm, various Boolean optimisations can be applied. For instance, as suggested in

[KS08], Tseitin encoding rules can transformed in a way that disjunctions and conjunctions

of multiple subformulas be encoded by introducing a single fresh Boolean variable. The

rules are presented in Figure 2.2.

x↔ (y1 ∨ . . . ∨ yn) ≡ (¬x ∨ y1 ∨ . . . ∨ yn) ∧ (x ∨ ¬y1) ∧ . . . (x ∨ ¬yn)
x↔ (y1 ∧ . . . ∧ yn) ≡ (x ∨ ¬y1 ∨ . . . ∨ ¬yn) ∧ (¬x ∨ y1) ∧ . . . (¬x ∨ yn)

Figure 2.2: Tseitin encoding rules: multiple disjunctions and conjunctions

In addition, if the original formula is in NNF as defined above, the number and size

of clauses of the equisatisfiable CNF formula can be further reduced by using a one-sided

Tseitin encoding, also known as Plaisted-Greenbaum encoding [KS08, PG86]. The latter

means that for n ≥ 1, all constraints of the form x ↔ op(y1, . . . , yn) from Figures 2.1 and

2.2 can be replaced by x → op(y1, . . . , yn), with the corresponding encoding as a set of

clauses. This is justified by the fact that NNF formulas are monotonic with respect to

satisfiability.

2.2 CSP

The general problem we investigate is refinement checking in process-algebraic settings and,

more specifically, in the context of CSP [Hoa85, Ros98, Ros11b].

In process algebras, systems are modelled as interactions of a collection of processes,

communicating with each other and with the outer world via synchronous message passing,
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as opposed to shared variables. Using a high-level language, processes are defined composi-

tionally and compiled into a hierarchical structure, starting with atomic process constructs

and combining those using operators such as choice, parallel and sequential composition,

hiding, etc. This allows for a way of describing reactive systems that is usually very concise

and much more economical in state space than shared-variable languages.

Developed in the late 1970’s by Hoare, CSP is one of the three original process algebras.

It allows for the precise description and analysis of event-based concurrency. An advantage

of the CSP framework is that it offers a well-developed syntax, algebraic and operational

semantics, a hierarchy of congruent denotational semantic models, as well as a formal theory

of refinement and compositional verification. In terms of syntax and semantics, among other

differences with existing formalisms for modelling concurrent systems, CSP supports the

usage of broadcast communication, recursion, as well as hiding and renaming of events,

both of which are powerful mechanisms for abstraction.

Unlike in conventional model checking, where specifications are generally defined as

temporal-logic formulae, in CSP specifications are defined as abstract designs of the systems,

i.e., as processes, which allows for a stepwise development process. The refinement checking

procedure decides whether the behaviours of the system are a subset of the behaviours of

the specification, i.e., whether the system refines the specification. Hence, the verification

problem reduces to checking for reverse containment of behaviours and, therefore, to reverse

language inclusion.

2.2.1 Syntax

In CSP, processes interact with each other and an external environment by communicating

(instantaneous) events. Events can be atomic or can model exchange of data along typed

channels. Compound events consist of a channel name and a finite sequence of data compo-

nents from predefined types. We refer to both atomic and compound events as events. More

than one process may have to cooperate in the performance of an event, i.e., handshake

on it. It is standard to distinguish between visible events that might need the cooperation

of other processes or the environment and invisible internal actions that occur silently, are

not observable or controllable outside a process and model an internal computation such as

resolving of nondeterminism, unfolding of a recursion, abstraction of details.
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Let Σ be a finite alphabet of visible events with τ,X 6∈ Σ. τ denotes the invisible silent

action and X—a successful termination of a process—a special action which is visible but

uncontrollable from outside and can only occur last. Table 2.1 characterises the different

types of actions with respect to their visibility and their ability to exert control from outside

a process.

Event Visible to the Controlled by the
environment environment

a ∈ Σ yes yes
τ no no
X yes no

Table 2.1: Visible and invisible actions

We write ΣX to denote Σ∪{X} and Σ∗X to denote the set of finite sequences of elements

from Σ which may end with X. In the notation below, we have a ∈ Σ, A ⊆ Σ and b is

a Boolean expression. R denotes a binary (renaming) relation on Σ. Its lifting to ΣX is

understood to relate X to itself. For a given process P , we denote by αP ⊆ ΣX the set of

all visible events that P can perform. The variable X is drawn from a fixed infinite set of

process variables. The channel c is allowed to transfer data from a data type T and v ∈ T .

We recall the core syntax of CSP. In general, CSP is a guarded command language [Dij75].

Definition 2.2.1. CSP terms are constructed according to the following grammar:

P ::= STOP | a −→ P | c?x −→ P (x) | c!v −→ P | SKIP | P1 u P2 | P1 2 P2 |

P1 ‖
A
P2 | P1 # P2 | P \ A | P JRK | if b then P1 else P2 | X | X = P (X) | DIV .

We give intuition about the core CSP operators below.

• STOP is the deadlocked process, i.e., a process that is not capable of communicating

any visible or τ actions.

• The prefixed process a −→ P initially offers to engage in the event a and subsequently

behaves like P . To model compound events, c?x −→ P (x) is allowed to input any

value x of type T on the channel c and subsequently evolve to P (x). Similarly, the
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process c!v −→ P outputs a certain value v through the channel c and then starts

behaving like P . In general, by using channels, processes can simultaneously input

and output multiple data values withing a single event.

• SKIP represents successful termination and is willing to communicate X at any time.

• P1 2 P2 denotes the external choice of P1 and P2, whereas P1 u P2 models its internal

(or nondeterministic) alternative. In the former case the choice is resolved by the

environment, while in the latter—nondeterministically.

• The parallel composition P1 ‖
A
P2 can communicate an event from A only if both P1

and P2 are willing to do so—it is required that P1 and P2 synchronise (i.e., handshake)

on all events in A and behave independently of each other with respect to all other

events. In practice, it is common to synchronise P1 and P2 on the set of their shared

events, i.e., use A = αP1 ∩αP2 . In the special case when A = ∅, we refer to P1 9P2 =

P1 ‖
∅
P2 as the interleaving of P1 and P2. Alphabets of processes can also be given

explicitly: the alphabetised parallel P1 αP1
‖αP2

P2 corresponds to P1 ‖
αP1
∩αP2

P2.

The operator ‖
A

is called generalised parallel because all other parallel alternatives are

derivable from it.

• P # Q is the sequential composition of P and Q: it denotes a process which behaves

like P until P chooses to terminate (silently), at which point the process seamlessly

starts to behave like Q.

• P \ A is a process which behaves like P but with all communications in the set A

hidden, i.e., turned into internal τ actions. Hence, the A events in P become invisible

and uncontrollable by other processes or the environment by means of synchronisation.

• The renamed process P JRK derives its behaviours from those of P in that, whenever

P can perform an event a, P JRK can engage in any event b such that a R b.

• The conditional process if b then P1 else P2 behaves like P1 or P2 depending on whether

the Boolean expression b evaluates to true or false.

• X = P (X) denotes a recursive process.
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• Lastly, the process DIV represents livelock, i.e., a process caught in an infinite loop

of silent events.

FDR supports the machine-readable language CSPM which extends core CSP with

several further operators and an extensive functional language. In terms of data types,

CSPM offers support for defining and manipulating Booleans, integers, tuples, sequences,

sets, user-defined types, etc. Data types can be combined and nested arbitrarily as long

as they remain finite. Both processes and events can be parametric on any finite number

of those data types and, furthermore, processes can also be parametric on channel names.

CSPM is augmented with support for using pattern matching, higher-order functions, local

definitions, lambda terms, etc., which further allows for the concise modelling of complex

hierarchical systems.

Regarding CSP operators, CSPM offers support for handling several derived operators

such as timeout, interrupt, piping, enslavement, etc. It also provides means for defining

replicated versions of all associative binary CSP operators. We list several examples below

(where I denotes a finite indexed set and A ⊆ Σ):

• ?x : A −→ P (x): replicated prefixed process

• ||
i∈I αi @ Pi: replicated alphabetised parallel

• u
i∈I @ Pi or u

a∈A a −→ P (a): replicated internal choice

2.2.2 Example: Milner’s Scheduler

Given a number N ∈ N, a scheduler must arrange two classes of events a.i and b.i for

i ∈ {0, . . . , N − 1}, conforming to the following two requirements.

1. The a.i’s should occur in strict rotation, i.e., a.0, a.1, . . . , a.N − 1︸ ︷︷ ︸, a.0, a.1. . . . , a.N − 1︸ ︷︷ ︸, . . .
2. There should be precisely one b.i between each pair of a.i’s.

In CSP, Milner’s scheduler can be modelled as a ring of cell processes synchronised

using extra events c.i, as illustrated in Figure 2.3 for N = 5.

An abstracted CSP script for Milner’s scheduler establishing the rotation specification

is presented in Figure 2.4, where i⊕1 and i	1 denote, respectively, (i+1)%N and (i−1)%N .
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a0

b0

Cell(0 )

a1

b1
Cell(1 )

a2

b2
Cell(2 )

a3

b3
Cell(3 )

a4

b4
Cell(4 )

c1

c2

c3

c4

c0

Figure 2.3: Milner’s scheduler for N = 5

Cell(0 ) = a.0 −→ c.1 −→ b.0 −→ c.0 −→ Cell(0 )
Cell(i) = c.i −→ a.i −→ c.i⊕ 1 −→ b.i −→ Cell(i) if i > 0

Scheduler = (Cell(0 ) ‖ Cell(1 ) ‖ . . . ‖ Cell(N − 1 )) \ {| c |}

ASpec(i) = a.i −→ ASpec(i⊕ 1)
Spec = ASpec(0)

assert Spec vT Scheduler \ {| b |}

Figure 2.4: CSP syntax: Milner’s scheduler

In order to model Milner’s scheduler, we extend the alphabet αCell(i) = {a.i, b.i} of every

process Cell(i) with extra events c.i and c.i ⊕ 1. The process Cell(i) uses c.i and c.i ⊕ 1

to synchronise with its neighbouring processes Cell(i 	 1 ) and Cell(i ⊕ 1 ), respectively.

Cell(0 ) is defined in a slightly different way as the a-sequence should start with a.0. The

scheduler is constructed by composing all the cells in parallel and hiding all c-events on

top as they have been introduced solely for synchronisation purposes. Within Scheduler ,

the operator ‖ corresponds to synchronising the two argument processes on the set of their

common events and is fully associative. Hence, a cell can perform an event only if all

other cells that have the same event in their alphabet are also offering to do so. Using the
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replicated alphabetised parallel operator, the scheduler can also be modelled as follows:

Scheduler = ||
i∈{0,...,4}{a.i, b.i, c.i, c.i⊕ 1} @ Cell(i).

{| c |} is a shorthand for {c.i | i ∈ N}.

We give a rough idea of how Scheduler works and why it preserves the rotation specifica-

tion, modelled as Spec. The only process that can initially perform an event is Cell(0 )—for

all i > 0, Cell(i) is blocked as it needs Cell(i − 1 ) to also offer c.i. After Cell(0 ) com-

municates a.0, the only thing that can happen next is Cell(0 ) and Cell(1 ) synchronising

on c.1, thereby enabling Cell(1 ) to perform a.1. Concerning the sequence of a’s, the same

process is repeated around the ring as, synchronising on c.i ⊕ 1, Cell(i) passes a token to

Cell(i ⊕ 1 ) to signify that it is Cell(i ⊕ 1 )’s turn to contribute an a.i ⊕ 1. Obviously, the

second requirement for the scheduler is captured as well, also in the most general way.

2.2.3 A Hierarchy of Denotational Models

Traditionally, the primary means of understanding CSP processes has been to use deno-

tational (behavioural) models, whereby a process is identified with the set of observable

behaviours that it can exhibit.

CSP supports a hierarchy of several such denotational semantic models. Different

models describe different types of behaviours, providing more or less information about

a process, with the natural trade-off between the amount of details recorded for a process

and the complexity of working in the model. All denotational models are compositional

in the sense that the denotational value (the set of possible behaviours) of each process

can be computed in terms of the denotational values of its subcomponents. Values of

recursive processes can be obtained using standard fixed-point theory in the style of Scott

and Strachey (see Section 2.1.3.1).

The untimed models that we present in the thesis—the traces model T [Hoa80], which

captures partial correctness properties, the stable-failures model F [BHR84], which addition-

ally handles nondeterminism and deadlock, and the failures-divergences model N [Ace03],

which captures a wide variety of total correctness properties—form a hierarchy with an

increasing degree of expressiveness and detail. These models distinguish processes in terms

of their sets of traces, failures and divergences, or combinations of these. Given a process
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P and a semantic model M, the denotational value JP KM of P in the model M is given

in Table 2.2 below. The table also reflects the type of properties capturable in each of the

models.

Model M JP KM Properties

T traces(P ) safety

liveness,
F (traces(P ), failures(P )) deadlock freedom,

nondeterminism

N (failures⊥(P ), divergences(P )) livelock freedom

Table 2.2: Denotational models

In the rest of the section we describe those three models in greater detail. We also

introduce the notion of refinement. A process P refines a process Q in the model M,

denoted Q vM P , if all behaviours of P observable in M are also valid behaviours of

Q. In other words refinement between processes corresponds to reverse containment of

behaviours. Consequently, if P refines Q, P can be plugged in every context where Q would

work without compromising the correctness of the system. We can think of Q as a more

abstract and nondeterministic design of a system (i.e., a specification) and we can view P

as a more concrete and deterministic implementation of Q. From algebraic point of view,

Q vM P if and only if Q =M P u Q.

Refinement is a partial order and has a lot of useful properties to be exploited, among

others:

transitivity: if P vM Q and Q vM R, then P vM R .

monotonicity: if C[.] is a process context, i.e., a CSP process definition with an empty

slot for placing a process, then P vM Q implies C[P ] vM C[Q].

Those two properties allow for compositional and stepwise refinement. Suppose C is a

concurrent system with n components running in parallel. Then, if Spec vM C(S1, . . . , Sn)

and for all i ∈ {1, . . . , n} Si vM Pi, then Spec vM C(P1, . . . , Pn)

We consider two processes P and Q equivalent in a model M and write P ≡M Q if

P vM Q and Q vM P . The relation ≡M forms an equivalence relation on the set of
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CSP processes, which is, furthermore, a congruence with respect to all CSP operators other

than recursion. The latter implies that for every CSP processes P,Q, P ′, Q′ and every CSP

operator ⊕ other than recursion, if P ≡M P ′ and Q ≡M Q′, then P ⊕ Q ≡M P ′ ⊕ Q′.

Intuitively, P ≡M Q means that the processes P and Q are behaviorally indistinguishable

in the model M and hence interchangeable.

Regarding values of recursions, all three semantic models form complete partial orders

or complete lattices under the refinement order v or its inverse—the subset order ⊆ of

behaviours. In those structures, all CSP operators other than recursion are continuous in

all their arguments. A recursive process is then interpreted as the least fixed point in the

corresponding partial order (see Figure 2.5 and Section 2.1.3.1).

⊆

> = RUN (Σ) = CHAOS (Σ)

⊥ = STOP = DIV

(a) T

⊆

> = CHAOS (Σ)

⊥ = DIV

(b) F

v

all deterministic processes
are maximal

⊥ = DIV

(c) N

Figure 2.5: Order-theoretic structure of denotational models

Fixed points of recursive processes are actually proven to be unique provided that no

hiding is used under recursion and every recursion is guarded by a visible event [Ros98].

This result is known as the Unique Fixed Point rule (UFP) and is obtained by reasoning

about fixed points in terms of metric spaces.

2.2.3.1 The Traces Model.

In the simplest of all models, the traces model T , a process P is identified with the set of

its finite traces, denoted by traces(P ) ⊆ Σ∗X. Intuitively, a trace of a process is a sequence

of visible actions that the process can perform. Naturally, the set of traces of a process

is non-empty (it always contains the empty sequence) and prefix-closed. The traces model

focuses only on the finite traces of a process, resting on the assumption that a process can

perform an infinite trace if and only if it can perform all its finite prefixes.
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We write T to denote all sets T satisfying the following axiom:

T1. T ⊆ Σ∗X is non-empty and prefix-closed.

Given a process P , its denotation JP KT = traces(P ) ∈ T is calculated by induction on

the structure of P . We present the rules for the core CSP operators in Figure 2.6. The

lifting of the renaming relation R to traces is carried out pointwise. The precise definition

of s ‖
A
t in the rule for parallel composition is presented in Figure 2.7 [Ros98]. The complete

list of clauses can be found in [Ros98, Chap. 8] and [Ros11b].

traces(STOP) = {〈〉}
traces(SKIP) = {〈〉, 〈X〉}
traces(DIV ) = {〈〉}

traces(a −→ P ) = {〈〉} ∪ {〈a〉_t | t ∈ traces(P )}
traces(P 2 Q) = traces(P ) ∪ traces(Q)

traces(P u Q) = traces(P ) ∪ traces(Q)

traces(P # Q) = (traces(P ) ∩ Σ∗) ∪ {t_s | t_〈X〉 ∈ traces(P ), s ∈ traces(Q)}
traces(P \ A) = {t � (Σ \A) | t ∈ traces(P )}
traces(P JRK) = {t | ∃ s ∈ traces(P ) � s R t}

traces(P ‖
A
Q) =

⋃
{s ‖

A
t | s ∈ traces(P ), t ∈ traces(Q)}

Figure 2.6: The model T : inductive rules for calculating traces

Example 2.2.2. Let us go back to the Milner’s scheduler described in Figure 2.4. A trace

of Cell(0 ) is any prefix of 〈a.0, c.1, b.0, c.0〉∗.

In the traces model, a process Impl refines a process Spec if all sequences of events that

Impl can communicate are also possible for Spec:

Spec vT Impl =̂ traces(Impl) ⊆ traces(Spec).

The traces of a process specify what a process may do, but not what a process must do.

For example, the traces model does not distinguish between the processes P = a −→ P

and P ′ = a −→ P ′ u STOP , neither does it distinguish between Q = a −→ Q 2 b −→ Q

and Q′ = a −→ Q′ u b −→ Q′. However, both P and Q must offer infinitely many a’s if
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s ‖
A
t = t ‖

A
s

〈〉 ‖
A
〈〉 = {〈〉}

〈〉 ‖
A
〈a〉 = {〈〉}

〈〉 ‖
A
〈b〉 = {〈b〉}

〈a〉_s ‖
A
〈b〉_t = {〈b〉_u | u ∈ 〈a〉_s ‖

A
t}

〈a〉_s ‖
A
〈a〉_t = {〈a〉_u | u ∈ s ‖

A
t}

〈a〉_s ‖
A
〈a′〉_t = {} if a 6= a′

〈b〉_s ‖
A
〈b′〉_t = {b_u | u ∈ s ‖

A
〈b′〉_t} ∪ {b′_u | u ∈ 〈b〉_s ‖

A
t}

Figure 2.7: Interleaving operator on traces (where s, t ∈ Σ∗X, A ⊆ ΣX, a ∈ A, b /∈ A).

another process wanted to synchronise, whereas both P ′ and Q′ might refuse an a at any

point. Therefore, the traces model is sufficient for verifying all safety properties, but not

liveness ones.

2.2.3.2 The Stable-Failures Model.

The stable-failures model F offers a finer distinction between processes by extending the

traces model with the set of stable failures of a process, denoted by failures(P ). In this

model, a process is identified by the pair (traces(P ), failures(P )).

A process is in a stable state if it cannot perform τ and X, which are out of the control

of the environment. In a nutshell, failures(P ) comprises all possible behaviours (t,X), where

t is a finite trace leading to a stable state from which P can refuse to communicate any

event from X. It is important to note that for a given trace t, there might be multiple stable

failures (t,X1), . . . , (t,Xn), where the sets of events X1, . . . , Xn are pairwise incomparable

under set containment. For example, a nondeterministic process may accept t through

multiple paths leading to different states from which different sets of events can be refused.

The stable-failures model F consists of all pairs (T, F ) satisfying the following axioms

(where T ⊆ Σ∗X and F ⊆ Σ∗X× P(ΣX)):

T1. T is non-empty and prefix-closed.
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T2. (t,X) ∈ F implies t ∈ T .

F1. If (t,X) ∈ F and Y ⊆ X, then (t, Y ) ∈ F .

F2. If (t,X) ∈ F and for all a ∈ Y , t_〈a〉 /∈ T , then (t,X ∪ Y ) ∈ F .

F3. t_〈X〉 ∈ T implies { (t_〈X〉,ΣX), (t,Σ)} ⊆ F .

Given a process P , its denotation JP KF = (traces(P ), failures(P )) ∈ F is calculated

by induction on the structure of P . We present the stable-failure rules for the core CSP

operators in Figure 2.8 and the rules for deriving traces are the same as the ones for the

traces model (see Figure 2.6). The complete list of clauses can be found in [Ros98, Chap. 8]

and [Ros11b]. We note that the set traces(P ) is recorded explicitly as part of JP KF because

failures(P ) only refers to traces that lead to stable states. For example, if we consider the

process DIV , failures(DIV ) = ∅, but traces(DIV ) = {〈〉}.

failures(STOP) = {(〈〉, X) | X ⊆ ΣX}
failures(SKIP) = {(〈〉, X) | X ⊆ Σ} ∪ {(〈X〉, X) | X ⊆ ΣX}
failures(DIV ) = ∅

failures(a −→ P ) = {(〈〉, X) | a 6∈ X} ∪ {(〈a〉_t,X) | (t,X) ∈ failures(P )}
failures(P 2 Q) = {(〈〉, X) | (〈〉, X) ∈ failures(P ) ∩ failures(Q)}∪

{(t,X) | t 6= 〈〉, (t,X) ∈ failures(P ) ∪ failures(Q)}∪
{(〈〉, X) | X ⊆ Σ, 〈X〉 ∈ traces(P ) ∪ traces(Q)}

failures(P u Q) = failures(P ) ∪ failures(Q)

failures(P # Q) = {(t,X) | t ∈ Σ∗, (t,X ∪ {X}) ∈ failures(P )}∪
{(t_s,X) | t_〈X〉 ∈ traces(P ), (s,X) ∈ failures(Q)}

failures(P \ A) = {(t � (Σ \A), X) | (t, A ∪X) ∈ failures(P )}
failures(P JRK) = {(t,X) | ∃ s ∈ traces(P ) � s R t, (s,R−1(X)) ∈ failures(P )}
failures(P ‖

A
Q) = {(u,X ∪ Y ) | ∃ s∃ t � u ∈ s ‖

A
t, (s,X) ∈ failures(P ), (t, Y ) ∈ failures(Q),

X � (A ∪ {X}) = Y � (A ∪ {X})}

Figure 2.8: The model F : inductive rules for calculating stable failures

In the stable-failures model, a process Impl refines a process Spec if all traces and all

failures that Impl can exhibit are acceptable for Spec:

Spec vF Impl =̂ traces(Impl) ⊆ traces(Spec) and failures(Impl) ⊆ failures(Spec).
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The stable-failures model further allows for capturing liveness properties, such as deadlock

freedom, nondeterminism, etc. A process P can deadlock after a trace t if (t,Σ) is a stable

failure of P . The simplest example of a deadlocked process is the process STOP and, in

practice, deadlock is usually introduced by a collection of processes each of which being

blocked and waiting for another blocked one to synchronise with. A process P defined over

an alphabet of events Σ is deadlock-free if and only if the following refinement holds:

DF (Σ) vF P,

where DF (Σ) is the most general and nondeterministic deadlock-free process over Σ:

DF (Σ) = u
a∈Σ

a −→ DF (Σ).

A process P is nondeterministic if it can diverge, or if after some trace t it can both offer

and refuse an event a ∈ Σ, i.e., if t_〈a〉 ∈ traces(P ) and (t, {a}) ∈ failures(P ).

2.2.3.3 The Failures-Divergences Model.

The failures-divergences model N augments the stable-failures model by further distinguish-

ing processes that can diverge (or livelock), i.e., engage in an endless unbroken internal

activity. In this model, a process P is identified by the pair

(failures⊥(P ), divergences(P )),

where divergences(P ) is the set of traces after which P can diverge and failures⊥(P ) is the

set of stable failures, with an extension allowing a process to refuse anything after diverging:

failures⊥(P ) = failures(P ) ∪ {(t,X) | t ∈ divergences(P ), X ⊆ ΣX}.

It is important to note that for any trace t that P can perform, either P reaches a stable

state after t, or diverges after t or can terminate successfully after t (i.e., communicate X).

Therefore all traces that P can perform, including those after which P can diverge, denoted

by traces⊥(P ), can be derived from failures⊥(P ) in the following way:

traces⊥(P ) = {t | (t, ∅) ∈ failures⊥(P )}.

The failures-divergences model N consists of all pairs (F,D) satisfying the following

axioms (where F ⊆ Σ∗X× P(ΣX) and D ⊆ Σ∗X and T is derived from F as above):
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F1. T = {t | (t,X) ∈ F} is non-empty and prefix-closed.

F2. If (t,X) ∈ F and Y ⊆ X, then (t, Y ) ∈ F .

F3. If (t,X) ∈ F and for all a ∈ Y , t_〈a〉 /∈ T , then (t,X ∪ Y ) ∈ F .

F4. If t_〈X〉 ∈ T , then (t,Σ) ∈ F .

D1. If t ∈ D ∩ Σ∗ and s ∈ Σ∗X, then t_s ∈ D.

D2. t ∈ D implies (t,X) ∈ F .

D3. t_〈X〉 ∈ D implies t ∈ D.

Since divergence is considered catastrophic, processes are considered to be behaving

chaotically once they diverge. Hence, the set of divergences is defined to be postfix-closed

and processes can refuse anything past a divergence point, as reflected in Axioms D1 and

D2, respectively.

Given a process P , its denotation JP KN = (failures⊥(P ), divergences(P )) ∈ N is cal-

culated by induction on the structure of P . We present the divergence rules for the core

CSP operators in Figure 2.9 and the rules for deriving the set failures⊥(P ) can be obtained

from the rules for calculating stable failures in the stable-failures model (see Figure 2.8) by

adding all possible refusals past divergent traces. The complete list of clauses can be found

in [Ros98, Chap. 8] and [Ros11b]. In the last three rules in Figure 2.9, r ranges over Σ∗X,

in accordance with Axiom D1.

In the failures-divergences model, the refinement relation vFD is defined as reverse

inclusion on both the failure and the divergence components:

Spec vFD Impl =̂ failures⊥(Impl) ⊆ failures⊥(Spec), divergences(Impl) ⊆ divergences(Spec).

A process P over an alphabet of events Σ is livelock-free if divergences(P ) = ∅, which

is the case precisely whenever the following refinement relation holds:

CHAOS (Σ) vFD P,

where CHAOS (Σ) is the most general and nondeterministic livelock-free process over Σ:

CHAOS (Σ) = (u
a∈Σ

a −→ CHAOS (Σ)) u STOP .
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divergences(STOP) = ∅
divergences(SKIP) = ∅
divergences(DIV ) = Σ∗X

divergences(a −→ P ) = {〈a〉_t | t ∈ divergences(P )}
divergences(P 2 Q) = divergences(P ) ∪ divergences(Q)

divergences(P u Q) = divergences(P ) ∪ divergences(Q)

divergences(P # Q) = divergences(P ) ∪ {t_s | t_〈X〉 ∈ traces⊥(P ), s ∈ divergences(Q)}
divergences(P \ A) = {(t � (Σ \A))_r | t ∈ divergences(P )}∪

{(u � (Σ \A))_r | u ∈ Σω, u � (Σ \A) finite,∀ t < u � t ∈ traces⊥(P )}
divergences(P JRK) = {t_r | ∃ s ∈ divergences(P ) ∩ Σ∗ � s R t}
divergences(P ‖

A
Q) = {u_r | ∃ s ∈ traces⊥(P ),∃ t ∈ traces⊥(Q) � u ∈ (s ‖

A
t ∩ Σ∗),

(s ∈ divergences(P ) or t ∈ divergences(Q))}

Figure 2.9: The model N : inductive rules for calculating divergences

2.2.3.4 The Hierarchy

As we observed in the previous sections, given two CSP processes Spec and Impl and a CSP

modelM∈ {T ,F ,N}, the refinement check Spec vM Impl reduces to checking for reverse

containment of possible behaviours. Formally:

Spec vT Impl ←→ traces(Impl) ⊆ traces(Spec)

traces(Impl) ⊆ traces(Spec) and
Spec vF Impl ←→

failures(Impl) ⊆ failures(Spec)

failures⊥(Impl) ⊆ failures⊥(Spec) and
Spec vFD Impl ←→

divergences(Impl) ⊆ divergences(Spec)

The three refinement relations are increasingly stronger: Spec vFD Impl implies Spec vF

Impl and Spec vF Impl implies Spec vT Impl . In addition, if a process Impl is divergence-

free, then Spec vFD Impl if and only if Spec vF Impl . Hence for divergence-free processes

it is sufficient and a lot less computationally expensive to work in the stable-failures model.

We remark that the three models that we described in the thesis are only a small

fraction of all denotational models defined for CSP. A significant number of other more
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expressive CSP models are presented in [Ros11b]. Those include finite and infinite be-

havioural models, all of which study linear-time properties. A more general semantic-model

hierarchy, analysing both linear and branching time models, can be found in [vG00, vG90].

The latter, however, has been compiled under the assumption that all actions are visible.

2.2.3.5 Calculating Denotational Values

There are two different approaches for obtaining the denotational value JP KM of a process

P in a model M—either by constructing it inductively from the denotational values of

its subcomponents, or by extracting it from an operational semantics. To give a flavour,

we presented some of the rules underlying the first approach in the previous sections. We

refer the interested reader to [Ros98, Ros11b] for intuition about the rules, as well as for

details about other semantic models of CSP. Since denotational values of processes are

rather complex and often infinite, FDR calculates the behaviours of a process from its

standard operational representation. This is justified by semantic models being congruent

to the standard operational semantics. The congruence theorems are presented and proven

in [Ros98].

2.2.4 Operational Semantics

The operational semantics allows us to associate to any CSP process a labelled transition

systems (LTS) that represents its possible executions. The states of the transition sys-

tems represent process nodes and the labels—visible events or τ actions. For example,

the LTS underlying the operational semantics of Cell(0 ) of Milner’s scheduler is depicted

in Figure 2.10(a). Figure 2.10(b) illustrates the operational representation of the process

P = (a −→ P u b −→ P ) \ {b}.

a0

c1

b0

c0

(a) LTS of Milner’s Cell(0 )

τ τ

a τ

(b) LTS of P

Figure 2.10: Operational representation of CSP processes
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2.2.4.1 SOS Rules

The operational semantics takes the form of a collection of SOS-style inference rules [Plo81,

Plo04], called firing rules. Firing rules provide recipes for constructing an LTS out of a

syntactic CSP description of a process. The recipes define how processes can evolve by

calculating the initial actions available at each node in a single step and the possible results

after performing each action.

The firing rules are presented below. We use an auxiliary process term Ω to denote

any process that has already terminated successfully. If F is a CSP term with a free

process variable X and Q is a CSP process, then F [Q/X] represents the process obtained

by substituting every free occurrence of X in F with Q. An occurrence of a variable X is

free if it does not occur within the scope of a µX operator. The last three rules reflect the

fact that termination is distributive—P1 ‖
A
P2 terminates when both P1 and P2 do so. The

reader is referred to [Ros98] for more information.

SKIP
X−→ Ω

(SKIP)

x : A→ P (x)
a−→ P (a)

(a ∈ A) (
a−→)

P1 u P2
τ−→ P1 P1 u P2

τ−→ P2

( u)

µP � F (P )
τ−→ F [(µP � F (P ))/P ]

(µP � F (P ))

P1
τ−→ P ′1

P1 2 P2
τ−→ P ′1 2 P2

P2
τ−→ P ′2

P1 2 P2
τ−→ P1 2 P ′2

(2τ )

P1
b−→ P ′1

P1 2 P2
b−→ P ′1

(b ∈ ΣX)
P2

b−→ P ′2

P1 2 P2
b−→ P ′2

(b ∈ ΣX) (2ΣX)

P1
τ−→ P ′1

P1 # P2
τ−→ P ′1 # P2

(#τ )
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P1
a−→ P ′1

P1 # P2
a−→ P ′1 # P2

(a ∈ Σ)
P1

X−→ P ′1

P1 # P2
τ−→ P2

(#ΣX)

P
τ−→ P ′

P \ A τ−→ P ′ \ A
(\Aτ )

P
X−→ P ′

P \ A X−→ Ω
(\AX)

P
a−→ P ′

P \ A τ−→ P ′ \ A
(a ∈ A)

P
a−→ P ′

P \ A a−→ P ′ \ A
(a ∈ Σ \ A) (\AΣ)

P
τ−→ P ′

P JRK τ−→ P ′JRK
(JRKτ )

P
X−→ P ′

P JRK X−→ Ω

P
a−→ P ′

P JRK b−→ P ′JRK
(a R b) (JRKΣX)

P1
τ−→ P ′1

P1 ‖
A
P2

τ−→ P ′1 ‖
A
P2

P2
τ−→ P ′2

P1 ‖
A
P2

τ−→ P1 ‖
A
P ′2

(‖
A
τ )

P1
a−→ P ′1

P1 ‖
A
P2

a−→ P ′1 ‖
A
P2

(a ∈ Σ \ A)
P2

a−→ P ′2

P1 ‖
A
P2

a−→ P1 ‖
A
P ′2

(a ∈ Σ \ A) (‖
A

Σ1)

P1
a−→ P ′1, P2

a−→ P ′2

P1 ‖
A
P2

a−→ P ′1 ‖
A
P ′2

(a ∈ A) (‖
A

Σ2)

P1
X−→ P ′1

P1 ‖
A
P2

τ−→ Ω ‖
A
P2

P2
X−→ P ′2

P1 ‖
A
P2

τ−→ P1 ‖
A

Ω
(‖
A
X1)

Ω ‖
A

Ω
X−→ Ω

(‖
A
X2)
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2.2.4.2 Deriving Behaviours from Operational Semantics

We now present how traces, failures and divergences can be derived from the operational

semantics of a process.

Let P be a finite-state process and OSP = 〈SP , initP , AP = Στ,X, TP 〉 be the labelled

transition system underlying the operational semantics of P .

We write Σ∗X to denote the set of finite words over Σ which might end with X, and

similarly for (Στ )∗X. Let p, q ∈ SP , w = 〈xi | 0 ≤ i < n〉 ∈ (Στ )∗X and t ∈ Σ∗X.

Traces. In the following two definitions, we present two versions of the transitive closure

of the transition relation T . The first one (7−→) does not distinguish between visible and

τ actions, whereas the second one (=⇒) ignores and trims τ actions in order to obtain a

trace out of an execution word. Formally, we write p
w7−→ q if there exists a sequence of

states 〈p0, p1, . . . , pn〉, such that p0 = p, pn = q and pk
xk−→ pk+1 for all k ∈ {0, . . . , n − 1}.

We write p
t

=⇒ q if there exists w ∈ (Στ )∗X, such that p
w7−→ q and t = w � ΣX. Then, we

define the set of traces of the process P as follows:

traces(P ) = {t ∈ Σ∗X | ∃ q ∈ SP � initP t
=⇒ q}.

Stable Failures. We say that a state p ∈ SP is stable and write stable(p) if p
τ
6−→ and

p
X
6−→. We denote by initials(p) the set of all visible events that can be communicated from

p, i.e., initials(p) = {a ∈ ΣX | p a−→}.

For p ∈ SP and X ⊆ ΣX, we say that p refuses X (alternatively, X is a refusal of s)

and write p refX if either of the following holds:

• stable(p) and X ∩ initials(p) = ∅, or

• p X−→ and X ⊆ Σ.

Then, we define the set of stable failures of the process P as follows:

failures(P ) = {(t,X) | ∃ q ∈ SP � initP t
=⇒ q, q refX}∪

{(t_〈X〉, X) | X ⊆ Σ,∃ q ∈ SP � initP t_〈X〉
====⇒ q}.

Note that refusal sets are subset closed: for any X ⊆ ΣX, if p refX and Y ⊆ X, then

p ref Y . Hence, we introduce a notion of a maximal refusal set. The set of events X is a
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maximal refusal of a state s if s refuses X and there is no proper superset Y of X with the

same property. We define the set of all maximal refusal sets of p as follows:

max refusals(p) = {X ⊆ ΣX | p refX,@Y ⊆ ΣX �X ⊆ Y and p ref Y }.

In fact, instead of recording maximal refusal sets for each state, FDR follows a more

space-efficient approach and stores their complements—the minimal acceptance sets. While

maximal refusals specify what a process may not engage in, minimal acceptances specify

what a process must perform if the environment desired.

min acceptances(p) = {Y ⊆ ΣX | ∃X ⊆ ΣX �X ∈ max refusals(p), Y = ΣX \X}.

Deadlock, Nondeterminism, Livelock. We say that a state p ∈ SP is divergent and

write p ⇑ if there exists an infinite sequence of states 〈p0, p1, p2, . . .〉, such that p0 = p and,

for all n ∈ N, pn
τ−→ pn+1. We can define the set of divergences of the process P as follows:

divergences(P ) = {t_t′ | t ∈ Σ∗, t′ ∈ Σ∗X, ∃ q ∈ SP � initP t
=⇒ q and q ⇑}.

A process P is then divergent if divergences(P ) 6= ∅. P can deadlock if there exists t ∈

traces(P ), such that (t,Σ) ∈ failures(P ). P is nondeterministic if, either it is divergent, or

there exist t ∈ traces(P ) and a ∈ Σ, such that t_〈a〉 ∈ traces(P ) and (t, {a}) ∈ failures(P ).

2.2.4.3 Bisimulation Orders

Since the LTS representation of a process is not unique, in terms of operational seman-

tics, two processes are considered equivalent if their transition systems are bisimilar. In

this section, we describe several alternatives of bisimulation relations—strong (standard for

CSP) [Ros98], weak (observational) [Ros98] and divergence-respecting weak bisimulation

[Ros11b], all of which are equivalence relations (see Section 2.1.3.2). Intuitively, two tran-

sition systems are bisimilar if they can mimic (simulate) each other stepwise with respect

to certain criteria, i.e., if they can initially and subsequently exhibit identical behaviours.

In general, bisimulation plays a central role in process algebras [Par81, Mil89]. Check-

ing whether two processes are equivalent in a given semantic model reduces to checking for

behavioural language equivalence which is PSPACE-complete [KS83]. Bisimulation equiv-

alence, on the other hand, is in PTIME and implies language equivalence (the converse
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does not necessarily hold). Two strongly-bisimilar or DRW-bisimilar processes have pre-

cisely the same sets of behaviours in all three CSP models T , F and FD [Ros11b]. Weak

bisimulation is only relevant in the traces model T as it fails to distinguish between STOP

and DIV and between stable and unstable states, in general [Ros11b]. Hence, a sound but

incomplete method for establishing semantic process equivalence in CSP is by identifying

a strong or a DRW bisimulation equivalence between the corresponding transition systems.

In addition, if S strongly or divergence-respecting weakly simulates I, then S vM I for any

M∈ {T ,F ,N}.

Let throughout this section M = 〈S, init,Στ,X, T 〉 and Mi = 〈Si, initi,Στ,X, Ti〉, for

i = 1, 2, be labelled transition systems over a set of actions Στ,X. A strong bisimulation for

M is a binary relation R on S satisfying the following requirement:

1. For any (s1, s2) ∈ R and any x ∈ Στ,X:

• if s1
x−→ s′1, then there exists s′2 ∈ S such that s2

x−→ s′2 and (s′1, s
′
2) ∈ R, and

• if s2
x−→ s′2, then there exists s′1 ∈ S such that s1

x−→ s′1 and (s′1, s
′
2) ∈ R.

States s1 and s2 of M are strongly bisimilar if there exists a strong bisimulation relation R

for M such that (s1, s2) ∈ R. Strong bisimulation is an equivalence relation and a coarsest

strong bisimulation for M exists. The state space of M can be reduced without changing

the semantic value of the underlying process by quotienting M with respect to the coarsest

strong bisimulation relation. As there is a bijection between equivalence relations and

partitions of the state space (and between classes of equivalence and blocks in a partition,

see Section 2.1.3.2), the algorithm is based on iterative partition refinement by repeatedly

splitting blocks according to certain criteria until a fixed point is reached [CGP99, BK08].

Equivalently, a logical characterisation of the coarsest bisimulation equivalence can be given

as the greatest fixed point of a function over binary relations [Mil89].

Strong bisimulation can be lifted from an equivalence relation R ⊆ S × S between the

states of a transition system M to an equivalence relation R ⊆ S1×S2 between two different

transition systems M1 and M2 by further requiring that the initial states of M1 and M2 are

bisimilar. Formally, a strong bisimulation for (M1,M2) is a binary relation R ⊆ S1 × S2

satisfying the following requirements:
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1. (init1, init2) ∈ R.

2. For any (s1, s2) ∈ R and any x ∈ Στ,X:

• if s1
x−→1 s

′
1, then there exists s′2 ∈ S2 such that s2

x−→2 s
′
2 and (s′1, s

′
2) ∈ R, and

• if s2
x−→2 s

′
2, then there exists s′1 ∈ S1 such that s1

x−→1 s
′
1 and (s′1, s

′
2) ∈ R,.

Furthermore, M1 and M2 are strongly bisimilar if there exists a strong bisimulation R for

(M1,M2).

In general, strong bisimulation does not distinguish between invisible τ actions and

visible events when declaring two states equivalent. Weak bisimulation, on the other hand,

does make this distinction and considers two process states equivalent if they offer the

same sets of single-event traces (provided that those traces lead to successor states that

are themselves bisimilar). Weak bisimulation is refined by DRW bisimulation by further

requiring that two equivalent states are either both immediately divergent or both immedi-

ately non-divergent. In fact, strong, DRW and weak bisimulation are increasingly coarser

relations—every strong bisimulation is a DRW bisimulation and every DRW bisimulation

is a weak bisimulation.

Formally, a divergence-respecting weak bisimulation for M is a binary relation R on S

satisfying the following requirements:

1. If (s1, s2) ∈ R, then s1 ⇑ if and only if s2 ⇑.

2. For any (s1, s2) ∈ R and any t ∈ Σ∗,X:

• if s1
t

=⇒ s′1, then there exists s′2 ∈ S such that s2
t

=⇒ s′2 and (s′1, s
′
2) ∈ R, and

• if s2
t

=⇒ s′2, then there exists s′1 ∈ S such that s1
t

=⇒ s′1 and (s′1, s
′
2) ∈ R.

A weak bisimulation for M can be obtained from the definition of DRW bisimulation

above by dropping the first requirement. Similarly to strong bisimulation, weak and DRW

bisimulations are equivalence relations and can be employed in semantic-preserving state-

space compression techniques (only within the traces model in case of weak bisimulation).

Furthermore, both bisimulation relations can also be lifted to binary relations on transition

systems.
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2.3 FDR

2.3.1 The Two-Level Operational Semantics

The SOS notation for operational semantics allows the creation of many operators that

do not fit in the denotational world of CSP. Any CSP operator can be described using

less general combinator -style rules instead and, conversely, any operator that can be given

combinator-style operational semantics can be derived and given denotational semantics in

CSP [Ros11b]. Combinator-style operational semantics can be generalised to supercombi-

nator -style operational semantics which is the one used in FDR. We give details about both

combinator and supercombinator semantics below.

2.3.1.1 Combinator-Style Operational Semantics

As with SOS, there are several combinator rules for each CSP operator and these allow

us to infer the initial actions available at each process node out of its top-level operator

and the initial actions available at its immediate process arguments. The crucial difference

compared to SOS rules originates from the fact that process arguments can be viewed as

switched on or off, depending on the context they are used in.

Switched-On and Switched-Off Process Arguments. Given a compound CSP pro-

cess P = ⊗(P1, . . . , Pn), a process argument Pi is considered switched on if its initial actions

are immediately relevant for the initial actions of P and switched off if ⊗ does not need its

initial actions to deduce the resulting initial action of P .

Example 2.3.1.

1. In P1 9 P2 = P1 ‖
∅
P2, both P1 and P2 are switched on

2. In P1 # P2, P2 is initially switched off until P1 performs X, at which point P1 becomes

switched off and P2 switched on

3. In a −→ P , P is initially switched off but gets switched on when a is communicated

4. In P1 u P2, P1 and P2 are initially switched off as the nondeterministic choice is

only resolved after a τ is performed, at which point precisely one of the two processes

becomes activated.
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Types of Combinator Rules. Combinator rules keep track of which processes are

switched on at every given moment and restrict SOS by allowing only two types of rules:

• τ -promotion rules: those rules enforce that whenever a switched-on process argument

performs a τ , this is promoted to a τ of the compound process that does not change

its structure.

• Visible-event rules: those rules combine visible events of switched-on process argu-

ments (if any) into a resulting action of the compound process. In those rules, a

switched-on process can participate with either a visible event or not be involved at

all, the latter of which we denote with the symbol ε.

Structure of Successor Terms. Combinator rules also need to indicate the structure

of the successor term. In many instances, the structure is the same as the initial one and so

does not have to be mentioned explicitly in the rules. When the structure does change (i.e.,

processes become switched from on to off or conversely), this is indicated by a CSP term in

which the various arguments of the operator may appear. In any case, the successor state

contains the original argument if the the latter has not participated in the action, or the

state that the argument has moved to if it did.

Now formally [Ros11a], let P be a compound process with a top-level operator ⊗,

switched-on arguments P1, . . . , Pn (for some n ≥ 0) and switched-off arguments Q =

〈Pλ | λ ∈ Λ〉.

Having any switched-on process argument Pi that can go via a τ to a state P ′i , the

τ -promotion rule takes the form:

⊗(P1, . . . , Pi, . . . Pn, Q)
τ7−→ ⊗(P1, . . . , P

′
i , . . . Pn, Q).

As this rule holds universally for any switched-on argument of any CSP operator, τ -

promotion rules do not need to be added explicitly to the combinator operational semantics

as they were in the SOS rules 2τ , #τ , \Aτ , JRKτ , ‖
A
τ .

Rules combining visible events take the general form ((x1, . . . , xn), y, T ), where xi ∈

ΣX ∪ {ε}, y ∈ Στ,X and T is a piece of CSP syntax specifying the structure of the successor

term. The idea is that whenever all Pi’s that have xi 6= ε can perform xi and go to states
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P ′i , they can synchronise to make the compound process P perform y and enter a state T .

The successor state T is either Ω, if y = X, or is specified by an open CSP term in which

the free variables are indices drawn from {1, . . . , n} ∪ {-λ | λ ∈ Λ}, which get substituted

according to the following rules:

• For i ∈ {1, . . . , n}, we distinguish different cases. If xi = ε or xi ∈ Σ, i is replaced by

Pi or P ′i , respectively. If xi = X, i does not appear in the successor term T any more

as Pi becomes switched off.

• An index -λ for λ ∈ Λ indicates that the process Pλ has become switched on and is

replaced by Pλ.

Combinator Rules. We list the combinator rules below. In some of them, e.g., #Σ, \AΣ,

JRKΣ, ‖
A
X1 and ‖

A
X2 , the structure of the successor term does not change, i.e., the resulting

state is ⊗(P ′′1 , . . . , P
′′
n , Q), where P ′′i = Pi if xi = ε and P ′′i = P ′i if xi ∈ Σ. In those cases,

we omit T from the rules for simplicity. In rules SKIP ,
a−→ and u, there is no switched-on

argument initially which we indicate by −. Ω is naturally switched off as it represents

successful termination. Hence, Ω ‖
A

and ‖
A

Ω are viewed as unary operators.

((−),X,Ω) (SKIP)

((−), a, -1) (
a−→)

((−), τ, -1) and ((−), τ, -2) ( u)

((X, ε),X,Ω) and ((ε,X),X,Ω) (2X)

((a, ε), a, 1) and ((ε, a), a, 2) (2Σ)

((a), a) and ((X), τ, -2) (#ΣX)



2.3. FDR 47

((X),X,Ω) (\AX)

((a), τ) if a ∈ A and ((a), a) if a ∈ Σ \ A (\AΣ)

((X),X,Ω) and ((a), b) when a R b (JRKΣX)

((a, ε), a) and ((ε, a), a) if a ∈ Σ \A (‖
A

Σ1)

((a, a), a) if a ∈ A (‖
A

Σ2)

((X, ε), τ,Ω ‖
A

2) and ((ε,X), τ, 1 ‖
A

Ω) (‖
A
X1)

((a), a) if a ∈ Σ \ A and ((X), τ,SKIP) (Ω ‖
A
, ‖
A

Ω)

2.3.1.2 Supercombinator-Style Operational Semantics

Combinator-style operational semantics captures precisely CSP-definable operators [Ros11b],

[Ros11a]. However, actions of compound processes need to be calculated recursively on-the-

fly out of the actions of subterms. Furthermore, successor states are presented as pieces of

syntax which does not prove to be efficient when analysing large systems.

From Combinators to Supercombinators. Supercombinator-style operational seman-

tics is a less general but more efficient version of the combinator-style operational semantics

[Ros11b]. Supercombinator rules take the form of combinator ones, but are generalised to

combine together actions of subprocesses nested under an arbitrary number of applications

of CSP operators. As there is no combinator rule for recursion, the only constraint is that

any process argument should be a closed CSP term, i.e., should have all the recursion un-

wound. Based on this assumption, combinator rules of process arguments can be composed

together to obtain rules for the outermost CSP operators. In this way, a combination of
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CSP operators can be transformed into a single CSP operator, flattening the multiple lay-

ers of nesting. Furthermore, this can be implemented efficiently in a single run before the

state-space exploration phase rather than on-the-fly every time when necessary via recursive

calls.

We illustrate the approach by example. Let P = ⊗1(⊗2(P1, P2),⊗3(P3, P4)), where

⊗1,⊗2 and ⊗3 are binary CSP operators and P1, P2, P3 and P4 are CSP processes. We want

to derive supercombinator rules for a quaternary operator ⊗ such that ⊗(P1, P2, P3, P4) =

⊗1(⊗2(P1, P2),⊗3(P3, P4)) = P . Let us assume for simplicity that ⊗1,⊗2 and ⊗3 have

all their arguments switched on and their application does not change the structure of the

successor terms. Considering the τ -promotion rules, if ⊗2 or ⊗3 have a rule that generates

a τ , this τ gets promoted by ⊗1 to ⊗. For instance, if ⊗2 has the rule ((a, b), τ), then we

create a supercombinator rule ((a, b, ε, ε), τ) for the compound operator ⊗. The other type

of supercombinator rule arises when we can match all input requirements of one of ⊗1’s

combinators using combinators of ⊗2 and ⊗3 that produce visible results. For example,

if ⊗1,⊗2 and ⊗3 have the rules ((a, b), c), ((ε, a), a) and ((b, d), b), respectively, then the

compound operator ⊗ will have the rule ((ε, a, b, d), c).

Supercompilation. The process of associating to any CSP process supercombinator-

style operational semantics is called supercompiling and it follows a hybrid high-/low-level

approach for calculation and representation [Ros11b]. It identifies all true recursions and

compiles them on a low level, generating explicit LTS’s using combinator rules. What

remains for the high level are closed CSP terms (i.e., CSP processes) combined typically

using parallel composition, hiding and renaming, although the dividing line is somewhat

more complex and can be drawn where sensible. For example, the choice operators and

sequential composition can also be lifted to the high level as long as their arguments are all

closed terms.

The result of supercompilation is a high-level structure which consists of two parts.

1. A process tree with leaves—low-level compiled LTS’s, and internal nodes—CSP oper-

ators compiled on the high level, usually hiding, renaming or parallel composition.
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2. A set of supercombinators mapping actions of a number of leaf processes to an event-

outcome of the composite root process [Ros98]. In what follows, we use the notions

of supercombinators and rules interchangeably.

We note that the list of leaf processes together with the set of supercombinators is a

complete characterisation of the high-level process as the semantics of all CSP operators

corresponding to the internal nodes in the process tree is captured by the supercombinator

rules. The structured process tree can be used, though, for making the whole high-level

process completely explicit, as well as for debugging purposes.

Supercombinator Rules and Formats. The set of combinators is partitioned with

respect to the existing formats—the different configurations of switched-on and switched-

off leaf processes. In the worst case, the number of formats can be exponential in the

number of leaves, but in practice this is rarely the case and quite often, there is just a single

format, especially when composing processes in parallel and abstracting away from certain

details on top, which is a very common pattern in practice.

Within a supercombinator, each process can participate with a visible event, a silent

action τ , or not be involved at all, the latter of which we again denote by ε. As with

combinator rules, the supercompiler generates two types of rules [Ros98, Gol04, RRS+01]:

1. A rule for a leaf process willing to perform a τ which promotes a τ action of the root

process.

2. Rules using visible actions.

Note that the visible actions that the leaf processes perform need not be the same if

hiding or renaming is involved in the combination being modelled. For example, if P =

a −→ P and Q = b −→ Q, then if P performs a and Q performs b, P ‖
{a}

QJa/bK can

perform a, where QJa/bK is the process Q with the event b being renamed to a. Hence,

((a, b), a) is a valid rule for the root process P ‖
{a}

QJa/bK with leaves P and Q.

Example 2.3.2. Going back to our running example, after supercompiling Scheduler \

{| b |}, we obtain the process tree depicted in Figure 2.11. The simple recursive cell processes

are compiled as leaves and their LTS’s generated explicitly. The root process contains just

a single format with three types of supercombinators:



50 2. Background Material

1. If Cell(i) and Cell(i ⊕ 1 ) perform c.i⊕ 1, Scheduler \ {| b |} performs a τ

2. If Cell(i) performs a.i, Scheduler \ {| b |} also performs a.i

3. If Cell(i) performs b.i, Scheduler \ {| b |} performs a τ

\ {| b |}

\ {| c |}

‖

‖

Cell(0 ) Cell(1 )

‖

Cell(2 ) ‖

Cell(3 ) Cell(4 )

Figure 2.11: Process tree for Scheduler \ {| b |}

Supercombinator operational representation can be considered an implicit LTS because

it gives an initial state and sufficient information to calculate all the transitions of the

system on-the-fly. Given a root high-level process, we refer to tuples of the current states

of its leaf processes as configurations. When running the root process, FDR computes its

initial actions by checking which supercombinators are enabled from the current configu-

ration and the current format of the root. A supercombinator might be disabled if not all

leaf processes are currently able to communicate the event that they are responsible for

within the supercombinator. Hence, the operational semantics of the root process can be

considered an implicit LTS, whose transitions can be switched on and off. The states are

represented by a pair of a configuration and a format of the root. Transitions are modelled

by supercombinators.

Example 2.3.3. Going back to Milner’s scheduler, the supercombinator ((c.1, c.1, ε, ε, ε), τ)

(see Figure 2.12) would be enabled if Cell(0 ) is in state 1 and Cell(1 ) is in state 0, regardless

of the current states of the other three cell processes. If this rule is enabled and the transition

taken, Cell(0 ) will go to state 2, Cell(1 ) will go to state 1, the other three cell processes

will not progress and Scheduler \ {| b |} will perform a τ .
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((c1, c1, ε, ε, ε), τ)
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a1
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Figure 2.12: Operational semantics of a high-level process

To summarise, supercombinators can be viewed as implicit state-space representations.

They are generated by mimicking the SOS or combinator rules, but yield more compact

storage and more efficient algorithms. Therefore, FDR is the most efficient when manipulat-

ing processes with relatively simple sequential leaves composed in parallel or applied hiding

or renaming upon. Of course, high-level processes can be explicated, i.e., transformed into

explicit LTS’s, paying a potentially exponential price. This is quite logical as explication

breaks down the hierarchical structure of a system composed of concurrent processes and

makes it sequential.

2.3.2 Refinement Checking

FDR carries out the refinement check on the level of the LTS representations OSSpec =

〈Ss, inits, Ls, T s〉 and OS Impl = 〈Si, initi, Li, T i〉 of the specification and the implementation,

respectively.

The algorithm is similar to the standard one for deciding language containment L(A) ⊆

L(B) of nondeterministic automata A and B, which reduces to checking whether L(A) ∩

L(B) = ∅ and requires that B be a priori transformed into a deterministic automaton.

Normalisation of the Specification. In a similar fashion, as a preprocessing step, FDR

normalises OSSpec , so that OSSpec reaches a unique state after any trace. The normalisa-

tion procedure requires as a precondition that OSSpec be explicated and therefore Spec

sequentialised. Essentially, the normalisation procedure transforms OSSpec into the unique
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semantically-equivalent τ -free deterministic bisimulation-reduced LTS. The algorithm for

normalisation is very similar to the subset construction used for determinising automata

and, consequently, a state of the normalised OSSpec usually corresponds to a set of states of

the original OSSpec . Therefore, normalisation can potentially incur an exponential blow-up

of the state space, although in practice this is rarely the case.

Generalised Transition Systems. In general, state-space compression techniques, an

example of which is normalisation, group together sets of states into multistates. As a result,

if working in the stable-failures or in the failures-divergences models, information about

refusals and divergences can become lost or distorted. In order to preserve the τ -related

nondeterminism of multistates, after compression the operational semantics of a process

becomes a generalised LTS (GLTS) [Ros98], with each (multi) state s being additionally

annotated with:

1. An antichain of minimal acceptances min acceptances(s): a set of sets of events that

are incomparable under the subset order. If s is stable, then min acceptances(s) is

not empty and every A ∈ min acceptances(s) is a subset of the visible events that s

can stably communicate.

2. A flag δ(s) indicating whether s is divergent.

In general, a state of the GLTS can still have ambiguous branching under visible events,

just as a standard LTS.

State-Space Exploration. After normalising OSSpec , FDR traverses the Cartesian prod-

uct of OSSpec and OS Impl in a breadth-first manner, checking for compatibility of mutually-

reachable states. For the failures-divergences model, a pair of states (ss, si) is compatible

if the following conditions hold:

• For any a ∈ ΣX, if si
a−→, then ss

a−→, i.e., initials(si) ⊆ initials(ss).

• For any X ⊆ ΣX, if si refX, then ss refX, i.e.,

for any X ⊆ ΣX, if X ∈ max refusals(si), then ss refX, i.e.,

for any X ∈ min acceptances(si), there exists Y ∈ min acceptances(ss), such that

Y ⊆ X.
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• If si is divergent, then ss is divergent, i.e., si ⇑ implies ss ⇑.

Algorithm 1 Refinement checking in FDR [RRS+01]

1: push(Explorer , (inits, initi))
2: while Explorer not empty do
3: (ss, si) = pop(Explorer)
4: if compatible(ss, si,M) then

5:
NewStates = {(ts, ti) | ∃ a ∈ Σs ∩ Σi � ss

a−→ ts and si
a−→ ti}∪

{(ts, ti) | ss = ts and si
τ−→ ti}

6: for all (ts, ti) ∈ NewStates do
7: if (ts, ti) has not been explored yet then
8: push(Explorer , (ts, ti))
9: end if

10: end for
11: else
12: return specification violated and a counterexample behaviour
13: end if
14: end while
15: return specification holds

The refinement algorithm is sketched as Algorithm 1. The compatibility of ss and si

in a model M is defined depending on M as follows:

• compatible(ss, si, T ) iff initials(si) ⊆ initials(ss)

• compatible(ss, si,F) iff compatible(ss, si, T ) and, if stable(si), then
for any X ∈ min acceptances(si),
there exists Y ∈ min acceptances(ss),
such that Y ⊆ X

• compatible(ss, si,N ) iff compatible(ss, si,F) and si ⇑ implies ss ⇑

If the property is violated, the breadth-first mode of search guarantees that that the

counterexample generated is of minimal length.

We remark that for the failures-divergences model, FDR actually exploits a hybrid

BFS/DFS strategy. The main exploration of the state space is performed in BFS mode, but

in order to check for divergence, a local DFS search is triggered each time when encountering

an unstable state. Therefore, despite employing hashing techniques, the refinement check

in the failures-divergences model is much more computationally expensive than the one in

the stable-failures model.
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2.3.3 Abstraction and Compression Techniques

2.3.3.1 Semantic-Preserving Transformations on Transition Systems

To combat the state-space explosion problem, FDR provides several compression functions

that can be used for transforming the LTS of a process into a semantically equivalent LTS

with a smaller state space. We give a short description of several compression functions

below. All of them preserve the semantic value of the process in all three CSP models T ,F

and N .

Normalisation. Normalisation is automatically applied on the left-hand side of a refine-

ment check, but it can also be used as a state-space compression technique in its own

right. First the LTS is transformed into a deterministic τ -free GLTS in pre-normal

form, as described in Section 2.3.2. Pre-normalisation essentially eliminates all non-

determinism, guaranteeing that a unique state is reached after following any given

trace, the cost being a potentially exponential increase in the state space. The true

normal form is obtained by computing and quotienting the pre-normal form by its

coarsest strong-bisimulation relation, as described in Section 2.2.4.3.

Strong-bisimulation reduction. This compression function factors a GLTS by its coars-

est strong-bisimulation relation and is applied automatically to every leaf process in

the final stage of supercompilation. It is also frequently applied after carrying out

diamond elimination, which we describe below. Strong-bisimulation reduction never

expands the state space of a system.

DRW-bisimulation reduction. Similarly to the previous one, this compression function

factors a GLTS by its coarsest DRW-bisimulation relation. Typically, it does not

achieve the same degree of compression as the combination of diamond elimination

and strong-bisimulation reduction, but has the great advantage of preserving semantic

values in all denotational models of CSP, not only the ones presented in this thesis.

τ-loop elimination. This compression technique is based on the fact that states that

are mutually τ -reachable from each other exhibit exactly the same behaviours in all

three models T ,F and N . Hence, τ -loop elimination compresses an LTS or a GLTS
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by factoring it by an equivalence relation that considers all states in a strongly τ -

connected component equivalent. This equivalence relation is a DRW bisimulation

although not necessarily the coarsest one [Ros11b]. The resulting GLTS has the

property that τ -reachability is a strict partial order on its state space.

Diamond elimination. Diamond elimination requires as a precondition that τ -reachability

be a partial order on the states of the transition system and is usually applied on top

of τ -loop elimination, which provides this guarantee (unless the process is known to be

livelock-free, in which case the property holds automatically). Diamond elimination

transforms a GLTS into a τ -free GLTS of size not greater than the original one, where

there might still be nondeterminism left as far as visible events are concerned. Hence

this compression technique is beneficial only when applied to transition systems with

τ actions.

For nondeterministic processes, it is usually hard to formulate strict rules and predict

which compression function would prove beneficial for a certain CSP process or refinement

check. For deterministic processes, all three of DRW-bisimulation reduction, normalisa-

tion and the composition of strong-bisimulation reduction and diamond elimination yield

isomorphic transition systems [Ros11b].

2.3.3.2 Hierarchical Compression

Since the main source of state-space explosion is concurrency, compression functions are

usually applied on partially constructed systems, e.g., on sequential processes before com-

posing them in parallel, or on subsystems that have been already compressed. FDR also

supports a number of higher-order compression functions that apply a selected compression

function automatically and inductively on subcomponents during the process of construct-

ing a system. The latter technique is known as hierarchical compression, two examples of

which we briefly describe below, namely leaf compression and inductive compression.

A vast majority of CSP implementations are constructed by taking a family of alpha-

betised processes 〈(Pi, Ai) | i ∈ I〉, composing them in parallel and abstracting away a set

of events H at the top:

System = ( ||
i∈I Ai @ Pi) \ H.



56 2. Background Material

This construction uses the replicated alphabetised parallel operator which requires that

each process Pi come equipped with its alphabet of events Ai. Both leaf compression and

inductive compression aim at compressing CSP processes that adhere to this template. In

the notation below, let for each i ∈ I, Li ⊆ Ai be the set of events that are local for Pi,

i.e., the largest subset of Ai such that for all j 6= i, Li ∩ Aj = ∅. We generalise this by

denoting by local(Q) the set of events that are local for a process Q. Let compress be any

of the compression functions that we listed in Section 2.3.3.1 above. Both leaf compression

and inductive compression take the following arguments:

1. A semantic-preserving LTS compression function compress,

2. A list of alphabetised processes PAList = 〈(Pi, Ai) | i ∈ I〉, and

3. A set of events H to hide on top level.

Then, the functions

LeafCompress(compress)(PAList)(H) = ( ||
i∈I Ai − Li @ compress(Pi \ Li)) \ (H −

⋃
i∈I

Li)

and InductiveCompress(compress)(PAList)(H) follow, respectively, Algorithms 2 and 3 below

and produce processes semantically equivalent to and not larger than System.

Algorithm 2 LeafCompress(compress)(〈(Pi, Ai) | i ∈ I〉)(H)

1: for i ∈ I do
2: compute the local events Li ⊆ Ai of Pi
3: hide the local events Li in Pi
4: compress(Pi \ Li)
5: end for
6:

7: // Compose the compressed processes in parallel

8: Network = ||
i∈I

Ai − Li @ compress(Pi \ Li)
9:

10: // Hide the remaining events from H on top and return
11: return Network \ (H −

⋃
i∈I Li)

Leaf compression is beneficial whenever leaf processes have a significant number of

actions that can be hidden and that are local, i.e., not used for synchronisation with other

components. The same holds for inductive compression, where the effect is amplified at each

iteration because events that are not local for any process Pi can become local for the part

of the network that has been already constructed. We note that for inductive compression

the order of arranging the processes in PAList is important.



2.3. FDR 57

Algorithm 3 InductiveCompress(compress)(〈(Pi, Ai) | i ∈ I〉)(H)

1: let I = {1, . . . , n}
2: compute the local events Ln ⊆ An of Pn
3: compress(Pn \ Ln)
4: Network = compress(Pn \ Ln)
5:

6: for i = n− 1→ 1 do
7: compute the local events Li ⊆ Ai of Pi
8: compress(Pi \ Li)
9: // compose in parallel with the network built so far

10: Network ′ = compress(Pi \ Li) ‖ Network
11: compute local(Network ′)
12: Network = compress(Network ′ \ local(Network ′))
13: i = i− 1
14: end for
15:

16: // Hide the remaining events from H on top and return
17: return Network \ H



Chapter 3

SAT-Solving Techniques for CSP
Refinement Checking

3.1 Introduction

To alleviate the state-space explosion problem inherent in model checking, a significant

number of techniques have been proposed. Methods for decreasing the size of the generated

state space and enhancing the model checking algorithm include CEGAR [CGJ+00], partial-

order reductions [CGP99, Pel98], bounded model checking [BCCZ99], etc. Regarding state-

space representation, the major dichotomy is between explicit and symbolic [BCM+92,

BCCZ99] model checking. Explicit model checking is based on explicit enumeration and

examination of individual states. Symbolic model checking relies on abstract representation

of sets of states and sets of transitions, generally as Boolean formulas, and properties are

validated using techniques such as BDD manipulation or SAT solving. In many practical

applications, the symbolic representation of a system is exponentially more succinct than

the explicit one [CGJ+03].

The implicit state-space representation was initially based on BDDs—graph-based data

structures providing canonical representation of Boolean functions, given a fixed variable

ordering [Bry86]. BDD-based model checking has proven to be extremely powerful in ver-

ifying synchronous hardware systems [BCM+92]. BDDs offer the advantage of yielding

compact representation and allowing efficient manipulation, also capturing regularities in

the system [CGP99, Par02]. A major drawback of this approach is that the size of the

BDD is dramatically influenced by the ordering of the Boolean variables. Model checkers

58
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employing BDDs rely on heuristics (or dynamic reordering strategies) for finding variable

orderings that provide compact state-space representation. However, in general, finding an

optimal variable ordering for a Boolean function is NP-complete. For many examples no

space-efficient variable orderings exist [BCCZ99].

The recent advances of efficient SAT solvers have significantly broadened the horizons

of symbolic model checking. The problem of Boolean satisfiability is in general NP-complete

[Coo71]; however, modern SAT solvers employ various heuristics and perform exception-

ally well in practice, both for satisfiable and unsatisfiable instances. SAT-based bounded

model checking (BMC) [BCCZ99] has proven to be an extremely powerful technique, mainly

suited, due to its incompleteness, to falsification of properties. Approaches for making BMC

complete include calculating completeness thresholds [CKOS04, CKOS05] or augmenting

BMC with k-induction [SSS00, ES03b] or Craig interpolation [McM03] techniques. Both

k-induction and interpolation-based model checking build upon BMC, aim at establish-

ing inductiveness of properties and are capable of both bug finding and establishing the

correctness of systems.

Both bounded and unbounded SAT-based model checking have been mainly investi-

gated in the context of hardware and sequential software systems.

NuSMV [CCGR00, CCG+02] is a symbolic model checker for analysing systems defined

in the SMV input language. SMV essentially allows for modelling deterministic and nonde-

terministic transition systems and composing those in a modular and hierarchical fashion,

also supporting both synchronous and asynchronous form of concurrency through shared

variables. In its general framework, NuSMV verifies systems against CTL properties using

BDD-based model checking. The SAT-based framework supports BMC and k-induction

and uses specifications written in LTL. Despite the support for concurrency, the latter two

techniques have been mostly evaluated in the context of hardware circuits.

Cbmc [CKY03, CKL04] is a bounded model checker that verifies ANSI-C and C++

programs against user-specified assertions, as well as for general correctness properties such

as pointer safety, array indices in bounds, etc. Cbmc supports all ANSI-C operators and

pointer constructs, including dynamic memory allocation and pointer arithmetic; however

the tool currently does not offer support for handling multi-threaded programs. A version

of Cbmc for reasoning about concurrent C programs operating within a bounded number of
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context switches was implemented by IBM in a tool called Tcbmc [RG05], however it was

restricted only to the analysis of programs with two threads. Another extension of Cbmc,

implemented in a tool called K-Inductor [DHKR11], features the k-induction technique

for C and C++ programs, but with no support for concurrency. The work of [DHKR11]

also presents K-Boogie, an extension of the Boogie verifier [BCD+05] with support for

k-induction; again, this is in the context of sequential programs.

Temporal k-induction for a limited form of concurrency has been investigated in the

setting of establishing DMA-race freedom in multi-core programming, where cores commu-

nicate and synchronise via shared memory and barrier primitives [DKR10, DKR11a]. In

this setting there is concurrency due to multiple cores and due to multiple DMA operations

that are simultaneously pending. The work of [DKR10, DKR11a], and the resulting tool

scratch [DKR11b], are restricted to analysis of a single thread that issues concurrent DMA

operations. This limited form of concurrency is captured via an encoding into a sequential

program.

We address the problem of applying BMC and temporal k-induction [ES03b] to con-

current systems in the process-algebraic setting of CSP and the state-of-the-art refinement

checker FDR, with focus on the traces model of CSP, which is sufficient for verifying safety

properties. To the best of our knowledge, this is the first application and experimental

evaluation of k-induction in the setting of concurrent software systems.

Regarding the world of CSP, to the best of our knowledge, our implementation of the

k-induction algorithm is the first attempt of applying unbounded SAT-based refinement

checking to CSP. In general, the core of FDR is refinement checking in each of the seman-

tic models, which is carried out on the level of the operational representation of the CSP

processes and is implemented using explicit state enumeration supplemented by hierarchi-

cal state-space compression techniques. Although until now FDR has followed the explicit

model checking approach, there has been some work on the symbolic model checking of

CSP resulting in the BDD-based refinement checker ARC [PY96] and the model checker

PAT [SLDS08]. To the best of our knowledge, PAT is the only tool that applies BMC to

compositional process algebras with recursion and hiding (but not renaming). In general

PAT verifies systems defined in a version of CSP enhanced with shared variables. Within



3.1. Introduction 61

the BMC framework, PAT uses specifications defined as reachability properties on the val-

ues of the shared variables, which requires a different model checking algorithm based on

reachability and not on language containment.

Traditionally, refinement checking in CSP reduces to checking for reverse containment

of possible behaviours. Hence, we need to exploit the SAT solver to decide bounded lan-

guage inclusion as opposed to bounded reachability of error states, as in most existing

model checkers. Due to the harder problem to decide and the presence of invisible silent

actions in process algebras, the original syntactic translation of BMC to SAT cannot be

applied directly and we adopt a semantic translation algorithm based on watchdog trans-

formations [RGM+03]. Essentially, this involves reducing a refinement check into analysing

a single process which is constructed by putting the implementation process in parallel with

a transformed specification process. The latter plays the role of a watchdog that monitors

and marks violating behaviours.

In terms of Boolean encoding of CSP processes, both PAT and ARC exploit a fully com-

positional encoding of CSP processes. We propose a new encoding scheme resting on FDR’s

hybrid two-level approach for calculating the operational semantics using supercombinators.

We have implemented BMC and temporal k-induction in a tool called SymFDR which

builds upon FDR to obtain an alternative symbolic refinement engine. The symbolic engine

[POR09, POR12] mimics FDR up to the state-space exploration phase and adopts FDR’s

implicit operational representation based on supercombinators [Ros11b]. For both BMC and

k-induction, SymFDR offers configurable support for a SAT solver (MiniSAT 2.0 [ES03a,

EB05], PicoSAT 846 [Bie08] or ZChaff [MMZ+01], all used in incremental mode), Boolean

encoding (one-hot or binary), traversal mode (forward or backward), etc.

Experiments indicate that the BMC engine sometimes substantially outperforms the

original explicit state-space exploration method adopted by FDR, especially for complex

tightly-coupled combinatorial problems, as reported in [POR09, POR12]. For k-induction,

the completeness threshold blows up in all cases, due to concurrency, and, therefore, high

performance depends on whether or not the property is k-inductive for some small value

of k. Hence, the SAT engine generally scales better only when a counterexample exists.

We compare the performance of SymFDR with the performance of FDR, FDR used in a
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non-standard way, PAT [SLD08] and, in some cases, NuSMV [CCG+02], Alloy Analyzer

[Jac06] and straight SAT encodings tailored to the specific problems under consideration.

3.2 Foundations

3.2.1 SAT Essentials

SAT Solvers. A SAT solver is a decision procedure that takes as input a Boolean formula

ϕ and decides whether ϕ is satisfiable or not. In the affirmative, the SAT solver reports a

satisfying assignment of ϕ’s variables. In the negative, some SAT solvers are also able to

output an unsatisfiable core of clauses or generate a resolution proof of unsatisfiability for ϕ.

The problem of Boolean satisfiability is in general NP-complete [Coo71]; however, modern

SAT solvers employ various heuristics and perform exceptionally well in practice, both

for satisfiable and unsatisfiable instances. The vast majority of SAT solvers require that

Boolean formulas be input in conjunctive normal form (CNF). Methods for transforming a

Boolean formula to an equivalent or equisatisfiable one in CNF are presented in Section 2.1.4.

The DPLL Algorithm. Most modern SAT solvers are based on the DPLL framework

[DP60, DLL62]. DPLL solvers essentially operate by making a decision on a variable,

propagating the implications of this decision by repeatedly applying the unit clause rule, and

backtracking if reaching a conflict. The unit clause rule is the only inference rule employed

and its repeated application is also known as Boolean constraint propagation (BCP). Upon

encountering a conflict, the SAT solver uses binary resolution to analyse and identify the

reason for the conflict, generate a conflict clause and add it to the SAT instance, the process

of which is called learning. Learnt clauses are implied by the original SAT instance, hence

their addition is sound. Moreover, their explicit recording in the clause database makes the

search for a satisfying assignment more deterministic, i.e., prunes the search space. After

learning the reason for the conflict, the SAT solver backtracks by progressively invalidating

decisions on variables up to a certain decision level and restarts the process.

Different SAT solvers exploit different heuristics for choosing the variables to decide,

the order of clauses to resolve during BCP, the conflict clauses to learn, the decision level

to return to when backtracking, etc. The SAT solver MiniSAT 2.0 [ES03a, ES03b], for

example, is strongly conflict-driven in all its choices of heuristics. In general, the efficiency
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of recent DPLL SAT solvers is to a large extent a result of their capabilities to learn from

conflicts, decide on important variables, prune large pieces of the search-space, and restart

the solver in order to escape from parts of the search-space that do not seem promising.

The interested reader is referred to [KS08, BHvMW09] for more details.

Incremental SAT Solving. Incremental SAT solving can be employed whenever there is

a need to solve a series of related SAT instances. Current SAT instances are then defined on

top of previous ones. The technique allows for reusing important information such as learnt

conflict clauses and statistical data used in heuristics, which might be beneficial not only

for solving the current SAT instance, but also for solving subsequent similar SAT instances.

Maintaining information deduced from previous runs might prevent the SAT solver from

taking the same fruitless decisions and traversing the same search space all over again.

An illustration of incremental SAT solving is the algorithm for obtaining all satisfying

assignments of a Boolean formula. The SAT solver is run iteratively until the SAT instance

becomes unsatisfiable. Every time the SAT solver reports a satisfying assignment, a clause

prohibiting this assignment is added to the clause database and the solver is rerun.

MiniSAT provides an additional incremental SAT-solving interface. A set of literals can

be passed as an argument to the solving procedure. Those literals are called assumptions

and can be viewed as unit clauses. The solver assumes that the literals are true throughout

the duration of the SAT check. After the check is over, the assumptions are withdrawn

automatically, even if the formula is unsatisfiable under those assumptions. The advantage

of this mechanism is that clauses learnt during the SAT check can also safely be preserved.

The reader is referred to [ES03a] and [ES03b] for more information.

3.2.2 Bounded Model Checking

Bounded model checking (BMC) is a sound but generally incomplete technique that focuses

on searching for counterexamples of bounded length only. The underlying idea is to fix a

bound k and unwind the implementation model for k steps, thus considering behaviours

and counterexamples of length at most k. In practice, BMC is conducted iteratively by pro-

gressively increasing k until one of the following happens: (1) a counterexample is detected,

(2) k reaches a precomputed threshold called completeness threshold [CKOS04, CKOS05],
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which indicates that the model satisfies the specification, or (3) the model checking instance

becomes intractable.

Given an implementation model and a property to verify, a completeness threshold

[CKOS04, CKOS05] is any natural number CT that guarantees that, if there is no violation

of the property of length CT or less, then there is no violation of greater length. Different no-

tions of completeness threshold exist, mainly based on the properties of the underlying graph

of the system, e.g., diameter (the longest shortest path between any two states), recurrence

diameter (the longest simple path between any two states), forward and backward radius

versions of both, the size of the state space, etc. [BCCZ99, CKOS04, CKOS05, BHvMW09].

The forward radius is the longest shortest path to any state starting from an initial one

and the backward radius is the longest shortest path from any state to a state violating the

property in question. A simple path is a path along which all states are different and, in

general, the recurrence diameter of a graph can be arbitrarily longer than its diameter (the

same holding for radii)—if we consider a clique of size n, it’s diameter would be 1, while the

recurrence diameter would be (n − 1). We remark that this problem is exacerbated when

modelling concurrent systems due to the exponential blow up of the state space.

It is important to note that without knowing or reaching a completeness threshold,

the BMC procedure is incomplete since we do not know at what step it is correct to stop

iterating and declare that the system preserves the desired property. Therefore, BMC is

mostly suitable for detecting bugs rather than for full verification, i.e., proving the absence

of bugs.

The problem with completeness thresholds is two-fold. On one hand, calculating the

exact completeness threshold can be as hard as the model checking problem itself [CKOS05]

and, therefore, sound overapproximations of it are usually used in practice. On the other

hand, in some cases those overapproximations can be too large to handle efficiently.

SAT-based BMC [BCCZ99] reduces the model checking problem to a propositional

satisfiability problem. At each step k, a Boolean formula is constructed which models

a counterexample of length k. This formula is fed into a SAT solver which decides the

model checking problem in question and instantiates a counterexample, if any. Due to

the DFS-nature of the SAT decision procedure, this technique allows for fast detection
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of counterexamples. Moreover, due to the iterative nature of the BMC framework, the

counterexample generated is of minimal length.

In the original syntactic [BCCZ99] and the subsequent semantic [CKOS04, CKOS05]

translation of BMC to SAT, the implementation is modelled by a Kripke structure M and

verified against a specification f defined as an LTL formula. The BMC instance at each

step k is translated to a Boolean formula ϕk = JMKk ∧ J¬fKk, where JMKk encodes all

paths of M of length k and J¬fKk represents all paths of length up to k that violate f .

Hence, ϕk is satisfiable if and only if there is a path of of M of length k that violates f .

Figure 3.1: Encoding paths of length k

Generally, having a Boolean encoding of the state space (e.g., a binary or a one-hot

encoding [KB05]), the Kripke structure M can be represented symbolically by a pair of

Boolean functions 〈I(s), T (s, s′)〉 defined as the characteristic functions of the set of initial

states and the transition relation, respectively. We use s and s′ as a shorthand for the

vectors of Boolean variables necessary for encoding states of M . We replicate a separate

copy of state variables si for each time step i. Then JMKk = I(s0) ∧
∧k−1
i=0 T (si, si+1) (see

Figure 3.1). We illustrate the structure of the entire formula ϕk with a simple example in

case f = Gp, where p represents a state predicate with Boolean encoding P :

ϕk = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨
i=0

¬P (si) (3.1)

3.2.3 From Bounded to Complete Model Checking

3.2.3.1 Temporal k-induction

Temporal k-induction [SSS00, ES03b] is a complete SAT-based technique for verifying safety

properties. As opposed to BMC, it can be used also for establishing correctness of systems.

Given a model 〈I(s), T (s, s′)〉 and a safety property P (s), the method checks if all reach-

able states of the model preserve P . k-induction builds upon BMC and is also conducted

iteratively, as presented in Algorithm 4. It provides two conditions for termination in case



66 3. SAT-Solving Techniques for CSP Refinement Checking

the property is not violated—k-inductiveness of P for some k ∈ N or reaching the backward

recurrence radius of the model with respect to P . The property P is k-inductive if it can be

proven that if P holds along all initial paths of the system of length k, then it cannot be vi-

olated on a path of length k+1. The backward recurrence radius is the length of the longest

simple path from any state to a state violating P and is a valid completeness threshold. It

is dependent on both the model of the system and the property under consideration.

Algorithm 4 Temporal k-induction [ES03b]

1: for k = 0 to ∞ do
2: if satisfiable(Basek ) then
3: return property violated and a counterexample trace
4: end if
5: if unsatisfiable(Stepk ∧ Simplek ) then
6: return property holds
7: end if
8: end for

For each step k, the temporal induction proof consists of two parts—a base case and

an induction step. The base case Basek is similar to a BMC instance—we check if, starting

from an initial state, there is a path of length k that violates P (see Figure 3.2). In the base

case, we assume that we have already checked all base cases of shorter length and strengthen

the BMC instance by stating that P holds along all initial paths of length up to k − 1. If

the base case is satisfiable, we have found a counterexample. Otherwise, we proceed with

the induction step Stepk which is designed to prove that P is k-inductive. The induction

step is strengthened and made complete by a constraint Simplek requiring that all states on

the (k + 1)-path be different. Hence, k-induction terminates with a positive answer when

reaching the backward recurrence r radius even if the property P has not manifested itself

as k-inductive for any k ≤ r.

Basek =̂ I(s0) ∧
(∧

0≤i<k (P (si) ∧ T (si, si+1))
)
∧ ¬P (sk)

Stepk =̂
(∧

0≤i<k+1(P (si) ∧ T (si, si+1))
)
∧ ¬P (sk+1)

Simplek =̂
∧

0≤i<j≤k(si 6= sj)

Figure 3.2: k-induction ingredients [ES03b]

We remark again that, in many cases, the backward radius of the model—the longest

shortest path from any state to a state violating P , can be considerably smaller than its
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backward recurrence radius. However, the translation of shortest paths between two states

to SAT involves plenty of existential quantifiers and is mostly suitable to using a QBF

engine instead of a SAT solver.

As we are dealing with safety properties, we can also carry out the k-induction algorithm

backwards, starting from states that violate P and trying to prove that initial states are

never (backward) reachable. This can be implemented by redefining Basek and Stepk as

depicted in Figure 3.3. This algorithm guarantees termination upon reaching the forward

recurrence radius—the longest simple path to any state starting from an initial state.

Basek =̂ ¬P (s0) ∧
(∧

0≤i<k (¬I(si) ∧ T−1(si, si+1))
)
∧ I(sk)

Stepk =̂
(∧

0≤i<k+1(¬I(si) ∧ T−1(si, si+1))
)
∧ I(sk+1)

Simplek =̂
∧

0≤i<j≤k(si 6= sj)

Figure 3.3: Backward k-induction ingredients

3.3 Bounded Trace Refinement Framework

In this section, we present our iterative bounded refinement checking algorithm. Our ap-

proach for establishing trace refinement is based on watchdog transformations [RGM+03].

Our objective is the following. We are given two CSP processes Spec and Impl and an

integer k. We aim at checking whether Spec vkT Impl , i.e., whether all executions of the

implementation of length at most k agree with the specification. Similarly to BMC and

k-induction, we carry out the analysis on the level of the operational representation of Spec

and Impl . We point out that executions of length k can correspond to traces of smaller

length if having τ actions entangled within, as defined in Section 2.2.4.2.

3.3.1 Challenges

As the LTS’s underlying the operational semantics of processes are event-based models, we

need to also handle events in our encoding. Let OSSpec = 〈Is(s), T s(s, l, s′)〉 and OS Impl =

〈Ii(t), T i(t, l, t′)〉 be the models of Spec and Impl , respectively. At first glance, the most

natural approach for encoding bounded execution refinement would be to try and directly

mirror the original translation of BMC to SAT. We would need to similarly construct the

Boolean formula ϕk as a conjunction of two formulas to model all executions of Impl of
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length k that are not executions of Spec:

ϕk = JOSImplKk ∧ J¬OSSpecKk.

Hence, we would be looking for an instantiation of the vectors of Boolean variables l1, . . . , lk,

such that JOS ImplKk = Ii(t0) ∧
∧k−1
i=0 T

i(ti, li, ti+1) is satisfiable and JOSSpecKk = Is(s0) ∧∧k−1
i=0 T

s(si, li, si+1) is not. Due to the implicit universal quantification of s0, . . . , sk in the

unsatisfiability check of JOSSpecKk, this analysis is mostly suitable to a QBF engine. Using a

SAT solver in this case would mean that we would need to extinguish all possible satisfying

assignment of l1, . . . , lk in JOS ImplKk and prove the unsatisfiability of JOSSpecKk over each

one of them.

Furthermore, invisible τ actions can be arbitrarily interleaved in the executions of Impl

and, therefore, syntactically different executions can produce semantically equivalent traces.

This can lead to reporting spurious counterexamples. To illustrate this, consider the execu-

tions 〈a, τ, τ, b, τ, c〉 of Impl and 〈a, b, c〉 of Spec. Even though they correspond to the same

trace 〈a, b, c〉, they do not match pointwise and 〈a, τ, τ, b, τ, c〉 would be falsely reported as a

violation of Spec. However, bookkeeping the possible sequences of τ -s stuttered in between

visible events does not seem to be trivial and computationally justifiable on the level of

Boolean functions.

3.3.2 Watchdog Refinement-Checking Algorithm

As explained in Section 2.3.2, FDR performs the refinement check by normalising the speci-

fication and looking for the existence of behaviours that the implementation allows and the

specification does not.

As an alternative, the watchdog approach [RGM+03, Ros11b] reduces the refinement

check to analysing a single process constructed by composing the implementation in parallel

with a transformed specification process. The latter plays the role of a watchdog that

monitors the implementation and flags any behaviours that are considered violating with

respect to the specification.

In our settings, using watchdog transformations allows us to actually reduce bounded

execution containment to bounded reachability which is already amenable to SAT. The

watchdog transformation phase is performed by means of FDR.
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3.3.2.1 Preprocessing Phase Using FDR

Our implementation is intended as an alternative back-end for FDR, orthogonal to the stan-

dard explicit method of performing trace refinement. Currently, we use a shared library

version of FDR for manipulating CSP processes and we mimic FDR up to the point of

the final state-space exploration phase. Therefore, SymFDR reuses FDR’s compiler and

supercompiler and the data structures underlying the hybrid two-level operational repre-

sentation of processes, consisting of a process tree and a set of supercombinators, as defined

in Section 2.3.1.2.

At present, we use FDR to supercompile and normalise Spec and to retrieve OSSpec

representing the operational semantics of Spec.

Without loss of generality, we assume that the implementation Impl comprises the

interaction of c sequential processes P1, . . . , Pc running in parallel, possibly using hiding,

renaming or other CSP operators other than recursion. We write Impl = P1 ‖ P2 ‖ . . . ‖ Pc
to actually denote a high-level process Impl with leaf processes P1, . . . , Pc, as defined in

Section 2.3.1.2. This form of representing concurrent systems after supercompilation is of no

limitation—we can handle the entire CSPM syntax and functionality apart from the function

chase. We use FDR to supercompile Impl and to retrieve both the set of supercombinators

and the set {OSPi | i ∈ {1, . . . , c}}.

3.3.2.2 Watchdog Bounded Refinement-Checking Algorithm

In a nutshell, the main steps of our algorithm are the following:

1. We transform Spec into a process Watchdog which allows the behaviours of both Spec

and Impl and, in fact, many others, but marks those that do not conform to Spec.

The transformation is carried out on the level of the LTS and not on the higher CSP

description of Spec. It is most easily defined if the specification process is normalised

so that it reaches a unique state after following any trace. The LTS of Watchdog is

then obtained as an extension of OSSpec—we add a fresh state sink and make OSSpec

total with respect to the alphabet αSpec∪αImpl by directing all non-existing transitions

to sink . Formally, having OSSpec = 〈Ss, ss0, T s, Ls = αSpec〉,

OSWatchdog = 〈Sw = Ss ∪ {sink}, ss0, Tw, Lw = αSpec ∪ αImpl ∪ {τ}〉,
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where the transition relation Tw is defined as follows:

Tw = T s ∪ {(sink , l, sink) | l ∈ αSpec ∪ αImpl ∪ {τ}} ∪
{(s, l, sink) | s ∈ Ss, l ∈ αSpec ∪ αImpl , s

l9}

The resulting process Watchdog exhibits all traces over the alphabet αSpec ∪ αImpl .

However, since we start with a normalised OSSpec , the resulting process Watchdog

operationally passes through sink whenever executing a trace that is not allowed by

Spec.

2. We construct a process Refinement = Watchdog ‖
αImpl∪αSpec

Impl =

Watchdog ‖
αImpl∪αSpec

(P1 ‖ P2 . . . ‖ Pc). Refinement captures precisely the traces

of Impl , but those traces that do not conform to Spec force Watchdog to bark, i.e.,

pass through its sink state. Hence, Refinement can be used as an indicator whether

Impl can behave in a way incompatible with Spec. Watchdog becomes just one of the

sequential leaf processes of Refinement . It is evident then that:

(a) Spec vT Impl ⇐⇒ Watchdog never reaches its sink state in any execution of

Refinement .

(b) All executions of Refinement forcing Watchdog to pass through its sink state

constitute valid counterexamples of the assertion Spec vT Impl .

(c) The process Refinement can never deadlock on an erroneous trace, i.e., on a trace

that passes through sink (this follows from the fact that we allow an execution

of Watchdog to contain any number of τ ’s after visiting sink).

3. We check whether Watchdog can reach its sink state within k steps of the execution

of Refinement . Because Refinement cannot deadlock once it has passed through sink ,

we can unwind its transition relation a configurable number i steps at once and then

use the SAT solver to check whether any of the last i transitions signals for an error.

In contrast, in the original version of BMC, the SAT solver is invoked upon every

subsequent unfolding of the transition relation.

The subtle point and the danger here is to avoid reporting false negatives due to

excessive unfolding of the transition relation. Let us recall (see Section 3.2.2) that the
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reduction of BMC to SAT is founded upon generating counterexamples from satisfiable

SAT instances. More in particular, having a safety property requiring that P never

happens, the original version of BMC models a possible counterexample of length up

to k as follows:

ϕk = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨
i=0

¬P (si).

Hence, ϕk is unsatisfiable precisely whenever there are no counterexamples of length

up to k. Now suppose that we have a safety property of this form that fails due to a

single counterexample path of length 7 and all paths of the system under consideration

are of length at most 8. Let us further suppose that with the original BMC algorithm

we unfold 5 steps at once and only then do we check whether any of the states reachable

in the last 5 steps is erroneous. Then, ϕ5 would be unsatisfiable, implying, soundly,

that there are no errors of length 5 or less. However, ϕ10 would be unsatisfiable as

well because the subformula I(s0) ∧
∧10
i=0 T (si, si+1) would be itself unsatisfiable as

all paths of the system are of length 8 or less. This would imply, this time unsoundly,

that there are no errors of length 10 or less. Hence, the erroneous path of length 7

would never be reported and the algorithm would, spuriously, mark the system as

correct (upon hitting a completeness threshold).

In contrast, our watchdog construction guarantees that for any k ∈ N, paths of length

k of the process Refinement always exist. Hence the formula I(s0) ∧
∧k−1
i=0 T (si, si+1),

tailored to Refinement , is always satisfiable and an error can never be missed, even if

unfolding multiple transitions at once. In the general case, a counterexample generated

out of Refinement is just padded with τ ’s in the end, if not of the necessary length. As

mentioned above, this follows from the fact that we allow an execution of Watchdog

to contain any number of τ ’s after visiting sink , as well as from the fact that τ , as an

invisible action, never requires synchronisation.

3.4 Boolean Encoding of CSP Processes

In this section we present our translation of CSP processes into Boolean formulas. The

Boolean encoding can be used for both SAT-based and BDD-based model checking. First,

we demonstrate how to encode sequential processes, corresponding to leaf processes in the
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operational representation. Then, we show how to glue together sequential processes with

supercombinators to obtain an encoding of a high-level process. In what follows, we call a

high-level process a concurrent system.

Let us first introduce the necessary notation. We will write X(Vars) to denote the

Boolean encoding of X with respect to the vector(s) of Boolean variables Vars. To simplify

the notation, given a vector of Boolean variables x = (x1, . . . , xm), we will write x to denote

x. Given a Boolean formula f over x and a bit vector b ∈ {0, 1}m, we will write f(x)|x=b

to denote the value of f(b). For a given n ∈ N, we will assume that dlog2 ne = 1 if n = 1.

3.4.1 Encoding Sets

Let S be a finite set of elements. In this section we recall standard techniques for repre-

senting elements and subsets of S as characteristic Boolean functions.

In order to obtain a Boolean encoding of S, we first employ an injective function

encs : S 7→ {0, 1}m that maps each element of S into a unique bit vector b = (b1, . . . , bm) of

size m ∈ N. Then we introduce an ordered vector x = (x1, . . . , xm) of m distinct Boolean

variables, where each variable xi serves for identifying the corresponding i-th bit of a bit

vector b ∈ encS(S). Given an element s ∈ S, its Boolean encoding s(x) satisfies the

following: s(x)|x=b = true if and only if encS(s) = b.

Typically binary or one-hot [KB05] encoding of sets are most commonly used in practice.

The basic idea behind binary encoding is to enumerate the elements of S in binary

notation and represent them as Boolean functions over m = dlog2 |S |e Boolean variables.

As an example, let us consider the set S = {s0, s1, s2, s3} and the binary encoding function

enc mapping s0 to (00), s1 to (01), s2 to (10) and s3 to (11). In order to encode elements

of S as functions, a vector of just two variables x = (x0, x1) suffices and s1(x) = ¬x0 ∧ x1,

for example. A subset S′ of S is encoded by taking the disjunction of the encodings of the

elements in S′. For example, {s0, s1}(x) = ¬x0.

In one-hot encoding, each element s ∈ S is represented by a bit vector of size |S | in

which precisely one bit is set to 1. To illustrate the technique, let us take the same set

S = {s0, s1, s2, s3} and a one-hot encoding function enc mapping s0 to (1000), s1 to (0100),

s2 to (0010) and s3 to (0001). In this case we will need a vector x = (x0, x1, x2, x3) of four

variables and s1(x) = ¬x0 ∧ x1 ∧ ¬x2 ∧ ¬x3. Alternatively, we can use s1(x) = x1, but
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in this case we need to add global constraints enforcing that precisely one bit is set to true

at a given time instance. Those constraints can be expressed by a formula of size linear in

|S | [BHvMW09]. In contrast to binary encoding where ¬x0 encodes the set of elements

{s0, s1}, with one-hot encoding ¬x0 encodes the set of sets of elements {S′ ⊆ S | s0 /∈ S′}

and {s0, s1}(x) = x0 ∧ x1 ∧ ¬x2 ∧ ¬x3. In general, let us note that binary encoding is

limited to encoding sets of elements and one-hot encoding—to sets of sets of elements.

3.4.2 Encoding a Sequential Process

As described in Section 3.3.2.1, for each sequential leaf process P , we obtain the explicit

operational representation of P using FDR. Let OSP = 〈S, init, L = Στ,X, T 〉 be the LTS

associated with the finite-state leaf process P communicating over a finite alphabet of events

Σ. Using either binary or one-hot encoding of sets, we introduce vectors of Boolean variables

x and y for encoding the set of states S and the set of labels L, respectively. We define

I(x) = init(x).

In order to represent the transition relation T , we employ a copy x′ of x. x serves

to represent the source states of transitions and x′ the destination states. Then, given a

transition t = (ssrc , l, sdest) ∈ T ,

t(x, y, x′) = ssrc(x) ∧ l(y) ∧ sdest(x
′).

For any s ∈ S, we write s(x′) to denote s(x)[x′ ← x], i.e., we represent s with respect to

the variables x and then substitute the variables x with x′. The encoding of the entire

transition relation is the following:

T (x, y, x′) =
∨
t∈T

t(x, y, x′).

We can now represent a sequential process P implicitly by the pair of Boolean functions

〈TP (x, y, x′), IP (x)〉. Given k ∈ N, we define Paths(P, k) to be the set of all executions

init = s0
l1−→ s1

l2−→ . . .
lk−→ sk of OSP of length k. Let us replicate (k + 1) vectors

of Boolean variables x0, x1, . . . xk for encoding the states s0, s1, . . . , sk and k vectors of

Boolean variables y1, y2 . . . yk for encoding the corresponding transitions l1, . . . , lk. Then

the symbolic representation of Paths(P, k) is the following:

Paths(P, k)(x0, x1, . . . , xk, y1, y2, . . . , yk) = IP (x0) ∧
k−1∧
i=0

TP (xi, yi+1, xi+1).
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3.4.3 Encoding a Concurrent System

In the setting of FDR, after supercompilation we can view a concurrent system as a high-

level process identified by a process tree and a set of supercombinators. Since a high-level

root process can be modelled as an LTS, we now show how to encode a concurrent system

similarly to a low-level sequential process. In what follows, we denote by System(c) =

〈〈P1, . . . , Pc〉,SC 〉 the high-level process characterised by a set of supercombinator rules

SC and c explicitly compiled leaf processes P1, . . . , Pc communicating over sets of events

Σ1, . . . ,Σc, respectively. We define Σ =
⋃c
i=1 Σi.

Encoding the Sequential Leaf Processes. For each i ∈ {1, . . . , c}, we retrieve the

explicit LTS representation OS i = 〈Si, initi, Li = Στ,X
i , T i〉 of the leaf Pi from FDR. Since

Σi ⊆ Σ, we actually consider Li = Στ,X.

Following the ideas from Section 3.4.2, we introduce vectors of Boolean variables xi,

xi
′

and yi to generate the symbolic representation 〈T i(xi, yi, xi′), Ii(xi)〉 of Pi. Hence,

each process has its own set of variables for representing the alphabet Στ,X. We further

introduce an additional vector of Boolean variables y for encoding the resulting action of

the entire system because, due to the presence of hiding and renaming, it might be different

from the contributions of the leaf processes, as illustrated in Section 2.3.1.2. In case the

system violates the specification, we generate a counterexample trace out of the satisfying

assignment of the variables from y.

Encoding Configurations of the Concurrent System. Recall that at, every time

instance, the state of the entire high-level system, also called a configuration, is identified

by the current states of its sequential leaf components. Formally, the set of states of the

system is a c-ary relation S ⊆ S1 × . . . × Sc, the initial state being init = (init1, . . . , initc).

Therefore, S can be represented symbolically using the Boolean variables from x1, . . . , xc.

If s = (s1, . . . , sc) ∈ S, then s(x1, . . . , xc) =
∧c
i=1 s

i(xi). For clarity, we denote the set of

states of the overall system by Cfgs.

Supercombinators and Formats. As we mentioned in Section 2.3.1.2, supercombina-

tors are rules for combining together actions of the individual sequential leaf processes into
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event-outcomes of the overall system [Ros98]. Within a supercombinator, each process can

participate with a visible event, a silent action τ , or not be involved at all. We denote the

non-involvement with the symbol ε. For any alphabet Σ, we let Σε = Σ ∪ {ε}. In addition,

the set of supercombinators is partitioned into existing formats, i.e., different configurations

of switched-on and switched-off processes among P1, . . . , Pc, which we denote by F .

Formally, the set of supercombinators can be represented as a (c+ 3)-ary relation SC :

SC ⊆ F × Στ,X,ε
1 × . . .× Στ,X,ε

c × Στ,X × F ,

or more generally:

SC ⊆ F × (Στ,X,ε)c × Στ,X × F .

(fsrc , a1, . . . , ac, a, fdest) ∈ SC if and only if from a certain configuration and a certain

format fsrc of the overall system, P1 performs a1, . . . , Pc performs ac and the overall

system performs a switching to a format fdest . The set of supercombinators for Milner’s

scheduler was illustrated earlier in Example 2.3.2.

The operational semantics of the concurrent system can be considered an implicit LTS,

whose transitions can be switched on and off:

• set of states: F × Cfgs

• set of labels: SC

• transition relation: T ⊆ (F × Cfgs) × SC × (F × Cfgs). If the system is in a given

configuration and in a given format, the individual processes’ transition relations

determine if the labels are switched on or off. Formally,

(fi, (s
1
i , . . . , s

c
i ))

(fi,a1,...,ac,a,fj)
−−−−−−−−−−→ (fj , (s

1
j , . . . , s

c
j))

iff

(fi, a1, . . . , ac, a, fj) ∈ SC ∧ ∀ck=1((ak 6= ε⇒ (ski , ak, s
k
j ) ∈ T k) ∧ (ak = ε⇒ ski = skj )).

To illustrate the concept, a transition of Milner’s scheduler was modelled as Example 2.3.3.
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Encoding Supercombinators. For a given rule sc = (fsrc , a1, . . . , ac, a, fdest) ∈ SC, let

Passive(sc) = {i ∈ {1, · · · , c} | ai = ε, i.e., Pi is not involved in sc}. Let u = (u1, . . . , uc) be

a vector of (supercombinator-independent) Boolean variables. We denote:

lit(ui) =

{
ui if Pi is not involved
¬ui if Pi performs a visible event or a τ

Note that a process might be switched on in a format and still be passive in a cer-

tain supercombinator in this format. Hence, we cannot use the format to conclude which

processes are passive in a supercombinator.

Let f and f ′ be two vectors of Boolean variables for encoding the source and destination

format of a rule. Let sc = (fsrc , a1, . . . , ac, a, fdest) ∈ SC . Then, sc(y1, . . . , yc, y, u, f, f
′) =∧

i/∈Passive(sc)

(ai(y
i) ∧ ¬ui) ∧

∧
i∈Passive(sc)

ui ∧ a(y) ∧ fsrc(f) ∧ fdest(f
′).

Hence, in an encoding of a supercombinator, we indicate a passive process Pi just by af-

firming a single Boolean variable ui. We call ui a trigger. For non-passive processes, we

also encode the event that the process performs. The encoding of all supercombinators in

all formats now becomes the following:

SC (y1, . . . , yc, y, u, f, f ′) =
∨

sc∈SC
sc(y1, . . . , yc, y, u, f, f ′).

Encoding a Transition of the Concurrent System. Let for i ∈ {1, · · · , c},

ψi(x
i, xi

′
, yi, ui) := if ui then (xi = xi

′
) else T i(xi, yi, xi

′
),

where xi = xi
′

is the short for
∧ni
j=1(xij ⇔ xi

′
j ). The intuition behind a ψi is that, if

Pi does not participate in a transition of the entire system, i.e., Pi is not involved in a

supercombinator, Pi remains in the same state within its own labelled transition system

OS i. Otherwise, Pi progresses with respect to its transition relation T i. Expressed as a

Boolean formula,

ψi ≡ (ui ∧ (xi = xi
′
)) ∨ (¬ui ∧ T i(xi, yi, xi

′
)).

We define a predicate T System(c) which is true precisely for the transitions of the overall

system:

T System(c)(x1, · · · , xc, x1′ , · · · , xc′ , y1, · · · , yc, y, u, f, f ′) =

=
c∧
i=1

ψi(x
i, xi

′
, yi, ui) ∧ SC (y1, · · · , yc, y, u, f, f ′).
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Encoding Fixed-Length Executions of the Concurrent System. Within the BMC

framework, let k be the maximal bound for the length of the counterexamples we are look-

ing for. Then:

Paths(System(c), k)(
// variables for P1 x1

0, . . . , x
1
k, y

1
1, . . . , y

1
k, u

1
1, . . . , u

1
k

// variables for P2 x2
0, . . . , x

2
k, y

2
1, . . . , y

2
k, u

2
1, . . . , u

2
k

. . . . . .
// variables for Pc xc0, . . . , x

c
k, y

c
1, . . . , y

c
k, u

c
1, . . . , u

c
k

// variables for the traces of the system y1, . . . , yk,
// variables for the formats in the rules f0, . . . , fk)

= // processes start from their initial states and the initial format is Format[0]∧c
j=1 I

j(xj0) ∧ If (f0) ∧

// supercombinators as transitions at each of the k steps∧k
i=1 SC(y1

i , . . . , y
c
i , yi, u

1
i , . . . , u

c
i , fi−1, fi) ∧

// the idea of the ψ formulas: either transitions or wait, depending on supercombinators∧
j=1,...,c

i=1,...,k
((uji ∧ (xji−1 = xji )) ∨ (¬uji ∧ T j(xji−1, y

j
i , x

j
i )))

=

ISystem(c)(x1
0, . . . , x

c
0, f0) ∧∧k

i=1 T
System(c)(x1

i−1, . . . , x
c
i−1, x

1
i , . . . , x

c
i , y

1
i , . . . , y

c
i , yi, u

1
i , . . . , u

c
i , fi−1, fi)

3.5 Implementation Details

Our prototype tool SymFDR is written in C++ and uses FDR as a shared library for

manipulating CSP processes. The current implementation of SymFDR supports refinement

checking systems with a single format only. However, we do not anticipate any problems

generalising the problem to a multi-format setting. Moreover, most practical cases are also

single-format or can be easily rewritten in this form.

3.5.1 BMC

In our BMC framework, we support three modes of state space traversal—forward (start-

ing from the initial state), backward (starting from an error state) and simultaneous for-

ward/backward mode.
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In the original version of BMC, the system is unwound step by step until the bound k is

reached. Despite the recent advances in SAT solvers’ learning capabilities and incremental

SAT solving, we have observed that the bottleneck of the bounded refinement procedure is

the SAT solver. Therefore, we allow unfolding a configurable number i of steps of the process

Refinement before running the SAT solver, provided that the system never deadlocks on

an erroneous trace, which we guarantee by the watchdog construction (see Section 3.3.2.2).

The SAT solver is then used to check whether Refinement can reach Watchdog ’s sink state

in any of its last i unwindings. If so, we have found a counterexample, otherwise we continue

iterating until reaching the configured bound k. We refer to the value of i as SAT frequency.

We believe that this multi-step approach works well because the SAT solver typically finds

it much easier to find a satisfying assignment, if there is any, than to prove unsatisfiability,

given CNF formulas with comparable size and structure. Hence, we trade off the shortness

of the reported counterexample for efficiency.

3.5.2 k-induction

We have implemented the “Zig-Zag” and “Dual” temporal k-induction algorithms [ES03b].

The difference is that the “Dual” algorithm makes use of separate SAT solvers for the

base case and the induction step, aiming to optimise the incremental SAT interface. For k-

induction, SymFDR supports both forward and backward traversal, yielding four algorithms

in total: “Zig-Zag” forward, “Zig-Zag” backward, “Dual” forward and “Dual” backward.

For all four algorithms we have observed that the induction step is checked much faster

than the base one, opposite to what reported in [ES03b, SSS00]. In case of unsatisfiable

instances, we have also observed that if the length of the longest possible counterexample

is known in advance, often iterating the BMC algorithm up to this length produces better

results than k-induction.

3.5.3 SAT

SymFDR supports both binary and one-hot encoding of state spaces, though we have ob-

served that for our test cases binary encoding scales much better. One-hot encoding usually

yields CNF instances with smaller number of clauses but substantially higher number of
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Boolean variables which seems to burden the SAT solver. We construct the Boolean formu-

las directly in negation normal form and, consequently, transform them into equisatisfiable

formulas in CNF using the optimised one-sided Tseitin encoding [BKWW08, BHvMW09],

which we described in Section 2.1.4.

Currently, SymFDR supports MiniSAT 2.0 [EB05], PicoSAT 846 [Bie08] and ZChaff

[MMZ+01], all working in incremental mode. For our test cases, we have found MiniSAT to

be the most efficient and all quoted results use MiniSAT. We exploit MiniSAT’s incremental

interface in a way similar to [ES03b]. For our larger test cases, we also observed that

MiniSAT finds a counterexample faster if we configure it to keep a smaller number of

learned clauses (learntsize factor = 0.2, learntsize inc = 1.02) and restart more frequently

(restart inc = 1.1). We also implemented adding unit learned clauses explicitly, as suggested

in [ES03a], in conjunctions of multiple ones. Using positive polarity in decision heuristics

also produced much better results, as well as freezing and then defreezing state and format

variables at each step to avoid variable elimination.

SymFDR also supports strategies for restricting the decision variables to the input ones

[Sht00], incorporating PicoSAT’s restarting scheme and phase saving strategy [Bie08] in

MiniSAT, etc.

3.6 Experimental Results

In this section, we analyse the performance of SymFDR on a small number of case studies.

We compare it to the performance of FDR 2.83, FDR used in a non-standard way, PAT

3.2.2 [SLD08], and, in some cases, direct SAT encodings, NuSMV 2 [CCG+02] and Alloy

Analyzer 4.1.10 [Jac06]. All SAT-based experiments use MiniSAT although SymFDR and

the direct SAT encoder build upon MiniSAT version 2.0, while Alloy and NuSMV exploit

the earlier version 1.14. All tests were performed on a 2.6 GHz PC with 2 GB RAM running

Linux, except the test marked with a ∗, which was performed on a 4-GB-RAM PC running

Linux.

3.6.1 Comparison Tools

FDR-Div. The main search strategy for FDR is BFS [Ros94] because this has the com-

bined advantages of always finding a shortest counterexample and of enabling implementa-
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tions that work comparatively well on virtual memory. However, the strategy for discovering

divergences is based on DFS. In test cases where it is likely that there are a good number

of counterexamples, but that all of them occur comparatively deep in the BFS, there is

good reason to use a bounded DFS (BDFS) algorithm to search for them, so that only error

states reachable in less than some fixed number N of steps are reached. BDFS will quickly

get to the depth where counterexamples are expected without needing to enumerate all of

the levels where they are not. Provided that the counterexamples have something like a

uniform distribution through the order in which the DFS discovers them, we can expect one

to be found after searching through approximately S/(C + 1) states, where S is the total

number of states and C is the number of counterexamples.

FDR does not implement such a strategy directly. It was, however, observed a number

of years ago by Roscoe and James Heather that it is possible to use a trick that achieves

the same effect using the present version of the tool. That is, arrange (perhaps using a

watchdog) a system P ′ that performs only up to N events of the target implementation

process P and then performs an infinite number of some indicator event when a trace

specification is breached. Provided P is itself divergence-free, we then have that P ′ \ Σ can

diverge precisely when P violates the specification. FDR searches for this divergence by

DFS.

This approach is particularly well suited to CSP codings of puzzles, since it is frequently

known ab initio how long a counterexample will be, and the usual CSP coding uses the

repeatable event done to indicate that the puzzle has been solved. The columns labelled

FDR-Div in Tables 3.1 and 3.2 report on the result of using this technique. In several

ways this method is more similar to approach of PAT and SymFDR than the usual FDR

approach. As is apparent from the experiments, there seems to be a large element of luck

in how fast this approach is, possibly based on how close the path followed by the DFS is

to a counterexample.

PAT. PAT [SLD08] is a model checker of a version of CSP enhanced with shared vari-

ables. Despite the BMC attempt [SLDS08], PAT is at present a fully explicit checker. In

addition to LTL model checking, PAT supports CSP refinement checking which it performs
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in a way similar to FDR although using DFS (instead of BFS), normalisation of the spec-

ification on-the-fly, partial-order reductions, counter abstraction, symmetry reduction, etc.

In the test cases quoted here, the specification is given as a reachability property on the

values of the shared variables, as modelled in the benchmarks available with the tool. The

reachability algorithm is based on DFS and state hashing is applied for compact state-space

representation.

NuSMV. NuSMV [CCG+02] is a symbolic model checker verifying SMV against CTL

properties using BDDs. The BMC framework of NuSMV, which we refer to as NuSMV-

BMC, uses specifications written in LTL.

Alloy Analyzer. Alloy Analyzer [Jac06] is a fully-automatic tool for finding models of

software systems designed in the lightweight Alloy modelling language. Alloy Analyzer

could be considered a BMC checker due to its searching for a model only up to a certain

scope and generating the model, if existing, using SAT-solving techniques.

Direct SAT Encodings. We believe that experimenting with direct SAT encodings of

problems will offer guidance for optimising the translation of CSP to logic. For example,

the chess knight test case suggests that a shorter chain of inference for high-level actions

might be beneficial.

3.6.2 Test Cases

3.6.2.1 Instances with Counterexamples

In this section, we consider test cases with counterexamples and therefore exploit the BMC

framework. The results are summarised in Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6. The last

column titled ] lists the length of counterexamples.

First, we consider the peg solitaire puzzle [Ros98], performing experiments on a chain

of soluble boards with increasing level of difficulty. In the initial configuration, the board

has all slots but one occupied by pegs. The only allowed move in the game is a peg hopping

over another peg and landing on an empty slot. The hopped-over peg is then removed from

the board. The objective of the game is ending up with a board with a single peg positioned

on the slot which had been initially empty. The length of any solution of the puzzle is equal



82 3. SAT-Solving Techniques for CSP Refinement Checking

exactly to the number N of pegs on the initial board—a hop event for (N−1) pegs followed

by an event done signifying a valid solution of the puzzle. The results are summarised

in Table 3.1. The experiments indicate that, for N ≥ 26, SymFDR clearly outperforms

FDR. The performance of SymFDR and PAT seems to alternate. The explicit DFS-based

tools FDR-Div and PAT seem to perform quite unevenly, signifying the importance of luck.

We have also observed that in cases where a counterexample does not exist, FDR’s BFS

strategy outperforms the DFS-based tools PAT and SymFDR. To give an idea of the size

of the SAT instances that SymFDR generates, for N = 32, the instance originally contains

314 567 clauses using 38 034 variables. MiniSAT learns extra 132 451 clauses and finds a

satisfying assignment after 132 056 844 propagations. In comparison, FDR finds a solution

after traversing 187 000 000 states.

Table 3.1: Performance comparison: peg solitaire with N pegs (] = N)

N FDR Time (sec.) SAT ]

] states FDR FDR PAT SymFDR freq.
checked -Div

20 41 703 0 0 5.17 5.75 10 20
18.14 20

23 411 976 5 0 1.83 13.1 12 23
7.69 23

26 4 048 216 72 0 6.23 22.81 13 26
21.47 26

29 28 249 254 581 1 70.64 34.35 15 29
17.35 29

32 — — 5 7.08 147.68 16 32
187 000 000∗ 2 640∗ 66.3 32

35 — — 1 485 484.25 214.63 18 35
90.97 35

38 — — 43 — 182.91 19 38

41 — — 4 358.69 325.59 41 41

Our second test case is the chess knight tour. A knight is placed at position (1, 1) on

an empty chess board of size N × N . The objective is covering all squares of the board

by visiting each square exactly once. Similarly to peg solitaire, a solution is generated as

a counterexample to a specification asserting that the event done is never communicated.

The length of a possible solution is N2 + 1. The results are presented in Table 3.2. For
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N = 5, FDR generates a counterexample faster, but, for N = 6, SymFDR found a solution

in approximately 5 minutes, while FDR crashed after an hour and a half of state-space

exploration. For this test case, we have observed that restricting the decision variables in

MiniSAT to the input ones enhances the performance of SymFDR, especially for N = 7

where the reduction factor is over 20. Hence, for N = 7, the performance of the general

tool SymFDR comes close to the performance of the problem-specific SAT encoder for the

chess knight tour.

Table 3.2: Performance comparison: chess knight tour on a N ×N board (] = N2 + 1)

N FDR Time (sec.) SAT ]

] states FDR FDR PAT Direct SymFDR freq.
checked -Div SAT

5 508 451 3 0.147 0.53 8.5 8.15 13 26

6 > 120 000 000 — 18 17.17 125.3 298.64 19 37

7 — — — 12.86 1 138.0 1 326.18 25 50

Table 3.3: Performance comparison: Hamiltonian cycle on a N ×M grid (] = N ×M + 1)

N FDR Time (sec.) SAT ]

] states FDR FDR SymFDR freq.
checked -Div

4× 4 2 518 0 0 0.83 9 17

4× 5 14 368 0 0 1.98 11 21

5× 6 1 219 416 21 33 32.9 16 31
19.27 31

6× 6 18 115 326 243 630 43.54 19 37

6× 7 > 115 000 000 > 3 600 > 3 600 228.88 22 43

We have observed similar results with the test cases of finding a Hamiltonian path on

an N ×M grid (Table 3.3) and the lights-off puzzle (Table 3.4). The lights-off puzzle starts

with an N×N board with all lights initially on. The aim is to reach a configuration with all

lights switched off having in mind that upon triggering any light switch, the switch to the

right, left, below and above is also triggered. This test case illustrates the difference that

search mode can make in SymFDR. We remark that for every N , if using inductive normal

compression, FDR can actually obtain a state space consisting of a single state which it can
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verify in 0 seconds.

Table 3.4: Performance comparison: lights off puzzle on a N ×N board (] unpredictable)

N FDR Time (sec.) SAT ]

] states FDR PAT SymFDR SymFDR SymFDR freq.
checked fw bw fw/bw

2 16 0 0.05 0.05 0.06 5 5

3 382 0 0.16 0.14 0.19 6 6
0.23 0.24 0.32 5

4 2 084 0 0.26 0.27 0.33 5 5

5 8 388 608 537 > 7 600 — 23.45 655.33 8 16

6 — out of mem — — — 15 28

The fifth test case—the classical puzzle of towers of Hanoi, aims primarily at comparing

SymFDR with other SAT-based bounded checkers such as NuSMV and Alloy Analyzer. The

results are summarised in Table 3.5. NuSMV-BMC and SymFDR seem to be competitive,

both outperforming Alloy Analyzer. SymFDR working in simultaneous forward/backward

mode outperforms NuSMV-BMC. However, all non-SAT tools—the explicit ones FDR and

PAT and the BDD-based NuSMV—are clearly orders of magnitude more efficient than the

SAT-based ones. We remark, though, that all solutions for the puzzle generated by PAT

are longer than 1000 moves, even when N = 5, when the shortest solution is of length 32.

When configuring PAT to report the shortest witness trace, we obtain the results quoted

in the column labelled “PAT short”. In this case, the performance of PAT worsens fast,

falling behind SymFDR for N = 7 and running out of memory for N = 8.

Table 3.5: Performance comparison: Hanoi towers with N disks (] = 2N )

N Time (sec.) SAT ]

FDR PAT PAT Nu SymFDR SymFDR Alloy NuSMV freq.
short SMV fw fw/bw -BMC

5 0.19 0.21 0.98 0.43 4.9 3.6 11 2.2 16 32

6 0.20 1.18 10.15 0.66 27.3 21.6 327 34.9 32 64

7 0.16 2.18 202.4 0.17 182.7 173.3 21 537 1 865 64 128

8 0.18 15.20 — 0.29 3 114.1 2 035.1 — 2 218 128 256

Our final Table 3.6 summarises results obtained while running SymFDR on CSP scripts
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generated by Casper [Low98]—a well-known tool for analysing and verifying the correctness

of security protocols, underlying the discovery of an attack on the Needham–Schroeder

public key protocol in 1995 [Low95] and the verification of correctness of a fixed version of

it in 1996 [Low96]. Casper takes a big advantage of the partial-order-reduction function

chase offered by FDR [Ros98], as is apparent from the comparison of the performance

of FDR with and without it. For the Needham–Schroeder public key protocol (NSPK3),

SymFDR is better than FDR without chase but worse than FDR with chase. SymFDR

finds those instances particularly hard because, on one hand, the state-space blow-up is

enormous and, on the other hand, probably due to the great number of τ actions entangled

into the state space, there are very few clauses learned and those clauses contain far too

many literals (often over 1000). For these test cases, we have used MiniSAT configured with

negative polarity and no decision on auxiliary variables.

Table 3.6: Performance comparison: (violated) security protocols

N Time (sec.) SAT ]

FDR FDR SymFDR SymFDR SymFDR freq.
chase no chase fw bw fw/bw

NSPKP3 1 452 93.37 — — 7 14

TMN1 0 0 34.82 36.89 30.73 7 7

Andrew 0 0 4.35 4.03 3.97 8 8

3.6.2.2 Instances without Counterexamples

In this section we focus on the performance of SymFDR using k-induction (see Table 3.7).

For each of the four algorithms, ”Zig-Zag” forward, ”Zig-Zag” backward, ”Dual” forward

and ”Dual” backward, we record the time in seconds and the step at which the algorithm

terminates.

We consider the readers/writers test case, Milner’s scheduler with and without compres-

sion, the bakery algorithm for mutual exclusion and the bully algorithm for leader election1.

Besides manually generated scripts, we have experimented with scripts translated by Casper

and SVA (Shared Variables Analyser) [Ros11b]—a front-end for FDR based on modelling

1Scripts and descriptions for all benchmarks are available from the website associated with [Ros11b].



86 3. SAT-Solving Techniques for CSP Refinement Checking

concurrency using shared variables. We have also considered the effect of applying available

FDR compression techniques to the CSP scripts and have analysed the impact of those

techniques to the recurrence radii.

Table 3.7: Performance comparison: k-induction

Test Zig-zag forward Zig-zag backward Dual forward Dual backward

Time k Time k Time k Time k

R/W 100 4.69 5 1.2 2 7.15 4 3.07 2
R/W 200 17.77 5 4.09 2 27.64 4 10.94 2
R/W 300 — — 8.61 2 — — — —
R/W 400 — — 15.95 2 — — — —
R/W 500 — — 25.84 2 — — — —
R/W 600 — — 35.54 2 — — — —
R/W 700 — — 49.00 2 — — — —

Milner 2 0.07 5 0.09 8 0.08 5 0.12 7
Milner 3 0.65 14 1.78 20 0.63 13 1.17 19
Milner 4 559.05 33 2181.07 50 376.03 32 57.86 49

Milner 2 leaf normal 0.03 3 0.04 4 0.02 3 0.05 4
Milner 3 leaf normal 0.17 9 0.08 6 0.21 8 0.13 6
Milner 4 leaf normal 0.67 13 0.19 8 0.64 12 0.27 8
Milner 5 leaf normal 6.17 20 0.38 10 6.55 19 0.48 10
Milner 6 leaf normal 306.84 29 0.75 12 225.15 28 0.88 10
Milner 10 leaf normal — — 4.84 20 — — 7.13 20
Milner 15 leaf normal — — 27.58 30 — — 21.64 30
Milner 20 leaf normal — — 155.1 40 — — 103.53 40

Bakery 2 (4), SVA hc 0.14 2 0.26 9 0.15 2 — —
Bakery 2 (8), SVA hc 0.29 2 1.86 21 0.29 2 — —
Bakery 2 (16), SVA hc 0.89 2 17.4 45 0.83 2 — —
Bakery 2 (32), SVA hc 2.92 2 — — 2.98 2 — —
Bakery 2 (64), SVA hc 12.9 2 — — 13.53 2 — —
Bakery 3 (4), SVA hc — > 33 — — — — — —

Bully 3 (1,2,3) — — 152.95 40 — — — —
Bully 3 (1,3,7) — — 151.97 40 — — — —

In our experience, the backward algorithm, aiming to reach the forward recurrence

radius, often scales better than the forward one. We note that, due to concurrency, the

completeness threshold blows up in all cases. Hence, successful performance mainly depends

on whether the property is k-inductive or not, for some small value of k. For the bakery algo-

rithm and Milner’s scheduler, applying, respectively, hierarchical and leaf compression (see
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Section 2.3.3.2), has proven to be beneficial for reducing the recurrence diameter, thereby

significantly decreasing the termination step and, hence, improving the performance. For

all four algorithms we have observed that the induction step is checked much faster than the

base one, opposite to what reported in [ES03b, SSS00]. Hence, we also implemented ver-

sions of k-induction starting the iteration process from a step greater that zero, as suggested

in [SSS00]. Opposite to what we expected, though, for our test cases this approach scales

worse than the standard one. In case of unsatisfiable instances, we have also observed that

if the length of the longest possible counterexample is known in advance, often iterating the

BMC algorithm up to this length produces better results than k-induction due to tuning

the SAT frequency and jumping multiple time steps at once.

3.6.2.3 Discussion

We can conclude that SymFDR is likely to outperform FDR in large tightly-coupled combi-

natorial problems for which a solution exists, the length of the longest solution is relatively

short (growing at most polynomially) and is predictable in advance. In those cases, we can

fix the SAT frequency close to a sizeable divisor of this length and thus spare large SAT over-

head. The search space of those problems can be characterised as very wide (with respect to

BFS), but relatively shallow—with counterexamples with length up to approximately 50–60.

We suspect that problems with multiple solutions also induce good SAT performance. The

experiments with the towers of Hanoi suggest that SAT-solving techniques offer advantages

up to a certain threshold and weaken afterwards.

SymFDR in k-induction mode works reasonably well for small test cases, especially

if the property is k-inductive for some small value of k. However, for larger test cases,

SymFDR does not scale very well as the completeness threshold becomes too large due to

concurrency. In all cases considered in Table 3.7, FDR is considerably faster.

3.7 Conclusion and Future Work

In this chapter we have demonstrated the feasibility of integrating SAT-based BMC and

k-induction in FDR, and more specifically, exchanging the expensive explicit state-space

traversal phase in FDR by a SAT check in SymFDR. On some test cases, such as complex

combinatorial problems, SymFDR’s performance is very encouraging, coping with problems
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that are beyond FDR’s capabilities. In general, though, FDR usually outperforms SymFDR,

particularly when a counterexample does not exist. We plan to further investigate and try

to gain insight about the classes of problems that are tackled more successfully within the

BMC framework.

We envision several directions for future work.

We intend to extend the BMC framework in SymFDR to make it applicable to the stable

failures and failures-divergences models as well. This will involve extending the encoding of

CSP processes with information about minimal acceptances and divergences. Alternatively,

we could try and tailor the translation from liveness to safety properties detailed in [BAS02].

Our future plans mostly revolve around investigating alternative methods for obtaining

complete SAT-based refinement checking, two approaches for which we describe below.

3.7.1 Interpolation Techniques

We plan to implement and experimentally evaluate McMillan’s algorithm which combines

SAT and Craig interpolation techniques [Cra57] to yield complete unbounded refinement

checking [McM03, McM06]. This approach relies on a SAT solver being capable of gen-

erating a resolution proof of unsatisfiability for an unsatisfiable SAT instance. A Craig

interpolant [Cra57] of two sets of clauses A and B with A ∪ B being unsatisfiable is a

Boolean formula P such that A implies P , P ∧B is unsatisfiable, and P only refers to the

common variables of A and B [Cra57, McM03].

In the context of BMC, a proof of unsatisfiability is a proof that there are no coun-

terexamples of length less than or equal to k. An unsatisfiable BMC SAT instance for a

given bound k and Craig interpolation can be combined to calculate an overapproximation

of the forward image operator. A is taken to be the set of clauses corresponding to the

initial condition I and the unfolding of the first transition. B represents the unfolding of

the rest (k − 1) transitions and the error condition F .

I(s0) ∧ T (s0, s1)︸ ︷︷ ︸
A

∧ T (s1, s2) ∧ . . . T (sk−1, sk) ∧
k∨
i=1

F (si)︸ ︷︷ ︸
B

Then, since A implies P , the interpolant P is an overapproximation of the set of states

reachable in one step from the initial states. Furthermore, since P ∧ B is unsatisfiable,



3.7. Conclusion and Future Work 89

no state satisfying P can reach states satisfying F in (k − 1) steps. Therefore, P is an

underapproximation of the set of states unreachable backwards from F in (k− 1) steps. In

addition, P refers only to the variables used for encoding s1.

Interpolation methods have been successfully applied for efficiently deriving inductive

program invariants [McM06, McM03]. Those invariants can be used for establishing safety

properties (or liveness properties if translated into safety first [BAS02]). Craig interpola-

tion exploits the ability of SAT solvers to narrow proofs of unsatisfiability to only relevant

variables to obtain an abstract image operator out of an unsatisfiable BMC instance for a

given value k, as described above. Incorporating this operator into a fixed-point computa-

tion results into a decision procedure that only explores those parts the state space that

are relevant to the specification property under consideration. If the fixed-point compu-

tation for the particular k fails to establish the correctness of the property and detects a

counterexample that relies on the overapproximation, the process is restarted with BMC

instances for values greater than k, which generate more precise overapproximations of the

image operator by increasing the minimal distance to error states.

The combination of SAT and interpolation has proven to be more efficient for positive

hardware BMC instances (instances with no counterexamples) than other SAT approaches

[McM03, ADK+05]. The completeness threshold in this case is the backward radius of the

state space which is smaller than its backward recurrence radius, as is the case with temporal

k-induction. Moreover, experimental results have shown that, in practice, the algorithm

often converges substantially faster, for bounds considerably smaller than the backward

radius. In addition, the interpolation algorithm allows jumping multiple time frames at

once and hence permits tuning the SAT frequency. The BMC framework presented in this

chapter is the foundation we will build upon.

We also plan to experiment with applying interpolants of different quality and strength

as described in [DKPW10]. For both temporal k-induction and interpolation-based refine-

ment checking, we intend to investigate techniques for invariant strengthening, which would

be helpful for decreasing the corresponding completeness thresholds [BHvMW09]. For tack-

ling the challenges arising from concurrency, we speculate that exploiting the combination of

interpolation methods and partial-order reductions [CGP99, Pel98] would prove beneficial.
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3.7.2 IC3 and PDR Frameworks

A new approach for generating invariants that strengthen a given safety property under

scrutiny was relatively recently proposed [BM08, EMB11, Bra11, Bra12], alternative to Ken

McMillan’s interpolation algorithm. In literature, it is often referred to as IC3 (Incremental

Construction of Inductive Clauses for Indubitable Correctness) [Bra11, Bra11] or PDR

(property-driven reachability analysis) [EMB11]. As opposed to the temporal k-induction

and interpolation algorithms, which are monolithic in their aim to produce a single general

inductive invariant strengthening the safety property, IC3 and PDR are incremental in their

approach—they incrementally generate a series of simpler auxiliary invariants each of which

is inductive relative to the previous ones.

Similarly to the interpolation-based method, IC3 operates by incrementally and sym-

bolically generating a sequence of sets of states 〈F0, . . . , Fk〉 for increasingly larger k ∈ N,

where for every 0 ≤ i ≤ k, Fi is an overapproximation of the sets of states reachable in i

or less steps from the initial state and Fi only contains states that are at least (k − i + 1)

steps away from error states. Each Fi is maintained as a set of clauses and for all 0 ≤ i < k,

clauses(Fi+1) ⊆ clauses(Fi) always holds. The sequence 〈F0, . . . , Fk〉 is constructed to always

satisfy the following properties (given a model 〈I, T 〉 and a safety property P ):

• I ⇒ F0

• For all 0 ≤ i < k, Fi ⇒ Fi+1 (which is implied by clauses(Fi+1) ⊆ clauses(Fi))

• For all 0 ≤ i ≤ k, Fi ⇒ P

• For all 0 ≤ i < k, Fi ∧ T ⇒ F ′i+1, which implies that Fi+1 is inductive relative to Fi.

In contrast to the interpolation algorithm, which restarts the fixed-point computation

with a more precise image operator every time when it detects a counterexample that can

possibly be spurious, IC3 employs an algorithm that moves both back and forth along the

sequence of approximations. Major iterations of the algorithm increase the frontier step k,

while minor iterations refine i-step approximations, thus reusing and strengthening lemmas

gathered so far. The refinement is performed on the syntactic level by adding a lemma

(clause) c to all F0, . . . , Fj for some j ≤ k.

Another crucial advantage of IC3 is that it requires just a single unfolding of the tran-

sition relation, as opposed to the k-induction and interpolation algorithms that build upon
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BMC and need to symbolically unroll the transition relation multiple times. Effectively,

IC3 operates by repeatedly defining and fulfilling proof obligations that are generated on

demand out of counterexamples of inductiveness [BM08]. If the induction consecution step

Fk ∧ T ⇒ P ′ for the frontier Fk fails to hold, a state s ∈ Fk is identified that is just a single

step away from an error state [Bra11]. A proof obligation is then adjoined at frame k, aim-

ing to prove that s is never reachable from the initial state in k or less steps (or even better,

at all). For proving the new obligation, the algorithm may need to inductively refine a series

of approximations Fj , . . . , Fk for some j ≤ k by adding/proving/refuting more obligations

at backward steps. If the algorithm fails to fulfill an obligation for the initial time frame,

the property is violated, in which case a counterexample can be reconstructed by suitable

bookkeeping. If at some point ¬s is proven to be inductive relative to Fk, the inductiveness

of P relative to Fk is tested again. If in subsequent tests the consecution step Fk ∧ T ⇒ P ′

succeeds, a new frontier frame Fk+1 = P is appended. The algorithm converges whenever

for some k ∈ N, Fk is itself inductive, i.e., whenever clauses(Fi+1) ≡ clauses(Fi).

The completeness threshold of the IC3 algorithm is the number of states in the system,

which is greater than the completeness thresholds of both the k-induction and interpolation

algorithms. However, empirically, IC3 has been found to work extremely well on industrial

benchmarks, outperforming interpolation-based implementations [BM08] and finding coun-

terexamples buried deep in the system. On one hand, this is due to the mitigation of the

state-space explosion problem due to a single unrolling of the transition relation. On the

other hand, IC3 employs various syntactic and semantic optimisations, e.g., inductive gen-

eralisation of the counterexample of inductiveness, propagating clauses forward by stepwise

approximations, etc. The algorithm also benefits from low memory requirements and from

the simplicity of its SAT queries. In addition, IC3 is readily amenable to parallelisation

[BM08] by employing multiple SAT solvers working in parallel that exchange information

about proven lemmas.

The novel IC3 framework is still in its early stage of development but has already

demonstrated a lot of promise and is currently an extremely active area of research. To

the best of our knowledge, it has not be investigated in the context of concurrent software

systems yet, something that we plan to do in the context of CSP.



Chapter 4

Static Analysis for Livelock
Detection

4.1 Introduction

It is standard in process algebra to distinguish between the visible and invisible (or silent)

actions of a process. The latter correspond to state changes arising from internal computa-

tions such as resolving of nondeterminism, unfolding of a recursion, abstraction of details.

Their occurrence is silent and is not detectable or controllable by the environment. A pro-

cess is said to diverge or livelock if it reaches a state from which it may forever compute

internally through an infinite sequence of invisible actions, thereby becoming unresponsive

or ‘hanging’.

in out

τ

τ

Figure 4.1: Livelock

Livelock is usually a highly undesirable ‘feature’ of a process, described in the literature

as “even worse than deadlock, in that like an endless loop it may consume unbounded

computing resources without achieving anything” [Hoa85]. Livelock invalidates certain

analysis methodologies, e.g., it signifies lack of progress, and is often symptomatic of a

bug in the modelling.

92
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4.1.1 Sources of Livelock

The possibility of writing down divergent processes arises from the presence of two crucial

constructs—recursion and hiding. Hiding is a key device for abstraction—it conceals ‘inter-

nal chatter’ and other irrelevant computations by converting visible actions into invisible

ones. Recursion is what gives expressive power to a process algebra as it contributes Turing

completeness.

We distinguish two nontrivial patterns through which a process may livelock. In the

first place, livelock may be introduced if hiding an event or a set of events that can occur

uninterruptedly and infinitely often to the exclusion of all others. Alternatively, a process

may livelock owing to the presence of an unguarded recursion. Roughly speaking, the latter

means that the process may recurse without communicating a visible event first.

4.1.2 Complexity of Establishing Livelock Freedom

In the context of the process algebra CSP, the problem of determining whether a process

may livelock is in general undecidable1. Furthermore, even for finite-state processes, if

adopting exhaustive state-space exploration techniques, establishing livelock freedom can

be expensive due to concurrency and large data domains.

One way to check a process for divergence is to search for reachable cycles of silent

actions in its state space, which is a labelled transition system built from the operational

semantics. Assuming the underlying graph is finite, this can be achieved by calculating its

strongly connected components, using, e.g., Tarjan’s algorithm [CLRS01]. The latter can

be carried out in time linear in the size of the graph, which may, however, be exponential

(or worse) in the syntactic size of the term describing the process.

In the current implementation of FDR, the check for divergence is performed during

the refinement checking phase by triggering a local DFS search for τ actions each time when

encountering an unstable state. Hence, as pointed out in Section 2.3.2, refinement checking

in the failures-divergences model is much more expensive than refinement checking in the

stable-failures model, despite the fact that for livelock-free implementations the refinement

checks in the two models yield the same results and counterexamples, if any.

1For example, CSP can encode counters, and is therefore Turing-powerful.
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4.1.3 Our Proposal: Static Analysis

We propose a static livelock analysis framework, which conservatively flags potentially di-

vergent CSP processes [OPRW11, OPRW13].

By static we mean that the algorithm works on the syntax of a process and never builds

or explores the whole of its state space, as opposed to methods underlying model checking

or refinement checking. In this way we circumvent the state-space explosion problem.

However, the algorithm is conservative, which means that it is sound but not complete.

If it reports that a process is livelock free, then this is guaranteed to be the case. The

alternative is ‘potential livelock’, which indicates an inconclusive result and might be a

false positive. In this way we basically trade accuracy for speed.

General Framework. Our general framework can handle the widest variety of CSP

processes, including infinite-state ones. The analysis is based on reasoning about fixed

points in terms of metric spaces, as well as on keeping track and overapproximating the

fair sets of events of a process. We introduce a new family of metrics parametrised by sets

of visible events. Our framework automatically generates a sound but incomplete set of

metrics that guarantee that recursive processes have unique fixed points, and furthermore,

that those unique fixed points are livelock-free. The algorithm employs a collection of rules,

based on the inductive structure of terms. The rules principally investigate the interaction

of hiding, renaming and recursion and the way they may conspire to introduce livelock. The

analysis (see Section 4.6) naturally divides into two parts according to the two nontrivial

sources of livelock outlined above.

Framework for Structurally Finite-State Processes. In practice, the majority of

processes are finite state and for those we offer a simpler, more precise and more efficient

framework. Using compositional rules, we generate a pair consisting of a livelock flag and

a collection of fair/co-fair pairs of sets of events, the combination of which can be viewed

as an abstraction of the system preserving livelock freedom. The algorithm also benefits

from being able to identify the minimal closed sequential components and examine their

transition systems in isolation. For those it computes exact abstractions and starts becoming
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conservative only in the compositional rules for handling compound CSP processes, thereby

allowing more elaborate and finer data to be computed efficiently.

Our Tool SLAP. We have implemented both frameworks in a tool called slap, which is

an acronym for Static Livelock Analyser of Processes. Computationally, the crux

of our algorithms revolves around the generation and manipulation of sets. The algorithms

fit very naturally into a symbolic paradigm; hence slap is fully symbolic. The choice of

an underlying symbolic engine is configurable, with support for using a SAT engine (based

on MiniSAT 2.0), a BDD engine (based on CUDD 2.4.2), or running a SAT and a BDD

analyser in parallel and reporting the results of the first one to finish.

The symbolic implementation is particularly empowering in the framework for handling

structurally finite-state processes and, more specifically, in its base case when dealing with

minimal sequential processes. For those, we encode the exact computation of the collection

of fair/co-fair pairs into a compact circuit of size polynomial in the syntactic description

of the process in question. This circuit we then represent symbolically by either burning it

into a BDD or turning it into an equisatisfiable Boolean formula intended as an input to a

SAT solver.

By circumventing the state-space exploration, we obtain a static analysis algorithm

which in practice tends to substantially outperform state-of-the-art model-checking tools

such as FDR—see Section 4.9 for experimental comparisons.

Naturally, there is a trade-off between the speed and accuracy of livelock checking. It

is not hard to write down processes which are livelock-free but which our analysis indicates

as potentially divergent. However, when modelling systems in practice, it makes sense

to try to check for livelock freedom using a simple and highly economical static analysis

before invoking computationally expensive state-space exploration algorithms. Indeed, as

Roscoe [Ros98, page 208] points out, the calculations required to determine if a process

diverges are significantly more costly than those for deciding other aspects of refinement,

and it is advantageous to avoid these calculations if at all possible. Hence, we have already

integrated the framework for analysing structurally finite-state processes in FDR [AGL+12],

where it now constitutes an alternative back-end for establishing livelock freedom.
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We note that our static livelock analysis is tailored to the setting of CSP, but the

principles upon which our analysis is based should be transferable to other process algebras

and other concurrent settings and formalisms, in general.

4.1.4 Related Work

The basic intuitions underlying our approach are fairly straightforward. In part they mir-

ror the guardedness requirements which ensure that well-behaved CSP process equations

have unique, livelock-free fixed points [Ros98, Chap. 8]. However, we extend the treat-

ment of [Ros98] by allowing guarded recursions to include instances of the hiding operator.

Incidentally, Milner’s notion of guarded recursions in CCS is similarly restricted by the

requirement that variables not occur inside parallel compositions [Mil89]. Complications

arise mainly because we want to be able to fully incorporate hiding and renaming in our

treatment, both of which can have subtle indirect effects on guardedness.

We note that the idea of guarded recursions is standard in process algebra. For instance,

in Milner’s framework, a variable is ‘strongly guarded’ in a given term if every free occurrence

of the variable in the term occurs within the scope of a prefixing operator [Mil89]. This

notion is introduced in order to justify certain proof principles, such as that guaranteeing the

uniqueness of fixed points up to bisimilarity. Strong guardedness has also been extended to a

calculus with hiding and action refinement [BG02]. A key difference between our approach

and these notions is that we seek to guarantee livelock freedom, rather than merely the

existence of unique fixed points.

In fact, there are few papers which deal with the problem of guaranteeing livelock

freedom in the setting of concurrent process calculi.2 The existing work on livelock freedom

has mostly been carried out in the context of mobile calculi. [San02] presents an approach

for guaranteeing livelock freedom for a certain fragment of the π-calculus. Unlike the

combinatorial treatment presented here, this approach makes use of the rich theory of types

of the π-calculus, and in particular the technique of logical relations. Another study of

divergence freedom in the π-calculus appears in [YBH01], and uses the notions of graph

types.

2In contrast, there are numerous works treating termination for the λ-calculus or combinatory
logic [GLT88, Mit96, Gan80].
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Note that CSP is predicated upon synchronous (i.e., handshake) communication. In

terms of livelock analysis, different issues (and additional difficulties) arise in an asyn-

chronous context (assuming unbounded communication buffers); see, e.g., [LcW06, LcW08].

Recent works in which CSP livelock freedom plays a key role include [Dim10] as well

as [STW11, STW10]; see also references within.

4.2 Case Study: the Alternating Bit Protocol

In this section we briefly describe a network communication protocol called the alternating

bit protocol (ABP), which we use as a test case. We also provide an abstracted version of

the protocol that we use to illustrate our concepts.

4.2.1 Description and Implementation

Suppose we want to implement a reliable order-preserving message transfer from a point

Sender to a remote point Receiver under the assumption that the communication media

between those two remote points are error-prone. In particular, we will assume that:

1. The media are lossy, i.e., they can lose messages arbitrarily, provided that they do

not lose an infinite number of messages in a row;

2. The media, however, cannot corrupt the contents of the messages, neither can they

shuffle the order of messages in the flow.

There are a number of protocols that run correctly under those assumptions, one of

which is the alternating bit protocol (ABP). It relies on the receiver end sending positive

acknowledgments back to the sender upon successful reception of a message, as well as

on both the receiver and the sender appending an extra control bit to every message that

is sent across the lossy media. The bit alternates between 0 and 1 and, having that the

order of messages is always preserved, proves sufficient to set a clear boundary between the

transmission of subsequent messages.

The architecture of the system is depicted in 4.2, where E and F are the unreliable

media used for sending messages and acknowledgments, respectively. Both the sender and

the receiver are parametric in a control bit and, furthermore, the sender also holds the

message it currently transmits to the receiver. Initially, we assume that Sender starts with
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E

F

Sender Receiver
in out

a

d

b

c

Figure 4.2: The alternating bit protocol

no messages pending (we use NULL) and a control bit valued 1. The process Receiver is

initialised with a control bit valued 0. The protocol works as follows.

The sender (see Figure 4.3) intercepts a new message on its in channel, flips its control

bit (to mark the message as new) and repeatedly sends the message tagged with the control

bit to the receiver, until it obtains an acknowledgment marked with the same control bit.

At this point, the sender restarts the protocol waiting for the next message to arrive.

Acknowledgements that are received but not expected, i.e., those that are decorated with

an inverted control bit, are simply ignored.

Send(msg , bit) = (if (msg == NULL)
then in?x −→ Sender(msg , 1− bit)
else a!bit !msg −→ Send(msg , bit))

2

(d?ack −→ ( if (ack == bit)
then Send(NULL, bit)
else Send(msg , bit))

Sender = Send(NULL, 1)

Figure 4.3: ABP: the sender process

When the receiver (see Figure 4.4) obtains a message marked with a control bit equal

to its own, it flushes the message out to the environment via its out channel, flips its control

bit and starts repeatedly sending acknowledgments back to the sender attaching the bit the

message came with. The process is repeated until the receiver receives a new message, at

which point the protocol is restarted. Subsequent messages with the same control bit are

only acknowledged but not output to the environment.
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Receive(bit) = b?tag?msg −→ (if (tag == bit)
then out !msg −→ Receive(1− bit)
else Receive(bit))

2

c!(1− bit) −→ Receive(bit)

Receiver = Receive(0)

Figure 4.4: ABP: the receiver process

Let us suppose that the lossy media E and F can nondeterministically lose up to N

messages in a row. We can implement them as illustrated in Figure 4.5.

E(n) = a?bit?msg −→ (if (n == 0)
then b!bit !msg −→ E(N − 1)
else (b!bit !msg −→ E(N − 1) u E(n− 1)))

F (n) = c?bit −→ (if (n == 0)
then d!bit −→ F (N − 1)
else (d!bit −→ F (N − 1) u F (n− 1)))

Figure 4.5: ABP: the lossy media

Then we can compose the whole system together as follows:

System = (Sender ‖
{|a,d |}

(E(N − 1) 9 F (N − 1)) ‖
{| b,c |}

Receiver) \ {|a, b, c, d |}

Notice that we hide all the communications over the lossy media at the top level.

Indeed, since we are only interested in proving that messages from Sender eventually arrive

at Receiver and do so in the same order they have been sent, the way that messages are

propagated across the network is irrelevant. Hence, the only events we leave observable

from outside are the messages transmitted through the channels in and out . The danger

here is that the system might reach a configuration from which it spends the whole time in

internal communications across the lossy media and never offers to input a message from in

or output one from out . This scenario corresponds to a livelock, and in the way the system

is designed currently, it is indeed possible, however undesirable it might be. For instance,

Receiver can keep sending acknowledgments forever without Sender ever intercepting and

sending a new message. Alternatively, a message can be transmitted and received forever
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without being acknowledged. Hence, even though the media E and F can lose only a finite

number of messages in a row, it turns out that System still does not guarantee to deliver

messages.

There are different strategies for enforcing conditions that eliminate the livelock and

turn ABP into a reliable communication protocol. Some of those are fairness conditions

that aim to eliminate the possibility that an endless message flow gets restricted only to the

channels a and b or, alternatively, to c and d. For example we can impose the constraint

that messages transmitted through the channels b and c strictly alternate:

Alt = b?bit?msg −→ c?bit −→ Alt

Then the process ASystem = System ‖
{| b,c |}

Alt will satisfy our correctness criteria.

Alternative strategies may add the constraints that the number of messages transmitted

through the channel b and the number of messages transmitted through the channel c never

differ by more than a constant, or that the number of messages transmitted through one of

them in a row without using the other one is never greater than a constant.

4.2.2 An Abstracted Version of the ABP

The process Send (see Figure 4.6) attempts to send messages to itself infinitely often. Those

messages, however, have to go through an unreliable network Medium, which may do an

arbitrary (possibly infinite) number of error events before delivering the message back to

Send in the form of an out event. We impose a fairness constraint Fair on Medium, forcing

it to do at most a single error before delivering the message correctly, i.e., we require that

every error event be immediately followed by an out event. We construct the system by

putting the mutually-recursive processes Send and Medium in parallel with the process

Fair , synchronising on the set of their shared events {error , out} and hiding the error

event at the top. The resulting process System is livelock-free and is, in fact, equivalent to

the process B1 = in −→ out −→ B1, which implements a single-slot buffer. It is perhaps

interesting to note that if we hide on top level the set of events {error , out}, instead of

just {error}, the resulting system would still be livelock-free: every infinite execution of it

would contain infinitely many occurrences of the event in.
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Send = in −→ Medium
Medium = out −→ Send 2 error −→ Medium

Fair = out −→ Fair 2 error −→ out −→ Fair

System = (Send ‖
{error ,out}

Fair) \ {error}

Figure 4.6: ABP: an abstracted version

4.3 Syntax and Conventions

As we have seen so far, CSP processes are mostly defined via vectors of mutually-recursive

equations. In this section we take a different view on recursive processes and represent them

in functional form.

Similarly to Section 2.2.1, let Σ be a finite set of events, with X /∈ Σ. We write ΣX to

denote Σ∪{X} and Σ∗X to denote the set of finite sequences of elements from Σ which may

end with X. In the notation below, we have a ∈ Σ and A ⊆ Σ. R denotes a binary renaming

relation on Σ. The variable X is drawn from a fixed infinite set of process variables.

Definition 4.3.1. CSP terms are constructed according to the following grammar:

P ::= STOP | a −→ P | SKIP | P1 u P2 | P1 2 P2 | P1 ‖
A
P2 |

P1 # P2 | P \ A | P JRK | X | µX � P (X) | DIV .

The informal description of all core CSP processes and operators is presented in Sec-

tion 2.2.1. µX � P (X) denotes a recursive process—to understand its meaning, consider

the equation X = P in terms of the unknown X. While this equation may have several

solutions, it always has a unique least3 such, written µX � P (X).

A CSP term is closed if every occurrence of a variable X in it occurs within the scope

of a µX operator; we refer to such terms as processes.

Definition 4.3.2. A CSP process is a closed CSP term.

We will denote by CSP the set of all CSP processes and by CSP the set of all CSP

terms, both open and closed.

3In a relevant partial order
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Let us state a few conventions. When hiding a single event a, we write P \ a rather

than P \ {a}. The binding scope of the µX operator extends as far to the right as possible.

We also often express recursions by means of the equational notation X = P , rather than

the functional µX � P . Let us remark that vectors of mutually recursive equations can

always be converted to our present syntax that uses the fixed-point operator µ, thanks to

Bekič’s theorem [Win93, Chap. 10]. Accordingly, we shall freely make use of the vectorised

notation as well.

In a nutshell [OPRW13], Bekič’s theorem expresses fixed points of self-maps on the

product space X × Y in terms of fixed points of self-maps on the respective components

X and Y . For example, let us consider a mutually recursive process definition of the

form P = f(P,Q), Q = g(P,Q). The idea is first to define a parametrised fixed point

of g via the expression µY.g(X,Y ), and then substitute in the expression for P , yielding

P = µX.f(X,µY.g(X,Y )). This process can be generalised to transform mutually recursive

definitions of arbitrary dimension into expressions using only the single-variable fixed-point

operator µ.

As an example, let us consider the mutually-recursive processes Send and Medium from

Figure 4.6. The functional representation of the process Send will be the following:

µSend � in −→ (µMedium � out −→ Send 2 error −→ Medium).

4.4 Operational and Denotational Semantics

4.4.1 Operational Semantics

The rules presented in Section 2.2.4 allow us to associate to any CSP process a labelled

transition system representing its possible executions. We say that a process diverges if it

has an infinite path whose actions are exclusively τ ’s. A process is livelock-free if it never

reaches a point from which it diverges.

4.4.2 Denotational Semantics

4.4.2.1 The Model T ⇓

In this section, we introduce the compositional model T ⇓ [Ros11b] in which a process P is

identified by the pair (traces⊥(P ), divergences(P )). In this model, traces⊥(P ) = traces(P )∪
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divergences(P ) ⊆ Σ∗X is the set of all finite visible-event traces that P may perform, and

divergences(P ) ⊆ traces⊥(P ) is the set of traces after which it may diverge. Standard models

of CSP also take account of the liveness properties of a process by modeling its refusals, i.e.,

the sets of events it cannot perform after a given trace. In our handling, we do not record

refusals as they are orthogonal to the divergences of a process—see [Ros98, Sect. 8.4].

Following [Ros11b], we write T ⇓ to denote the set of pairs (T,D) ∈ P(Σ∗X) × P(Σ∗X)

satisfying the following axioms (where _ denotes trace concatenation):

1. D ⊆ T .

2. s_〈X〉 ∈ D implies s ∈ D.

3. T ⊆ Σ∗X is non-empty and prefix-closed.

4. s ∈ D ∩ Σ∗ and t ∈ Σ∗X implies s_t ∈ D.

Axiom 4 says that the set of divergences is postfix-closed. Indeed, since we are only

interested in detecting divergence, we treat it as catastrophic and do not attempt to record

any meaningful information past a point from which a process may diverge; accordingly,

our semantic model takes the view that a process may perform any sequence of events after

divergence. Thus the only reliable behaviours of a process are those in T −D.

Axiom 2 reflects the intuition that X represents successful termination. In particular,

there is no way a process may diverge after a X unless it is already divergent.

Given a process P , its denotation JP KT ⇓ = (traces⊥(P ), divergences(P )) ∈ T ⇓ is calcu-

lated by induction on the structure of P ; in other words, the model T ⇓ is compositional.

The complete list of clauses can be found in [Ros98, Chap. 8], and moreover the traces and

divergences of a process may also be extracted from the operational semantics in straight-

forward fashion. We provide the inductive rules in Figures 4.7 and 4.8 to facilitate the

proofs. In the last three rules in Figure 4.8, r ranges over Σ∗X, in accordance with Axiom 4.

We recall that the lifting of the renaming relation R to traces is carried out pointwise. The

definition of s ‖
A
t in the rules for parallel composition was presented earlier in Figure 2.7

[Ros98].

Definition 4.4.1. A process P is livelock-free if divergences(P ) = ∅.
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traces(STOP) = {〈〉}
traces(SKIP) = {〈〉, 〈X〉}
traces(DIV ) = {〈〉}

traces(a −→ P ) = {〈〉} ∪ {〈a〉_t | t ∈ traces(P )}
traces(P 2 Q) = traces(P ) ∪ traces(Q)

traces(P u Q) = traces(P ) ∪ traces(Q)

traces(P # Q) = (traces(P ) ∩ Σ∗) ∪ {t_s | t_〈X〉 ∈ traces(P ), s ∈ traces(Q)}
traces(P \ A) = {t � (Σ \A) | t ∈ traces(P )}
traces(P JRK) = {t | ∃ s ∈ traces(P ) � s R t}

traces(P ‖
A
Q) =

⋃
{s ‖

A
t | s ∈ traces(P ), t ∈ traces(Q)}

Figure 4.7: The model T ⇓: inductive rules for calculating traces

divergences(STOP) = ∅
divergences(SKIP) = ∅
divergences(DIV ) = Σ∗X

divergences(a −→ P ) = {〈a〉_t | t ∈ divergences(P )}
divergences(P 2 Q) = divergences(P ) ∪ divergences(Q)

divergences(P u Q) = divergences(P ) ∪ divergences(Q)

divergences(P # Q) = divergences(P ) ∪ {t_s | t_〈X〉 ∈ traces⊥(P ), s ∈ divergences(Q)}
divergences(P \ A) = {(t � (Σ \A))_r | t ∈ divergences(P )}∪

{(u � (Σ \A))_r | u ∈ Σω, u � (Σ \A) finite,∀ t < u � t ∈ traces⊥(P )}
divergences(P JRK) = {t_r | ∃ s ∈ divergences(P ) ∩ Σ∗ � s R t}
divergences(P ‖

A
Q) = {u_r | ∃ s ∈ traces⊥(P ),∃ t ∈ traces⊥(Q) � u ∈ (s ‖

A
t ∩ Σ∗),

(s ∈ divergences(P ) or t ∈ divergences(Q))}

Figure 4.8: The model T ⇓: inductive rules for calculating divergences
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4.4.2.2 Reasoning about Infinite Traces

In general, reasoning about livelock requires reasoning about infinite behaviours. Hiding a

set of events A ⊆ Σ from a process P introduces divergence if P is capable of performing

an infinite unbroken sequence of events from A. Although our model only records the finite

traces of a process, the finite-branching nature of our operators4 entails (via König’s lemma)

that a process may perform an infinite trace u if and only if it can perform all finite prefixes

of u. In other words, the set of finite traces of a process conveys enough information for

deducing the set of its infinite traces as well. To keep the notation simple, given an infinite

word u ∈ Σω, we will write

u ∈ tracesω(P ) whenever {t ∈ Σ∗ | t < u} ⊆ traces(P ),

where < denotes the strong prefix order on Σ∞ = Σ∗ ∪ Σω. Furthermore, we will write

traces∞(P ) to denote traces(P ) ∪ tracesω(P ), the set of all finite and infinite traces of P .

We note that traces in tracesω(P ), and hence finite prefixes thereof, cannot contain a X,

which denotes successful termination.

We now state the semantic properties that we use in case of infinite traces. The proofs

of the lemmas stated below can be found in Appendix A.1.

Lemma 4.4.2. Let u ∈ tracesω(a −→ P ). Then there exists u′ ∈ tracesω(P ), such that

u = 〈a〉_u′.

Lemma 4.4.3. Let u ∈ tracesω(P ⊕ Q) for ⊕ ∈ {2,u}. Then u ∈ tracesω(P ) or u ∈

tracesω(Q).

Lemma 4.4.4. Let u ∈ tracesω(P # Q). Then u ∈ tracesω(P ), or u = t_u′ with t_〈X〉 ∈

traces(P ) and u′ ∈ tracesω(Q).

Lemma 4.4.5. Let u ∈ tracesω(P \ A) and P \ A be livelock-free. Then there exists

v ∈ tracesω(P ), such that u = v � (Σ\A).

Lemma 4.4.6. Let u ∈ tracesω(P JRK). Then there exists v ∈ tracesω(P ), such that v R u.

Lemma 4.4.7. Let u ∈ tracesω(P ‖
A
Q). Then there exist u1 ∈ traces∞(P ) and u2 ∈

traces∞(Q), such that u ∈ u1 ‖
A
u2, and u1 ∈ Σω or u2 ∈ Σω.

4All CSP operators are finitely branching under the assumption that the alphabet Σ is finite and there
is no unbounded nondeterminism [Ros98].
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4.4.2.3 Handling Recursion

In this section we use standard notions from lattice theory which we presented in Sec-

tion 2.1.3.1.

We interpret recursive processes in the standard way by introducing a partial order

v on T ⇓. We write (T1, D1) v (T2, D2) if T2 ⊆ T1 and D2 ⊆ D1. In other words, the

order on T ⇓ is reverse inclusion on both the trace and the divergence components. The

resulting partial order (T ⇓,v) is a complete lattice. The bottom element of (T ⇓,v) is

(Σ∗X,Σ∗X), i.e., the denotation of the immediately divergent process DIV . The top element

is ({〈〉}, ∅), i.e., the denotation of the immediately deadlocking process STOP . The least

upper bound and the greatest lower bound of a family {(Ti, Di) | i ∈ I} are given by⊔
i∈I(Ti, Di) = (

⋂
i∈I Ti,

⋂
i∈I Di) and

d
i∈I(Ti, Di) = (

⋃
i∈I Ti,

⋃
i∈I Di), respectively.

It is readily verified that each n-ary CSP operator other than recursion can be inter-

preted as a Scott-continuous function (T ⇓)n → T ⇓. The continuity of hiding rests on our

assumption that Σ is finite (cf. [Ros98, Lemma 8.3.5]). By induction we have that any CSP

expression P in variables X1, . . . , Xn is interpreted as a Scott-continuous map (T ⇓)n → T ⇓.

Recursion is then interpreted using the least fixed-point operator fix : [T ⇓ → T ⇓] → T ⇓.

For instance, JµX � XKT ⇓ is the least fixed point of the identity function on T ⇓, i.e., the

immediately divergent process. Our analysis of livelock freedom, however, is based around

an alternative treatment of fixed points in terms of metric spaces.

4.5 Processes and Metric Spaces

4.5.1 Metric Spaces

In this section, we recall standard definitions and facts concerning metric spaces [Sut75].

A metric space is a pair (A, d), where A is a non-empty set and d : A × A → R+ is a

function satisfying the following three laws for all x, y, z ∈ A:

d(x, y) = 0 ⇔ x = y diagonal law
d(x, y) = d(y, x) symmetry law
d(x, y) ≤ d(x, z) + d(z, y) triangle inequality

We refer to A as space and to d as a metric on A. For a given space A, there may be



4.5. Processes and Metric Spaces 107

multiple metrics on A. For example, the function d : A×A→ {0, 1} defined by:

d(x, y) =

{
1 if x 6= y

0 if x = y

satisfies the three metric laws and is called the discrete metric on A.

A metric space (A, d) is an ultrametric space if the metric function f further satisfies

the following inequality for all x, y, z ∈ A:

d(x, y) ≤ max(d(x, z), d(z, y)) ultrametric inequality

For example, the discrete metric on A is also an ultrametric. Among other properties,

an ultrametric guarantees that every triangle is isosceles.

Convergence and Closed Sets. Let (A, d) be a metric space and s = 〈xn | n ∈ N〉 be

an infinite sequence of points in A. We say that s converges to a point y ∈ A if, for each

ε > 0, there exists Nε ∈ N, such that for every n ≥ Nε, d(xn, y) < ε. s is a Cauchy sequence

if, for each ε > 0, there exists Nε ∈ N, such that for every n,m ≥ Nε, d(xn, xm) < ε. In

a metric space, every convergent sequence is a Cauchy sequence. However, the converse

does not necessarily hold. Hence, the metric space (A, d) is a complete metric space if every

Cauchy sequence converges. A given subset C of A is closed if whenever 〈xn | n ∈ N〉 is a

sequence of points in C that converges to a point y ∈ A, then y ∈ C.

Functions and Fixed Points. Let (A, d) be a metric space and f : A→ A be a self map

on A. A point a∗ ∈ A is a fixed point of f if f(a∗) = a∗. We say that f is a contraction

(contractive map) if there exists a non-negative constant c < 1 such that, for any x, y ∈ A,

d(f(x), f(y)) 6 c · d(x, y).

Intuitively, if f is a contraction, then the distance between any two point x, y ∈ A is

strictly greater (by some factor) than the distance between their images under f , as depicted

in Figure 4.9(a). We say that f is nonexpansive if for any x, y ∈ A,

d(f(x), f(y)) 6 d(x, y).

Hence, a nonexpansive function f provides the guarantee that the distance between any

two points x, y ∈ A does not increase after an application of f , as illustrated in Figure 4.9(b).
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In metric spaces, even if complete, nonexpansive functions may have many fixed points or

none at all. Contractive functions, however, are guaranteed to have a fixed point and,

furthermore, a unique fixed point.

x

y

f(x)

f(y)

f2(x)

f2(y)

. . .d

f
f

f
f

(a) A contractive map

x

y

f(x)

f(y)

f2(x)

f2(y)

. . .d

f f

f f

(b) A nonexpansive map

Figure 4.9: Contractive and nonexpansive maps

Theorem 4.5.1 (Banach’s Fixed Point Theorem). Let (A, d) be a complete metric space

and f : A→ A be a contraction on A with respect to the metric d. Then f has a unique fixed

point. Furthermore, starting from any point in A, repeated application of f is guaranteed

to converge to this unique fixed point.5

4.5.2 Introducing a New Family of Metrics

Let F (X) be a CSP term with a free variable X. Then F can be seen as a self map of

T ⇓. Assume that there exists some metric on T ⇓ which is complete and under which F is a

contraction. Then it follows from the Banach fixed point theorem [Sut75] (Theorem 4.5.1)

that F has a unique (possibly divergent) fixed point µX � F (X) in T ⇓. Furthermore,

starting from any point in T ⇓, for example STOP , iterated application of F is guaranteed

to converge to this unique fixed point.

There may be several such metrics, or none at all. All we are interested in is to prove

the existence of at least one. Fortunately, a class of suitable metrics can be systematically

elicited from the sets of guards of a particular recursion.

5For every x ∈ A, the sequence 〈fn(x) | n ∈ N〉 is a Cauchy sequence, which is guaranteed to converge,
owing to the completeness of the metric space.
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Generally speaking, the metrics that we consider are all variants of the well-known

‘longest common prefix’ metric on traces, which were first studied by Roscoe in his doctoral

dissertation [Ros82], and independently by de Bakker and Zucker [BZ82]. In this metric,

the longer prefix two traces share, the closer they are, with the standard lifting to sets

of traces and, therefore, to processes. Hence, the longer two processes exhibit the same

behaviours, the shorter the distance between them. Formally, let Σ be a finite alphabet and

let us consider the set Σ∞ = Σ∗ ∪ Σω of all finite and infinite words over Σ. In the setting

of the ‘longest common prefix’ on traces, a metric function d on Σ∞ would look like:

d(s, t) = inf [0,1]{2−n | s and t possess a common prefix of length n},

and its extension to a metric function on the semantic domain T ⇓:

d(P,Q) = inf [0,1]{2−n | JP KT ⇓ and JQKT ⇓ are indistinguishable for traces up to length n}.

Example 4.5.2. Let us consider the process F (X) = a −→ X. Then for any s, t ∈ Σ∞,

d(F (s), F (t)) = 1
2d(s, t). Therefore, F is contractive with respect to d and hence µX �F (X)

has a unique fixed point ({〈〉, 〈a〉, 〈a, a〉, 〈a, a, a〉, . . .}, ∅).

The reason we need to consider variants of the ‘longest common prefix’ metric is that

it fails to make the hiding operator nonexpansive:

Example 4.5.3. Let us consider two processes P = a −→ a −→ b −→ STOP and

Q = a −→ a −→ c −→ STOP. Then JP KT ⇓ = ({〈〉, 〈a〉, 〈a, a〉, 〈a, a, b〉}, ∅) and JQKT ⇓ =

({〈〉, 〈a〉, 〈a, a〉, 〈a, a, c〉}, ∅). Therefore d(P,Q) = 1
4 . However, d(P \ {a}, Q \ {a}) =

d(({〈〉, 〈b〉}, ∅), ({〈〉, 〈c〉}, ∅)) = 1.

The solution, in this particular case, is to change the definition of the length of a trace

by only counting non-a events. We devise a new metric which is parametric in a given

set of visible events U ⊆ Σ and ensures that any CSP operator, other than recursion, is

nonexpansive in each of its arguments. To formalise these ideas let us introduce a few

auxiliary definitions. These are all parametric in a given set of events U ⊆ Σ.

Given a trace s ∈ Σ∗X, the U -length of s, denoted lengthU (s), is defined to be the

number of occurrences of events from U in s. Given a set of traces T ⊆ Σ∗X and n ∈ N, the
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restriction of T to U -length n is defined by:

T �U n =̂ {s ∈ T | lengthU (s) 6 n}.

We extend this restriction operator to act on our semantic domain T ⇓ by defining

(T,D) �U n =̂ (T ′, D′), where

1. D′ = D ∪ {s_t | s ∈ T ∩ Σ∗ and lengthU (s) = n}.

2. T ′ = D′ ∪ {s ∈ T | lengthU (s) 6 n}.

Thus P �U n denotes a process which behaves like P until n events from the set U have

occurred, after which it diverges unless it has already terminated. It is the least process

which agrees with P on traces with U -length no greater than n.

We now define a metric dU on T ⇓ as follows:

dU (P,Q) =̂ inf [0,1]{2−n | P �U n = Q �U n} .

Proposition 4.5.4. Let U ⊆ Σ. Then (T ⇓, dU ) is an ultrametric space.

Proof. It is easy to prove that (T ⇓, dU ) satisfies the following laws for every P,Q,R ∈ T ⇓:

dU (P,Q) = 0 ⇔ P =T ⇓ Q diagonal law
dU (P,Q) = dU (Q,P ) symmetry law
dU (P,Q) ≤ dU (P,R) + dU (R,Q) triangle inequality
dU (P,Q) ≤ max(dU (P,R), dU (R,Q)) ultrametric inequality

The proofs for the first two laws are trivial. Regarding the triangle and ultrametric laws,

let us suppose that dU (P,R) = 2−n, dU (R,Q) = 2−m and k = min(n,m). Then, P �U k =

R �U k = Q �U k. Therefore,

du(P,Q) ≤ 2−k = max(dU (P,R), dU (R,Q)) ≤ dU (P,R) + dU (R,Q).

Notice that the function U 7→ dU is antitone: if U ⊆ V , then dU > dV , i.e., for any

P,Q ∈ T ⇓, dU (P,Q) ≥ dV (P,Q). In particular, the greatest of all the dU is d∅; this is

the discrete metric on T ⇓. Furthermore, the least of all the dU is dΣ; this is the standard

‘longest common prefix’-style metric on T ⇓ as defined in [Ros98, Chap. 8].
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Proposition 4.5.5 (Antitoneness). If U ⊆ V ⊆ Σ, then for any P,Q ∈ T ⇓,

dU (P,Q) ≥ dV (P,Q).

Proposition 4.5.6. Let U ⊆ Σ. Then T ⇓ equipped with the metric dU is a complete

ultrametric space and the set of livelock-free processes is a closed subset of T ⇓. Furthermore,

if F : T ⇓ → T ⇓ is contractive with respect to dU , then F has a unique fixed point given by

limn→∞ F
n(STOP). (Note that this fixed point may be divergent.)

Proof. By Proposition 4.5.4, (T ⇓, dU ) is an ultrametric space. The proofs that (T ⇓, dU ) is

a complete metric space and that set of livelock-free processes is a closed subset of T ⇓ are

presented in Appendix A.2 (as Propositions A.2.2 and A.2.3, respectively).

Let F : T ⇓ → T ⇓ be contractive with respect to dU . Since (T ⇓, dU ) is a complete metric

space, it follows from Banach’s fixed point theorem (Theorem 4.5.1) that F has a unique

fixed point given by limn→∞ F
n(θ), where θ can be any element of T ⇓ and, in particular,

the process STOP . The unique fixed point may or may not be livelock free, however.

In the rest of this paper, the only metrics we are concerned with are those associated

with some subset of Σ; accordingly, we freely identify metrics and sets when the context is

unambiguous.

4.5.3 Nonexpansiveness of CSP Operators

Let us fix U ⊆ Σ. The following lemmas prove that each CSP operator, other than recursion,

is at least nonexpansive with respect to dU in each of its arguments (for some operators we

need to impose certain conditions). The proofs of the lemmas can be found in Appendix A.3.

Lemma 4.5.7. For any CSP processes P , P ′, Q and Q′ the following inequalities hold:

dU (P 2 Q,P ′ 2 Q) ≤ dU (P, P ′) and dU (P 2 Q,P 2 Q′) ≤ dU (Q,Q′)

dU (P u Q,P ′ u Q) ≤ dU (P, P ′) and dU (P u Q,P u Q′) ≤ dU (Q,Q′)

dU (P # Q,P ′ # Q) ≤ dU (P, P ′) and dU (P # Q,P # Q′) ≤ dU (Q,Q′)

dU (P ‖
A
Q,P ′ ‖

A
Q) ≤ dU (P, P ′) and dU (P ‖

A
Q,P ‖

A
Q′) ≤ dU (Q,Q′).
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Lemma 4.5.8. Let P and Q be CSP processes and let a ∈ Σ. Then:

dU (a −→ P, a −→ Q) ≤ dU (P,Q).

Furthermore, if a ∈ U , then the inequality is strict.

Lemma 4.5.9. Let P and Q be CSP processes and let A ⊆ Σ satisfy A ∩ U = ∅. Then:

dU (P \ A,Q \ A) ≤ dU (P,Q).

Lemma 4.5.10. Let P and Q be CSP processes, R ⊆ Σ× Σ be a renaming relation on Σ

and R(U) = {y | ∃x ∈ U � x R y}. Then:

dR(U)(P JRK, QJRK) ≤ dU (P,Q).

Lemma 4.5.11. Let P , Q and Q′ be CSP processes. Let P always communicate an event

from U before it does a X. Then:

dU (P # Q,P # Q′) ≤ 1

2
dU (Q,Q′).

4.6 Static Livelock Analysis: General Framework

We present an algorithm based on a static analysis which conservatively flags processes that

may livelock. In other words, any process classified as livelock-free really is livelock-free,

although the converse may not hold.

Divergent behaviours originate in three different ways, two of which are non-trivial. The

first is through direct use of the process DIV ; the second comes from unguarded recursions;

and the third is through hiding an event, or a set of events, which the process can perform

infinitely often to the exclusion of all others.

Roscoe [Ros98, Chap. 8] addresses the second and third points by requiring that all

recursions be guarded, i.e., always perform some event prior to recursing, and by banning

use of the hiding operator under recursion. Our idea is to extend Roscoe’s requirement that

recursions should be guarded by stipulating that one may never hide all the guards. In

addition, one may not hide a set of events which a process is able to perform infinitely often

to the exclusion of all others. This will therefore involve a certain amount of book-keeping.
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4.6.1 Nonexpansiveness and Guardedness

We first treat the issue of guardedness of the recursions. Our task is complicated by the

renaming operator, in that a purported guard may become hidden only after several un-

windings of a recursion. The following example illustrates some of the ways in which a

recursion may fail to be guarded and thus diverge.

Example 4.6.1. Let Σ = {a, b, a0, a1, . . . , an} and let R = {(ai, ai+1) | 0 6 i < n} and

S = {(a, b), (b, a)} be renaming relations on Σ. Consider the following processes.

1. µX �X.

2. µX � a −→ (X \ a).

3. µX � (a −→ (X \ b)) u (b −→ (X \ a)).

4. µX � (a0 −→ (X \ an)) u (a0 −→ XJRK).

5. µX � SKIP u a −→ (X # (XJSK \ b)).

The first recursion is trivially unguarded. In the second recursion the guard a is hidden

after the first recursive call. In the third process the guard in each summand is hidden in

the other summand; this process will also diverge once it has performed a single event. In

the fourth example we cannot choose a set of guards which is both stable under the renaming

operator and does not contain an. This process, call it P , makes the following sequence of

visible transitions:

P
a0−→ P \ an

a0−→ P JRK \ an
a1−→ P JRKJRK \ an

a2−→ . . .
an−1−→ P JRKJRK . . . JRK \ an.

But the last process diverges, since P can make an infinite sequence of a0-transitions which

get renamed to an by successive applications of R and are then hidden at the outermost

level.

A cursory glance at the last process might suggest that it is guarded in {a}. How-

ever, similarly to the previous example, hiding and renaming conspire to produce divergent

behaviour. In fact the process, call it P , can make an a-transition to P # (P JSK \ b),

and consequently to (P JSK \ b)JSK \ b via two τ -transitions. But this last process can

diverge.



114 4. Static Analysis for Livelock Detection

Given a variable X and a CSP term P = P (X), we aim to define inductively a collection

CX(P ) of metrics for which P is contractive as a function of X (bearing in mind that

processes may have several free variables). It turns out that it is first necessary to identify

those metrics in which P is merely nonexpansive as a function of X, the collection of which

we denote NX(P ). Intuitively, the role of NX(P ) is to keep track of all hiding and renaming

in P . A set U ⊆ Σ then induces a metric dU under which P is contractive in X provided P

is nonexpansive in U and µX �P always communicates an event from U prior to recursing.

The intuitions underlying our definitions of nonexpansiveness and guardedness are the

following [OPRW13]. By definition, P is contractive with respect to dU (with contraction

factor 1/2) if, for every T1, T2 ∈ T ⇓, it is the case that

dU (P (T1), P (T2)) ≤ 1

2
dU (T1, T2) . (4.1)

However, if P happens to apply a one-to-one renaming operator R to its argument, say,

then it becomes necessary to rephrase (4.1) above as

dV (P (T1), P (T2)) ≤ 1

2
dU (T1, T2) , (4.2)

where dV is a new metric such that R(U) = V . Indeed, since P renames events in U to

ones in V , the distance between P (T1) and P (T2) must be measured with respect to the

renamed events, rather than the original ones.

This leads us to the concept of a function that is contractive with respect to two different

metrics dU and dV , in which the first metric is used to measure the distance between two

inputs, whereas the second metric measures the distance between the corresponding two

outputs of the function under consideration—see Figure 4.10. Following our convention of

identifying sets and metrics, we would say that P is contractive in the pair (U, V ).

This reasoning needs to be slightly refined in order to handle non-injective renamings

as well as hiding. Our goal is then to define, by induction on the structure of CSP terms,

a function CX : CSP −→ P(P(Σ)× P(Σ)), which associates to each CSP term P (X) a set

of pairs of metrics (U, V ) such that (4.2) holds.

As pointed out above, in order to define such a function CX , it is first necessary to

compute a function NX : CSP −→ P(P(Σ) × P(Σ)) which calculates, for every CSP term

P (X), a set of pairs of metrics (U, V ) such that P is nonexpansive in (U, V ), following
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the same convention of measuring the distance between inputs via the metric dU and the

distance between outputs via the metric dV .

It is also necessary to calculate an auxiliary function G : CSP −→ P(P(Σ)), which itself

depends on a certain function F : CSP −→ P(P(Σ) × P(Σ)). This may seem problematic,

since F itself depends on CX , but this mutual recursion is well-defined because uses of F in

the definition of G only occur on subterms, and likewise for uses of G in CX and uses of CX

in F.

We provide the intuitions underlying the definitions of G and F later on, as these

functions are introduced. For now let us finally remark that all the functions that we

define are conservative underapproximations, i.e., sound, but not necessarily complete. For

example, NX(P ) as defined below generates some but not necessarily all of the pairs of

metrics that witness the nonexpansiveness of P .

T1

T2

P (T1)

P (T2)

dU dV

P

P

Figure 4.10: P is contractive in (U, V ), i.e., when the distance between inputs is measured
with respect to dU and the distance between outputs is measured with respect to dV .

The key property of the function NX is given by the following proposition.

Proposition 4.6.2. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a CSP term whose free variables

are contained within the set {X,Y1, . . . , Yn}. Let NX : CSP −→ P(P(Σ)×P(Σ)) be defined

recursively on the structure of P as shown in Figure 4.11. If (U, V ) ∈ NX(P ), then for all

T1, T2, Θ1, . . . , Θn ∈ T ⇓, dV (P (T1, Θ), P (T2, Θ)) ≤ dU (T1, T2).

Proof. The proof proceeds by structural induction on P and is presented in Appendix A.4.
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NX(P ) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

NX(a −→ P ) =̂ NX(P )

NX(P1 ⊕ P2) =̂ NX(P1) ∩ NX(P2) if ⊕ ∈ {u,2, #, ‖
A
}

NX(P \ A) =̂ {(U, V ) | (U, V ′) ∈ NX(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }
NX(P JRK) =̂ {(U, V ) | (U, V ′) ∈ NX(P ) ∧ R(V ′) ⊆ V }

NX(X) =̂ {(U, V ) | U ⊆ V }
NX(µY � P ) =̂ {(U, V ) | (U ′, V ′) ∈ NX(P ) ∧ (V ′, V ′) ∈ NY (P ) ∧ U ⊆ U ′ ∧ V ′ ⊆ V }

if Y 6= X .

Figure 4.11: Nonexpansive sets

Let us note that, by construction, NX(P ) is always downwards-closed in its first com-

ponent and upwards-closed in its second component, which is sound due to antitoneness

(see Proposition 4.5.5).

Before defining CX(P ), we need an auxiliary construct denoted G(P ). Intuitively,

G(P ) ⊆ P(Σ) lists the ‘guards’ of X for P . Formally:

Proposition 4.6.3. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a term whose free variables are

contained within the set {X,Y1, . . . , Yn}. Let G : CSP −→ P(P(Σ)) be defined recursively

on the structure of P as shown in Figure 4.12. If V ∈ G(P ), then, with any processes—and

in particular DIV —substituted for the free variables of P , P must communicate an event

from V before it can do a X.

Proof. The proof proceeds by structural induction on P and is presented together with

Proposition A.4.1 in Appendix A.4.

Note that the inductive clauses for G that are given in Figure 4.12 make use of the

collection of fair sets F(Pi) of Pi, which is presented later on. The definition is nonetheless

well-founded since F is here only applied to subterms. The salient feature of F(Pi) 6= ∅ is

that the process Pi is guaranteed to be livelock-free.

We are now ready to define CX(P ) ⊆ P(Σ)×P(Σ), whose central property is given by

the following proposition.
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G(STOP) =̂ P(Σ)

G(a −→ P ) =̂ G(P ) ∪ {V | a ∈ V }
G(SKIP) =̂ ∅

G(P1 ⊕ P2) =̂ G(P1) ∩ G(P2) if ⊕ ∈ {2,u}

G(P1 # P2) =̂

{
G(P1) ∪ G(P2) if P1 is closed and F(P1) 6= ∅
G(P1) otherwise

G(P1 ‖
A
P2) =̂

{
G(P1) ∪ G(P2) if, for i = 1, 2, Pi is closed and F(Pi) 6= ∅
G(P1) ∩ G(P2) otherwise

G(P \ A) =̂


{V | V ′ ∈ G(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V } if P is closed and

(∅,Σ−A) ∈ F(P )
∅ otherwise

G(P JRK) =̂ {V | V ′ ∈ G(P ) ∧ R(V ′) ⊆ V }
G(X) =̂ ∅

G(µX � P ) =̂ G(P ) .

Figure 4.12: Guard sets

Proposition 4.6.4. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a term whose free variables are

contained within the set {X,Y1, . . . , Yn}. Let CX : CSP −→ P(P(Σ) × P(Σ)) be defined

recursively on the structure of P as shown in Figure 4.13. If (U, V ) ∈ CX(P ), then for all

T1, T2, θ1, . . . , θn ∈ T ⇓, dV (P (T1, θ), P (T2, θ)) ≤ 1
2dU (T1, T2).

Proof. The proof proceeds by structural induction on P and is presented together with

Proposition A.4.1 in Appendix A.4

Note that contraction guarantees a unique fixed point, albeit not necessarily a livelock-

free one. For instance, P (X) = (a −→ X \ b) 2 (µY � b −→ Y ) is contractive in (U,U)

for any U ⊆ Σ with a ∈ U and b /∈ U . Therefore, P (X) has a unique fixed point, but this

unique fixed point can diverge after a single event.

Let us also note that, similarly to Proposition 4.6.2, by construction, CX(P ) is always

downwards-closed in its first component and upwards-closed in its second component, which

is sound due to antitoneness (see Proposition 4.5.5).
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CX(P ) =̂ P(Σ)× P(Σ) whenever X is not free in P ; otherwise:

CX(a −→ P ) =̂ CX(P ) ∪ {(U, V ) ∈ NX(P ) | a ∈ V }
CX(P1 ⊕ P2) =̂ CX(P1) ∩ CX(P2) if ⊕ ∈ {2,u, ‖

A
}

CX(P1 # P2) =̂ CX(P1) ∩ (CX(P2) ∪ {(U, V ) ∈ NX(P2) | V ∈ G(P1)})
CX(P \ A) =̂ {(U, V ) | (U, V ′) ∈ CX(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }
CX(P JRK) =̂ {(U, V ) | (U, V ′) ∈ CX(P ) ∧ R(V ′) ⊆ V }

CX(X) =̂ ∅
CX(µY � P ) =̂ {(U, V ) | (U ′, V ′) ∈ CX(P ) ∧ (V ′, V ′) ∈ NY (P ) ∧ U ⊆ U ′ ∧ V ′ ⊆ V }

if Y 6= X .

Figure 4.13: Contractive sets

4.6.2 Fair Sets and Hiding

In order to prevent livelock, we must ensure that, whenever a process can perform an

infinite6 unbroken sequence of events from a particular set A, then we never hide the whole

of A. To this end, we now associate to each CSP term P a collection of pairs of fair

sets F(P ) ⊆ P(Σ) × P(Σ): intuitively, this allows us to keep track of the events which

the process is guaranteed to perform infinitely often in any infinite execution of P . As

with nonexpansiveness and contractiveness, the potential presence of renaming and hiding

requires us separately to keep track of events performed by the input processes and the

output (or compound) process.

Definition 4.6.5. Given a set W ⊆ Σ, we say that a process is W -fair if any of its infinite

traces contains infinitely many events from W .

Proposition 4.6.6. Let P (X1, . . . , Xn) = P (X) be a CSP term whose free variables are

contained within the set {X1, . . . , Xn}. Let F : CSP −→ P(P(Σ) × P(Σ)) be defined re-

cursively on the structure of P as shown in Figure 4.14. If (U, V ) ∈ F(P ), then, for any

collection of livelock-free, U -fair processes θ1, . . . , θn ∈ T ⇓, the process P (θ1, . . . , θn) is

livelock-free and V -fair.

6Recall our understanding that a process can ‘perform’ an infinite trace iff it can perform all its finite
prefixes.
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F(STOP) =̂ P(Σ)× P(Σ)

F(a −→ P ) =̂ F(P )

F(SKIP) =̂ P(Σ)× P(Σ)

F(P1 ⊕ P2) =̂ F(P1) ∩ F(P2) if ⊕ ∈ {u,2, #}
F(P1 ‖

A
P2) =̂ (F(P1) ∩ F(P2)) ∪

{(U1 ∩ U2, V1) | (U1, V1) ∈ F(P1) ∧ (U2, A) ∈ F(P2)} ∪
{(U1 ∩ U2, V2) | (U2, V2) ∈ F(P2) ∧ (U1, A) ∈ F(P1)}

F(P \ A) =̂ {(U, V ) | (U, V ′) ∈ F(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }
F(P JRK) =̂ {(U, V ) | (U, V ′) ∈ F(P ) ∧ R(V ′) ⊆ V }

F(X) =̂ {(U, V ) | U ⊆ V }

F(µX � P ) =̂

{
{(U, V ) | (W,W ) ∈ CX(P ) ∩ F(P ) ∧ U ⊆W ⊆ V } if µX � P is open
P(Σ)× {V | (W,W ) ∈ CX(P ) ∩ F(P ) ∧W ⊆ V } otherwise .

Figure 4.14: Fair sets

Proof. The proof proceeds by structural induction on P and is presented together with

Proposition A.4.1 in Appendix A.4.

Note that, by construction, F(P ) is always downwards-closed in its first component and

upwards-closed in its second component. This is sound since if U ⊆ U ′ and P is U -fair,

then P is automatically U ′-fair as well.

We now obtain one of our main results as an immediate corollary:

Theorem 4.6.7. Let P be a CSP process (i.e., a closed CSP term) not containing DIV in

its syntax. If F(P ) 6= ∅, then P is livelock-free.

Proof. Let F(P ) 6= ∅ and (U, V ) ∈ F(P ) for some U, V ⊆ Σ. Since P is closed, P has no free

variables. Then, from Proposition 4.6.6, P is livelock-free and, furthermore, V -fair.

Theorem 4.6.7 gives rise to a procedure for establishing livelock freedom of a given

process P over an alphabet Σ, whose complexity is at most quadratic in the syntactic size

of P and exponential in the cardinality of Σ: indeed, for a fixed Σ, we compute NX(Q),

G(Q), CX(Q) and F (Q) for every variable X appearing in P and every subterm Q of P .

Since the number of variables and the number of subterms are both at most linear in the

size of P , the computation is at most quadratic in P [OPRW13]. On the other hand, each of
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NX(Q), CX(Q) and F (Q) is a collection of pairs of subsets of Σ, whereas G(Q) is a collection

of subsets of Σ. Thus for Σ not fixed, these pieces of data are potentially exponentially

large.

In practice, applications often make use of moderately large alphabets, making the di-

rect set-based approach described above prohibitively expensive. However, an inspection of

the rules defining NX(Q), G(Q), CX(Q) and F (Q) reveals that these objects can be repre-

sented symbolically, either as propositional formulas or as BDDs—further implementation

details are provided in Section 4.8. As a result, the problem of deciding whether F(P ) 6= ∅

can be seen to lie in NP [OPRW13].

4.6.3 Examples and Discussion

Example 4.6.8. Let us consider the process B+ [Ros98] (see Figure 4.15) which implements

a buffer of infinite size. B+ is an infinite-state process and is therefore beyond the grasp of

the explicit checker FDR. A first glance at the CSP encoding might lead us to mistakenly

think that B+ is divergent: if we look at the parallel composition, on the left-hand side we

rename right to mid, on the right-hand side we rename left to mid, and then on top level we

hide the event mid. However, B+ turns out to be livelock-free—a formal (and not completely

trivial) proof of livelock freedom is presented in [Ros98]. In contrast, our static analyser

establishes livelock freedom automatically and instantaneously by affirming that B+ is fair

in any set U ⊆ Σ with left ∈ U .

M = {mid}
RtoM = [right ← mid ,mid ← right ]
LtoM = [left ← mid ,mid ← left ]

COPY = left −→ right −→ COPY
B+ = left −→ (B+JRtoM K ‖

{mid}
(right −→ COPY )JLtoM K) \ {mid}

Figure 4.15: An infinite buffer

Example 4.6.9. Let us consider the abstracted version of the alternating bit protocol

(ABP), whose script we recall below.
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Send = in −→ Medium
Medium = out −→ Send 2 error −→ Medium

Fair = out −→ Fair 2 error −→ out −→ Fair

Network = Send ‖
{error ,out}

Fair

System = Network \ {error}

The expanded transition systems of the processes Send and Fair are depicted in Fig-

ure 4.16

( error

in

out

‖
{out ,error}

out

out

error )
\ {error}

Figure 4.16: Abstracted ABP: transition systems

Using the systems of rules we presented, we calculate the sets of fair sets of Send, Fair,

Network and System as follows (where the operator ↑ denotes upper closure on P(P(Σ))

and Σ = {in, out , error}):

F(Send) =̂ ↑ {{in, error}, {out , error}}

F(Fair) =̂ ↑ {{out}}

F(Network) =̂ ↑ {{out}, {in, error}}

F(System) =̂ ↑ {{out}}

Therefore, System is livelock-free and any infinite trace of System contains infinitely many

occurrences of the event out.

An interesting weakness of our framework is that it fails to establish the fact that System

is also {in}-fair. Indeed, since System is equivalent to the process B1 = in −→ out −→ B1,

any infinite trace of System should also contain infinitely many occurrences of in. Therefore,

the process Network \ {error , out}, which is equivalent to the process IN = in −→ IN , is

livelock-free and {in}-fair. However, F(Network \ {error , out}) = ∅ (thanks to the F rule
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for hiding) and therefore our framework would mark Network \ {error , out} as potentially

divergent.

As the last example illustrates, the system of rules we developed in this section can

sometimes be overly conservative. More specifically, our experiments indicated that, for a

particular class of communication protocols, e.g., ABP and the sliding window protocol,

where synchronisation plays a subtle but vital role, our analysis was inadequate.

4.7 Static Livelock Analysis for Structurally Finite-State Pro-
cesses

The techniques developed in Sections 4.5.2 and 4.6 allow us to handle the widest range

of CSP processes; among others, they enable one to establish livelock freedom of numer-

ous infinite-state processes including examples making use of infinite buffers or unbounded

counters, as illustrated in Example 4.6.8. Such processes are of course beyond the reach of

explicit-state model checkers such as FDR. In order to create them in CSP, it is necessary

to use devices such as recursing under the parallel operator. In practice, however, the vast

majority of processes tend to be finite state.

Let us therefore define a CSP process to be structurally finite state if it never syntac-

tically recurses under any of parallel, the left-hand side of a sequential composition, hiding

or renaming.

More precisely, we first define a notion of sequential CSP terms: STOP , SKIP , and X

are sequential; if P and Q are sequential, then so are a −→ P , P u Q, P 2 Q and µX � P ;

and if in addition P is closed, then P # Q, P \ A and P JRK are sequential. Observe that

sequential processes (i.e., closed sequential terms) give rise to labelled transition systems of

size linear in the length of their syntax.

Now any closed sequential term is deemed to be structurally finite state; and if P and Q

are structurally finite state, then so are a −→ P , P u Q, P 2 Q, P ‖
A
Q, P # Q, P \ A and

P JRK. Note that structurally finite-state CSP terms are always closed, i.e., are processes.

We write SEQ and SFS to denote the collections of sequential CSP terms and struc-

turally finite-state CSP processes, respectively. We refer to the minimal closed SEQ terms
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(i.e., minimal SEQ processes) as atomic SFS processes. As their transition systems are lin-

ear in the size of their syntax, they are relatively cheap to expand and compute explicitly.

Compound SFS processes can be obtained from simpler counterparts by using any CSP

operators other than recursion.

Whether a given process is structurally finite state can easily be established by syntactic

inspection, for example by using Bekič’s theorem [Win93] (see Section 4.3) and analysing

the resulting µ expression. For such processes, it turns out that we can substantially both

simplify and sharpen our livelock analysis. More precisely, the computation of nonexpan-

sive and contractive data is circumvented by instead directly examining closed sequential

components in isolation. For those we compute exact data; we start becoming conservative

and losing precision only in the compositional rules for handling compound processes, as

depicted in Figure 4.17. Furthermore, the absence of free variables in compound processes

makes some of the earlier fairness calculations unnecessary, thereby allowing more elaborate

and finer data to be computed efficiently, as we now explain.

Lose precision

Exact data

‖
A

u #

Figure 4.17: Precision layers

Definition 4.7.1. Let u be an infinite trace over Σ and let F,C ⊆ Σ be two sets of events.

We say that:

• u is fair in F if, for each a ∈ F , u contains infinitely many occurrences of a,7

• u is co-fair in C if, for each b ∈ C, u contains only finitely many occurrences of b.

As an example, let us consider the trace u = b(ac)ω. It will be true if we state that

u is fair in F = {a} and co-fair in C = {b}. However, if we want to be more precise and

compute exact data, we need to say that u is fair in F = {a, c} and co-fair in C = {b}. In

7Note that this notion of ‘fairness’ differs from that used in the previous section.
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any case, we can think of the pair (F,C) as an abstraction (overapproximation) of u—it

abstracts u into the set of all infinite traces that are fair in F and co-fair in C. In the latter

case, the pair (F,C) = ({a, c}, {b}) provides an exact overapproximation.

We lift this to sets of traces in the following way: let T ⊆ Σω be a set of infinite traces

over Σ, and let F = {(F1, C1), . . . , (Fk, Ck)} ⊆ P(Σ) × P(Σ) be a collection of pairs of

subsets of Σ. We say that T is fair/co-fair in F provided that, for every infinite trace

u ∈ T , there exists a pair (Fi, Ci) ∈ F such that u is both fair in Fi and co-fair in Ci.

To generalise the concept to an LTS representing all possible executions of a process

P , we need to capture this information for all infinite traces of P . In other words, taking

an arbitrary infinite trace u of P , we need to investigate all possible alternatives for u. As

an example, let us assume that P has the following transition system (where Σ = {a, b, c}):

c

a

b

There are three alternatives for u, depending on which simple cycles get visited infinitely

often and which only finitely often:

1. u ∈ ((ab) + c)∗(ab)ω. In this case, u would be fair in {a, b} and co-fair in {c}.

2. u ∈ ((ab) + c)∗(c)ω. In this case, u would be fair in {c} and co-fair in {a, b}.

3. u ∈ ((ab) + c)∗((ab)+(c)+)ω. This case corresponds to the scenario when u visits both

simple cycles infinitely often and implies that u is fair in {a, b, c} and co-fair in ∅.

Hence P is fair/co-fair in the following collection of pairs of sets of events:

F = { ({a, b}, {c}), ({c}, {a, b}), ({a, b, c}, ∅) }.

4.7.1 Goal

Our ultimate goal is the following: given a structurally finite-state process P , we aim to

compute:

• a collection of fair/co-fair pairs of disjoint sets Φ(P ) = {(F1, C1), . . . , (Fk, Ck)} ⊆

P(Σ)× P(Σ), together with
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• a Boolean-valued livelock flag δ(P ) ∈ {true, false}, such that,

if δ(P ) = false, then P is livelock-free and, moreover, tracesω(P ) is fair/co-fair in Φ(P ).

4.7.2 Handling Atomic SFS Processes

For P an atomic SFS process (i.e., a minimal sequential process), let us denote by MP its

associated labelled transition system as derived from the operational semantics, and let us

assume that we construct MP so that all states are reachable from the initial state. As

noted earlier, MP has size linear in the syntactic description of P . We then compute the

livelock flag δ(P ) and the set of fair/co-fair pairs Φ(P ) = {(F1, C1), . . . , (Fk, Ck)} exactly,

directly from MP .

More precisely, we set δ(P ) to true or false depending on whether or not P can eventually

diverge, i.e., whether or not MP contains a τ -cycle. In order to determine this, we use

Tarjan’s algorithm [CLRS01], which employs a nested depth-first search and is linear in the

number of states in MP .

If the livelock flag δ(P ) is false, we compute the set of fair/co-fair pairs Φ(P ). We want

to include the pair of disjoint sets of events (F,C) to Φ(P ) if and only if the transition

system of P exhibits an infinite trace which is fair in F and co-fair in C (where F 6= ∅).

Note that this will guarantee that our abstraction will be exact. Let us also observe that if

P has no infinite traces, Φ(P ) will be empty.

It is worth pointing out how this can be achieved efficiently. Let ΣP be the alphabet of

P . Given a non-empty set L ⊆ ΣP of events, we delete all (Σ−L)-labelled transitions from

P ’s labelled transition system. If the resulting graph contains a (not necessarily reachable)

strongly connected component which comprises every single event in L, we include (L,Σ−L)

as a fair/co-fair pair for P , and otherwise we do not.

Of course, in actual implementations, it is not necessary to explicitly iterate over all

possible subsets of Σ. The computation we described can be carried out symbolically using

a Boolean circuit of size polynomial in P , using well-known circuit algorithms for computing

the transitive closure of relations. Consequently, Φ(P ) can be represented symbolically and

compactly either as a BDD or a propositional formula. Further implementation details are

provided in Section 4.8.
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4.7.2.1 Optimisations Considering Strongly Connected Components

For optimisation reasons, following the ideas behind divide-and-conquer algorithms, we

actually first compute the SCC quotient graph of P (which is a directed acyclic graph) and

obtain a set of reachable strongly connected edge-labelled directed graphs {P1, . . . , Pn}, as

we shall now explain.

An edge-labelled directed graph is simply a labelled transition system without an initial

state, i.e., a triple 〈S,A, T 〉, where S is a finite set of vertices (or states), A is a finite set of

labels and R ⊆ S ×A× S is a transition relation.

Let MP = 〈S, init,ΣτX, T 〉 be the labelled transition system associated with P . MP

induces a directed graph GP = (S,E), where E = {s −→ s′ | ∃ a ∈ ΣτX � s
a−→ s′}. We

compute the SCC quotient graph GSCC
P = (SSCC, ESCC) of GP using Tarjan’s algorithm

[CLRS01], which is linear in |S |. The set of vertices SSCC = {S1, . . . , Sn} is a partition of

the state space S of P and each vertex Si forms a (maximal) strongly connected component

(SCC) in GP . We then let Pi be the edge-labelled directed graph induced from MP by the

set of states Si. In other words, Pi = 〈Si, Ai, Ti〉, where Ti = {s a−→i s
′ | s, s′ ∈ Si,∃ a ∈

ΣτX � s
a−→ s′} and Ai = {a ∈ ΣτX | ∃ s, s′ ∈ Si � s

a−→i s
′}.

We note that, because GSCC
P is a directed acyclic graph, every infinite path of P even-

tually ends up in precisely one SCC Si, in which it stays forever. Since we are interested

in computing fair and co-fair sets of events for infinite traces, it is sufficient therefore to

consider the set of edge-labelled directed graphs {P1, . . . , Pn} in isolation. For each Pi we

compute the livelock flag δ(Pi) and the set of fair/co-fair pairs Φ(Pi), and then we let:

δ(P ) =
∨

1≤i≤n
δ(Pi), Φ(P ) =

⋃
1≤i≤n

Φ(Pi).

4.7.3 Compositional Rules for Compound SFS Processes

Proposition 4.7.2. Let P be a structurally finite-state process. Let Φ : SFS −→ P(P(Σ)×

P(Σ)) and δ : SFS −→ {true, false} be defined recursively on the structure of P as shown in

Figures 4.18 and 4.19, respectively. Then, if δ(P ) = false, P is livelock-free. Moreover, if

Φ(P ) = {(F1, C1), . . . , (Fk, Ck)}, then, for each infinite trace u of P , there exists 1 ≤ i ≤ k,

such that u is fair in Fi and u is co-fair in Ci.
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Φ(P ) =̂ computed from P ’s LTS (see Section 4.7.2)

whenever P is an atomic SFS process; otherwise:

Φ(a −→ P ) =̂ Φ(P )

Φ(P1 ⊕ P2) =̂ Φ(P1) ∪ Φ(P2) if ⊕ ∈ {u,2, #}
Φ(P1 ‖

A
P2) =̂ {(F,C) | F ∩ C = ∅ ∧ (Fi, Ci) ∈ Φ(Pi) for i = 1, 2 ∧

F = F1 ∪ F2 ∧
C = (C1 ∩A) ∪ (C2 ∩A) ∪ ((C1 −A) ∩ (C2 −A))} ∪

{(F,C) | (F,C) ∈ Φ(P1) ∧ F ∩A = ∅} ∪
{(F,C) | (F,C) ∈ Φ(P2) ∧ F ∩A = ∅}

Φ(P \ A) =̂ {(F −A,C ∪A) | (F,C) ∈ Φ(P )}
Φ(P JRK) =̂ {(F,C) | (F ′, C ′) ∈ Φ(P ) ∧ F ′ ⊆ R−1(F ) ∧ F ⊆ R(F ′) ∧

C = {b ∈ Σ | R−1(b) ⊆ C ′}} .

Figure 4.18: Fair/co-fair sets

δ(P ) =̂ computed from P ’s LTS (see Section 4.7.2)

whenever P is an atomic SFS process; otherwise:

δ(a −→ P ) =̂ δ(P )

δ(P1 ⊕ P2) =̂ δ(P1) ∨ δ(P2) if ⊕ ∈ {u,2, ‖
A
, #}

δ(P \ A) =̂

{
false if δ(P ) = false and, for each (F,C) ∈ Φ(P ), F −A 6= ∅
true otherwise

δ(P JRK) =̂ δ(P ) .

Figure 4.19: δ-bit

Proof. The proof proceeds by structural induction on P and is presented in Appendix A.5.

Let us observe that by construction, all fair/co-fair pairs of sets thus generated remain

disjoint; this is key in the rule for parallel composition, where the fair/co-fair data of

individual subcomponents enables one to rule out certain pairs for the resulting parallel

process. Also, as shown in the proof, whenever (F, P ) appears as a fair/co-fair pair in some
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Φ(P ), F is never empty.

Let us also remark that the δ clause for the hiding operator is phrased here in a way that

makes the rule as intuitively clear as possible. In practice, one however need not iterate over

all possible pairs (F,C) ∈ Φ(P ): it is simpler instead to evaluate the negation, an existential

calculation which is easily integrated within either a SAT or BDD implementation. Further

details are provided in Section 4.8.

4.7.4 Examples and Discussion

4.7.4.1 The Abstracted Version of the ABP

To illustrate the precision of the system of rules for SFS processes, let us get back to

the abstracted version of the alternating bit protocol and try to establish that the process

System = Network \ {error , out} = (Send ‖
{error ,out}

Fair) \ {error , out} is livelock-free. As

we demonstrated in Section 4.6.3, the collections of rules defined for the general framework

were not accurate enough to infer that.

(
Send

error

in

out

‖
{error ,out}

Fair

out

out

error )
\ {error , out}

Figure 4.20: Abstracted version of the ABP

The processes Send and Fair depicted in Figure 4.20 are both atomic SFS processes—

for those we apply the algorithms described in Section 4.7.2 to conclude that δ(Send) =

δ(Fair) = false and, regarding the set of fair/co-fair pairs:

Φ(Send) = { ({in, out}, {error}), ({error}, {in, out}), ({error , in, out}, ∅) },

Φ(Fair) = { ({out}, {in, error}), ({error , out}, {in}) }.

Now let us consider the process Network = Send ‖
{error ,out}

Fair .

Since both Send and Fair are livelock-free, there is no way of having a divergence in

Network , which is confirmed by the rule δ(Network) = δ(Send) ∨ δ(Fair) = false.
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Let us now have a look at the Φ rule for parallel composition. Since none of the fair/co-

fair pairs (F,C) of either Send or Fair satisfies F ∩ A = ∅, where A = {error , out} is the

synchronisation set of the parallel composition, we can conclude the following:

1. We can only use the first set-comprehension clause for assembling the fair/co-fair pairs

of Network .

2. Both Send and Fair contribute infinite traces to any infinite trace u of Network , i.e.,

u = u1 ‖
A
u2, where u1 in tracesω(Send) and u2 ∈ tracesω(Fair).

Intuitively, every infinite trace of Fair , and in particular u2, contains infinitely many

occurrences of out . Since Send and Fair synchronise on out , u1 also contains infinitely

many occurrences of out . But in u1, out occurs infinitely often precisely whenever in occurs

infinitely often. Therefore, u1, and hence also u, both contain infinitely many occurrences

of in. Therefore u is fair in in.

Formally, since both u1 and u2 are infinite, we need to consider every pair ((F1, C1),

(F2, C2)) in the Cartesian product of Φ(Send) and Φ(Fair), decide whether to discard it

and, if not, figure out how to merge appropriately the pair of pairs into a single pair (F,C).

One of the crucial observations is the following. For a in the synchronisation set A =

{error , out}, the number of occurrences of a in u1, u2 and u should be the same. Therefore

we can discard all those pairs ((F1, C1), (F2, C2)) such that there is a ∈ A with a ∈ F1 ∩C2

or a ∈ C1 ∩ F2. This leaves us with only two pairs:

1. (({in, out}, {error}), ({out}, {in, error})), and

2. (({error , in, out}, ∅), ({error , out}, {in})).

The important question now is what do we do with the event in which does not belong

to the synchronisation set A. The reasoning we apply is that u is fair in in if at least one of

u1 and u2 is fair in in, and u is co-fair in in if both u1 and u2 are co-fair in in. Then from

the first pair we obtain (F,C) = ({in, out}, {error}) and from the second pair we obtain

(F,C) = ({error , in, out , }, ∅). Hence we obtain the following final result for Φ(Network),

which confirms that every infinite trace of Network contains infinitely many occurrences of

in:

Φ(Network) = { ({in, out}, {error}), ({error , in, out}, ∅) }
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Now the only thing that remains is to handle the hiding operator, i.e., analyse System =

Network \ {error , out}. Since for all (F,C) ∈ Φ(Network), F −{error , out} 6= ∅, δ(System)

= false, i.e., we establish, as required, that System is livelock-free. As a nice consequence

Φ(System) = {({in}, {error , out})} asserts that every infinite trace u of System contains

infinitely many occurrences of in and only finitely many occurrences of out and error .

4.7.4.2 Static Livelock Analysis Algorithm

Theorems 4.6.7 and 4.7.2 yield a conservative algorithm for establishing livelock freedom:

given a CSP process P (which we will assume does not contain DIV in its syntax), determine

first whether P is structurally finite state. If so, assert that P is livelock-free if δ(P ) = false,

and otherwise report an inconclusive result. If P is not structurally finite state, assert that

P is livelock-free if F(P ) 6= ∅, and otherwise report an inconclusive result.

The complexity of this procedure is in the worst case quadratic in the syntactic size

of P and exponential in the cardinality of Σ, based on a similar line of reasoning as that

presented following Theorem 4.6.7. Likewise, determining for P an SFS process whether

δ(P ) is true is easily seen to lie in NP [OPRW13].

It is perhaps useful to illustrate how the inherent incompleteness of our procedure can

manifest itself in very simple ways. For example, let P = a −→ Q and Q = (a −→ P ) 2

(b −→ Q), and let R = (P ‖
{a,b}

Q) \ b (see Figure 4.21). Using Bekič’s procedure, R is

readily seen to be a structurally finite-state process. Moreover, R is clearly livelock-free,

yet δ(R) = true and F(R) = ∅. Intuitively, establishing livelock freedom here requires some

form of state-space exploration, to see that the ‘divergent’ state (Q ‖
{a,b}

Q) \ b of R is in fact

unreachable, but that is precisely the sort of reasoning that our static analysis algorithm is

not geared to do.

(
P Q

b

a

a

‖
{a,b}

Q P

b

a

a )
\ {b}

Figure 4.21: Static livelock analysis: a false positive
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Nonetheless, we have found in practice that our approach succeeded in establishing live-

lock freedom for a wide range of existing benchmarks; we report on some of our experiments

in Section 4.9.

Finally, it is worth noting that, for structurally finite-state processes, Theorem 4.7.2

is stronger than Theorem 4.6.7—it correctly classifies a larger class of processes as being

livelock-free—and empirically has also been found to yield faster algorithms.

4.7.4.3 Notions of Fairness

It is perhaps interesting to compare how our notions of fairness and co-fairness differ from

the ones defined in acceptance conditions in ω-automata, and more specifically, in Büchi,

Müller, Rabin and Street automata.

A finite ω-automaton is a quintuple M = 〈S, init,Σ, T,F〉, where, similarly to transition

systems, S is a finite set of states, init is the initial state, Σ is a finite alphabet and T ⊆

S × Σ × S is a transition relation. F specifies the condition for accepting infinite words

and is defined in different ways depending on the type of the automaton: F ⊆ S for

Büchi automata, F ⊆ P(P(S)) for Müller and generalised Büchi automata, and F ⊆

P(P(S) × P(S)) for Rabin and Street automata. In the following definitions, given an

infinite sequence of states ρ ∈ Sω,

inf(ρ) = {s ∈ S | s occurs infinitely many times in ρ}.

Let α = 〈a0, a1, a2, . . .〉 ∈ Σω be an infinite word over Σ. A run of M on the input word

α is an infinite sequence of states ρ = 〈s0, s1, s2, . . .〉, such that s0 = init and for all i ≥ 0,

(si, ai, si+1) ∈ T . In Table 4.1 we specify the conditions necessary for ρ to be an accepting

run of M on α. In all cases, the automaton M accepts α if there exists an accepting run ρ

of M on α.

We note that in ω-automata acceptance conditions are defined on the set of states,

whereas our notions of fairness and co-fairness target instead the set of events. Nevertheless,

even if interpreted in the state setting, our concept is different from all of the above. It is

most closely reminiscent of Rabin’s acceptance condition; however, while Rabin stipulates

inf(ρ) ∩ Fi 6= ∅, we would require Fi ⊆ inf(ρ).
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Automaton F ρ accepting on α if and only if:

Büchi F ⊆ S inf(ρ) ∩ F 6= ∅
Gen. Büchi F = {Fi | i ∈ I ∧ Fi ⊆ S} ∀F ∈ F , inf(ρ) ∩ F 6= ∅
Müller F ⊆ P(P(S)) inf(ρ) ∈ F
Rabin F = {(Fi, Ci) | i ∈ I ∧ Fi, Ci ⊆ S} ∃ i ∈ I � inf(ρ) ∩ Fi 6= ∅ ∧ inf(ρ) ∩ Ci = ∅
Street F = {(Fi, Ci) | i ∈ I ∧ Fi, Ci ⊆ S} ∀ i ∈ I � inf(ρ) ∩ Fi 6= ∅ ⇒ inf(ρ) ∩ Ci 6= ∅

Table 4.1: Acceptance conditions for ω-automata

4.8 Implementation Details and Symbolic Encoding

We have implemented both the general framework and the framework for structurally finite-

state processes in a tool called slap, which is an acronym for Static Livelock Analyser

of Processes. Computationally, the crux of our algorithms revolves around the generation

and manipulation of sets. The algorithms fit very naturally into a symbolic paradigm; hence

slap is fully symbolic. The choice of an underlying symbolic engine is configurable, with

support for using a SAT engine (based on MiniSAT 2.0), a BDD engine (based on CUDD

2.4.2), or running a SAT and a BDD analyser in parallel and reporting the results of the

first one to finish. slap is written in C++.

We have also integrated the framework for analysing structurally finite-state processes

directly in FDR [AGL+12], where it now constitutes an alternative back-end for establishing

livelock freedom. The binaries for the latter can be downloaded from the following location:

http://www.cs.ox.ac.uk/projects/concurrency-tools/slap/

In the remainder of this section we focus on the details regarding the symbolic part of

our frameworks and algorithms.

In general, because we need to encode sets of sets of events, binary encoding is inad-

equate and we use one-hot Boolean encoding [KB05], i.e., for each a ∈ ΣτX we employ a

Boolean variable which is also written a. The Boolean formula a then encodes all sets of

events {A ⊆ ΣτX | a ∈ A} (see also Section 3.4.1). For the SFS framework we use a single

vector y of |ΣτX | Boolean variables, whereas for the general framework we employ two

copies: one vector x for modelling the U component and another y for modelling the V

http://www.cs.ox.ac.uk/projects/concurrency-tools/slap/
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component (see Propositions 4.6.2, 4.6.4 and 4.6.6). In addition, we use auxiliary copies of

variables for constructing more complex expressions using quantifiers and substitution. For

those we use primed versions of x and y.

It is important to note that SAT techniques enable us to find a single fair or fair/co-fair

set of a process. An advantage of this approach is the efficiency of modern SAT solvers.

However, we need to introduce fresh vectors of variables for each instance of (even the same)

subprocess. This is necessary because the SAT solver might need to generate different fair

or fair/co-fair sets for a given term or a process, depending on the context in which it

appears.

Using BDDs [Bry86] enables us to find all possible fair or fair/co-fair sets that the system

of rules are capable of detecting. Hence, we do not need to duplicate subprocess encodings,

however, we need to take care of variable orderings which can dramatically influence the size

of the resulting BDD. We use variable ordering similar to the ones proposed in [Par02] and

adopted by the probabilistic model checker PRISM [HKNP06, KNP11]. BDDs generally

generate more compact representations compared to SAT encodings due to their canonicity

and capability of capturing regularities and common patterns.

4.8.1 The SFS Framework

4.8.1.1 Computing Fair/Co-Fair Sets for Atomic SFS Processes

Let P be an atomic SFS process and let us suppose that we have already established that

δ(P ) = false, i.e., that P is livelock-free. As we described in Section 4.7.2, we next generate a

collection of fair/co-fair pairs of disjoint sets Φ(P ) = {(F1, C1), . . . , (Fk, Ck)} ⊆ P(Σ)×P(Σ)

such that for every 1 ≤ i ≤ k,

(Fi, Ci) ∈ Φ(P )←→ ∃u ∈ tracesω(P ) � u is fair in Fi and co-fair in Ci. (4.3)

The computation of Φ(P ) is carried out directly on the labelled transition system MP

associated with P (in which unreachable states have been excised). Let us fix MP =

〈S, init,ΣP ,−→〉 and let us suppose that P is a subcomponent of a system with alphabet

Σ.

For a particular non-empty L ⊆ ΣP , deciding whether or not to include (L,Σ − L) to

Φ(P ) (lines 3 – 4) can be carried out in PTIME. More specifically, after obtaining GL, we
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Algorithm 5 Computing Φ(P )

1: Φ(P ) = ∅
2: for every non-empty set L ⊆ ΣP do
3: obtain a labelled graph GL from P ’s LTS (having pruned unreachable states) by deleting

all (Σ− L)-labelled transitions
4: if GL contains a (not necessarily reachable) SCC which comprises every event in L then
5: include (L,Σ− L) to Φ(P )
6: end if
7: end for
8: return Φ(P )

can check whether there exists s ∈ S, such that for every a ∈ L, there exists a transition

src
a−→ dest , such that there are paths from s to src as well as from dest back to s, as

illustrated in Figure 4.22 for L = {in, out , error}. Note that such paths necessarily consist

entirely of events in L ∪ {τ}.

s

in

out
error

Figure 4.22: Calculating fair/co-fair sets for atomic SFS processes

In fact, we can encode this symbolically for all possible subsets of ΣP via the following

Boolean formula:

MaxSCC =
∨
s∈S

{ ∧
a∈ΣP

[
¬a ∨

∨
src

a−→dest

(
Path(s, src) ∧ Path(dest , s)

)]}
, (4.4)

where:

1. For all s, t ∈ S, Path(s, t) encodes all symbolic traces over ΣP from s to t of length

at most |S |, i.e., all symbolic traces of length at most the longest simple path in

MP . In order to compute Path(s, t) for all s, t ∈ S simultaneously, we extend stan-

dard algorithms for computing the transitive closure of the adjacency matrix of the

transition relation of MP , such as Floyd-Warshall, iterative squaring or successive
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adjacency-matrix multiplications. Since the order of events on those traces is irrele-

vant to fairness and co-fairness, we do not employ symbolic state variables and use

just a single copy of event variables to carry out the computation, as illustrated in

Figure 4.23. We note that in those algorithms we do not check whether we reach

a fixed point in the computation. As a consequence, if using a SAT encoding, the

resulting formulas may contain redundancies.

2. The Boolean formula (4.4) contains an implicit iterator over all possible subsets L of

ΣP ∪{τ}. In order to exclude the options of L = ∅ or L = {τ}, we conjoin the formula

with the restriction
∨
a∈ΣP

a.

3. We need to also declare all infinite traces of P as co-fair in Σ−ΣP . To do so, we add

another Boolean conjunct
∧
a∈(Σ−ΣP ) ¬a.

The Boolean encoding of Φ(P ) then looks as follows:

Φ(P ) = (
∨
a∈ΣP

a) ∧ (
∧

a∈(Σ−ΣP )

¬a) ∧ MaxSCC . (4.5)

0 1

error

in

out

A =

[
false in

out error

]

Path =

[
(in ∧ out) (in) ∨ (in ∧ error)

(out) ∨ (error ∧ out) (error) ∨ (out ∧ in) ∨ (error ∧ error)

]

Figure 4.23: A symbolic representation of the adjacency matrix and the path matrix of the
process Send . The path matrix is computed using successive matrix multiplications.

The Key: PTIME Algorithms and Circuits. As we have already established, given

a process P and a non-empty set of events L ⊆ ΣP , deciding whether or not to include

(L,Σ − L) to Φ(P ) can be carried out in PTIME. Therefore, for the particular P and L,

there exists a polynomial-size variable-free Boolean circuit that outputs true if and only if

the pair (L,Σ− L) is a fair/co-fair pair of P 8.

8This follows from the PTIME-hardness of circuit value.
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Let us fix P and let us observe, moreover, that the construction of the variable-free

circuit does not depend on the particular choice of L (see (4.4) and (4.5)). Therefore, we

can leave the ΣP input gates of the circuit as Boolean variables [Pap04]. What we obtain

is a compact circuit of size polynomial in the syntax of P that encodes the computation of

Φ(P ) once and for all possible inputs, i.e., for all exponentially many subsets of ΣP . We

remark that the size of the circuit is polynomial in the size of P ’s LTS, which in turn is

polynomial in P ’s syntactic description, since we are dealing with atomic, i.e., sequential,

SFS processes.

Since the circuit is of polynomial size, it can be turned into a polynomial-size (equisatis-

fiable) Boolean formula using, e.g., Tseitin encoding [Tse68] (see Section 2.1.4). The circuit

can be also turned into a BDD, in which case the size of the BDD could potentially blow-

up; however, in practice this is usually not the case. Consequently, the Boolean-formula or

the BDD encoding of Φ(P ) can be plugged into our compositional rules and be queried on

demand when necessary, which fits very nicely into our symbolic framework.

4.8.1.2 Encoding Compositional Rules

The encodings of the rules for computing the livelock flag δ(P ) and the collections of fair/co-

fair pairs Φ(P ) of a compound SFS process P (see Theorem 4.7.2) are given in Figures 4.24

and 4.25 for Boolean formulas (i.e., for SAT) and in Figures 4.26 and 4.27 for BDDs.

4.8.2 The General Framework

The BDD and SAT encodings of the rules for computing the nonexpansive, guard, contrac-

tive and fair sets of CSP terms (see Theorems 4.6.2, 4.6.3, 4.6.4 and 4.6.6) are formalised

similarly to the ones for the structurally finite-state processes. Just to give a flavour of the

scheme and to illustrate the employment of two vectors of event variables, we provide the

BDD encoding of the rules for computing nonexpansive sets in Figure 4.28.

In the encoding, the vectors of Boolean variables x and y model, respectively, the

U and V components of the pairs of sets of events. To understand the meaning of the

encoding operators UClosure,DClosure and UDClosure, suppose the formula ϕ(x, y) en-

codes the set of pairs of sets of events A = {(U, V ) | some property} and the formula

ψ(y) encodes the set of sets of events B = {V | some property}. Then the formulas
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Φ(a −→ P )(y) =̂ Φ(P )(y)

Φ(P1 ⊕ P2)(y) =̂ Φ(P1)(y′) ∧ Φ(P2)(y′′) ∧
[ ∧
a∈Σ

a(y)↔ a(y′) ∨
∧
a∈Σ

a(y)↔ a(y′′)
]

if ⊕ ∈ {u,2, #}

Φ(P1‖
A
P2)(y) =̂ Φ(P1)(y′) ∧ Φ(P2)(y′′) ∧[

{
∧
a∈A
¬a(y′) ∧

∧
a∈Σ

a(y)↔ a(y′)} ∨

{
∧
a∈A
¬a(y′′) ∧

∧
a∈Σ

a(y)↔ a(y′′)} ∨

{
∧
a∈Σ

a(y)↔ (a(y′) ∨ a(y′′)) ∧
∧
a∈A
¬a(y)↔ (¬a(y′) ∨ ¬a(y′′))

∧
∧

a∈Σ\A

¬a(y)↔ (¬a(y′) ∧ ¬a(y′′))}
]

Φ(P \ A)(y) =̂ Φ(P )(y′) ∧
∧

a∈Σ\A

a(y)↔ a(y′) ∧
∧
a∈A
¬a(y)

Φ(P JRK)(y) =̂ Φ(P )(y′) ∧
∧
a∈Σ

[a(y′)→ (
∨
aR b

b(y))] ∧
∧
b∈Σ

[(
∧
cR b

¬c(y′))→ ¬b(y)]

Figure 4.24: SAT encoding of Φ(P )

δ(P \ A) =̂ δ(P ) ∨
(
¬
[
Φ(P )(y)→ (

∨
b∈Σ\A

b(y))
]

is SAT

)

Figure 4.25: SAT encoding of δ(P )

UClosure(A)(x, y),UDClosure(A)(x, y),UClosure(B)(y) and DClosure(B)(y) encode, respec-

tively, the sets {(U, V ) | (U, V ′) ∈ A ∧ V ′ ⊆ V }, {(U, V ) | (U ′, V ′) ∈ A ∧ U ⊆ U ′ ∧ V ′ ⊆

V }, {V | V ′ ∈ B ∧ V ′ ⊆ V } and {V | V ′ ∈ B ∧ V ⊆ V ′}:

UClosure(A)(x, y) =̂ ∃ y′ � ϕ(x, y′) ∧
∧
i

(y′i → yi)

UDClosure(A)(x, y) =̂ ∃x′y′ � ϕ(x′, y′) ∧
∧
i

(xi → x′i) ∧
∧
i

(y′i → yi)

UClosure(B)(y) =̂ ∃ y′ � ψ(y′) ∧
∧
i

(y′i → yi)

DClosure(B)(y) =̂ ∃ y′ � ψ(y′) ∧
∧
i

(yi → y′i)
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Φ(a −→ P )(y) =̂ Φ(P )(y)

Φ(P1 ⊕ P2)(y) =̂ Φ(P1)(y) ∧ Φ(P2)(y) if ⊕ ∈ {u,2, #}
Φ(P1‖

A
P2)(y) =̂ ∃ y′ ∃ y′′ � Φ(P1)(y′) ∧ Φ(P2)(y′′) ∧[

{
∧
a∈A
¬a(y′) ∧

∧
a∈Σ

a(y)↔ a(y′)} ∨

{
∧
a∈A
¬a(y′′) ∧

∧
a∈Σ

a(y)↔ a(y′′)} ∨

{
∧
a∈Σ

a(y)↔ (a(y′) ∨ a(y′′)) ∧
∧
a∈A
¬a(y)↔ (¬a(y′) ∨ ¬a(y′′))

∧
∧

a∈Σ\A

¬a(y)↔ (¬a(y′) ∧ ¬a(y′′))}
]

Φ(P \ A)(y) =̂
[
∃ yA � Φ(P )(y)

]
∧
∧
a∈A
¬a(y)

Φ(P JRK)(y) =̂ ∃ y′ � Φ(P )(y′) ∧
∧
a∈Σ

[a(y′)→ (
∨
aR b

b(y))] ∧
∧
b∈Σ

[(
∧
cR b

¬c(y′))→ ¬b(y)]

Figure 4.26: BDD encoding of Φ(P )

δ(P \ A) =̂ δ(P ) ∨
([

Φ(P )(y)→ (
∨

b∈Σ\A

b(y))
]

is not valid

)

Figure 4.27: BDD encoding of δ(P )

4.9 Experimental Results

As we pointed out in Section 4.7, for structurally finite-state processes Theorem 4.7.2 is

stronger than Theorem 4.6.7—it correctly classifies a larger class of processes as being

livelock-free. Moreover, apart from improving on accuracy, the SFS framework outperforms

the general framework also in terms of efficiency. Therefore, given an input process P , slap

first determines whether P is structurally finite-state. If so, it follows the SFS framework and

otherwise the general framework. Hence, in this section for all test cases using structurally

finite-state processes we cite the results obtained using the SFS framework.

All experiments were carried out on a 3.07GHz Intel Xeon processor running under

Ubuntu with 8 GB of RAM. Times in seconds are given in Tables 4.2 and 4.3, with *

indicating a 30-minute timeout and — denoting out of memory.
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NX(P )(x, y) =̂ true whenever X is not free in P ; otherwise:

NX(a −→ P )(x, y) =̂ NX(P )(x, y)

NX(P1 ⊕ P2)(x, y) =̂ NX(P1)(x, y) ∧ NX(P2)(x, y) if ⊕ ∈ {u,2, #, ‖
A
}

NX(P \ A)(x, y) =̂ UClosure(NX(P )(x, y) ∧ χ({V | V ⊆ Σ−A})(y))

=̂ UClosure(NX(P )(x, y) ∧ DClosure(Σ−A)(y))

NX(P JRK)(x, y) =̂ UClosure(∃ y′ � NX(P )(x, y′) ∧ ρ(y′, y))

NX(X)(x, y) =̂
∧
i

(xi → yi)

NX(µY � P )(x, y) =̂ UDClosure(NX(P )(x, y) ∧ ∃x′ � (NY (P )(x′, y) ∧
∧
i

(x′i ↔ yi))) if Y 6= X

Figure 4.28: BDD encoding of NX(P )

4.9.1 Infinite-State Processes

While the state-of-the-art CSP refinement checker FDR [Ros94, G+05] can only handle

finite-state processes, slap is able to establish livelock freedom of the widest range of CSP

process, including infinite-state ones.

We give two examples of infinite-state processes that fail to be SFS and, while being

beyond the capabilities of FDR, are handled easily by slap using the rules outlined in

Section 4.6. An abstracted CSP script implementing an infinite-capacity buffer [Ros98]

was presented as Example 4.6.8 in Section 4.6.3. The process B+ is not SFS due to the

recursive call of B+ under parallel composition. Two versions of an infinite counter [Ros98]

are presented in Figure 4.29. They both fail to be SFS due to the recursive calls under

interleaving. The experimental results are presented in Table 4.2. The times are given in

seconds.

CNT = up −→ (CNT ||| down −→ STOP)

CNT ′ = up −→ (CNT ′ ||| down −→ CNT ′)

Figure 4.29: Infinite counters
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Table 4.2: Static livelock analysis: experimental results for infinite-state processes. Times
reported are in seconds.

Benchmark SLAP SLAP
(BDD) (SAT)

B+ 0.02 0.02
CNT 0.01 0.01
CNT ′ 0.01 0

4.9.2 Structurally Finite-State Processes

We experimented with a wide range of benchmarks, including parametrised, parallelised,

and piped version of Milner’s scheduler, the alternating bit protocol (ABP), the sliding

window protocol (SWP), the mad postman network routing protocol [YJ89], the classi-

cal dining philosophers, a distributed database algorithm, the time-dependent bully leader

election algorithm and Fischer’s mutual exclsuion protocol, etc.9 In all our examples, in-

ternal communications were hidden, so that livelock freedom can be viewed as a progress

or liveness property. All benchmarks were livelock-free, although the reader familiar with

the above examples will be aware that manually establishing livelock freedom for several

of these can be a subtle exercise (consider, e.g., the alternating bit protocol described in

Section 4.2.1).

In all cases apart from the distributed database algorithm (for which the result was

inconclusive), slap was indeed correctly able to assert livelock freedom (save for rare in-

stances of timing out). Livelock freedom for the distributed database algorithm turns out

to be remarkably complex; see [Ros98] for details and [Ros90] for a (40-page!) proof of cor-

rectness. In almost all instances, both the BDD and the SAT engines of slap substantially

outperformed the state-of-the-art CSP model checker FDR, often completing orders of mag-

nitude faster. On the whole, the BDD engine and the SAT engine performed comparably,

with occasional discrepancies. In particular, the SAT engine ran quickly out of memory or

timed out when dealing with time-dependent systems (where the discrete passage of time

is modelled in CSP by using a special event called tock , see [Ros98, Ros11b]). Times in

seconds are given in Table 4.3, with * indicating a 30-minute timeout and — denoting out

of memory (before timing out).

9Scripts and descriptions for all benchmarks are available from the website associated with [Ros11b].
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Table 4.3: Static livelock analysis: experimental results for SFS processes. Times reported
are in seconds, with * denoting a 30-minute timeout and — denoting out of memory.

Benchmark FDR SLAP SLAP
(BDD) (SAT)

Milner-10 0 0.06 0.05
Milner-15 0 0.19 0.14
Milner-20 409 0.63 0.28
Milner-21 948 0.73 0.23
Milner-22 * 0.93 0.25
Milner-25 * 1.63 0.41
Milner-30 * 7.56 0.8

ABP-0 0 0.03 0.11
ABP-0-inter-2 0 0.03 0.23
ABP-0-inter-3 23 0.06 0.35
ABP-0-inter-4 * 0.08 0.47
ABP-0-inter-5 * 0.09 0.63
ABP-0-pipe-2 0 0.04 0.35
ABP-0-pipe-3 2 0.06 0.75
ABP-0-pipe-4 175 0.08 1.27
ABP-0-pipe-5 * 0.10 1.85
ABP-0-pipe-6 * 0.11 2.91

ABP-4 0 0.11 *
ABP-4-inter-2 39 0.16 *
ABP-4-inter-3 * 0.22 *
ABP-4-inter-7 * 0.39 *
ABP-4-pipe-2 12 0.38 *
ABP-4-pipe-3 * 0.38 *
ABP-4-pipe-7 * 0.39 *

Bully-3 0 0 —
Bully-4 0 0 —
Bully-5 6 26 —
Bully-6 413 * —
Bully-7 * * —

Benchmark FDR SLAP SLAP
(BDD) (SAT)

SWP-1 0 0.03 7.06
SWP-2 0 0.46 *
SWP-3 0 46.81 *

SWP-1-inter-2 0 0.04 14.84
SWP-1-inter-3 31 0.06 24.02
SWP-1-inter-4 * 0.08 29.44
SWP-1-inter-7 * 0.13 58.82
SWP-2-inter-2 170 0.71 *
SWP-2-inter-3 * 0.94 *
SWP-1-pipe-2 0 0.04 28.09
SWP-1-pipe-3 0 0.07 66.71
SWP-1-pipe-4 3 0.09 121.09
SWP-1-pipe-5 246 0.10 192.39
SWP-1-pipe-7 * 0.14 399.55

Philosophers-5 0 0.30 0.10
Philosophers-7 2 1.62 0.21
Philosophers-8 20 2.51 0.35
Philosophers-9 140 3.98 0.50

Philosophers-10 960 7.49 0.72

Mad Postman-2 0 0.06 0.03
Mad Postman-3 6 * 0.20
Mad Postman-4 * * 0.89
Mad Postman-5 * * 4.21
Mad Postman-6 * * 20.75

Fischer-4 0 0 647
Fischer-5 1 0 *
Fischer-6 15 0 *
Fischer-7 213 3 *
Fischer-8 * 22 *
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Details About the Test Cases. We give some details about the parameters that we

vary to obtain multiple test instances with increasing size and difficulty. For Milner’s

scheduler and the dining philosophers we vary the number of cell processes and philosophers,

respectively. In the latter, we hide on top all events modelling picking up and putting down

forks—the resulting process gives the impression of potentially divergent, but in fact it is

not. For this test case, we also established livelock freedom of the (deadlock-free) solutions

using a butler or a single left-handed philosopher. The running times for all three versions

of the dining philosophers are more or less the same. For the bully leader election algorithm,

we vary the number of processors participating in the protocol and fix the three timeout

values T1, T2 and T3 (as defined in [Ros11b, Chap. 14]) to 1, 3 and 7, respectively. Similarly,

for Fischer’s mutual exclusion protocol, we vary the number of process nodes and fix the

two time constants to 3 and 20.

We use two families of instances for the alternating bit protocol—ABP-0 and ABP-

4—where the parameter reflects the maximum number of messages that any medium can

lose in a raw. The algorithm is livelock-free as long as this number is finite, i.e., no infinite

sequence of messages gets lost in a row. Hence, ABP-0 defines the protocol on reliable

media where no message can get lost, while ABP-4 defines media that can lose up to 4

messages (or acknowledgments) in a row. We also experimented interleaving and piping

multiple instances from both families—this corresponds to implementing communication

networks based on asynchronous (interleaving) or synchronous (piping) message passing.

To illustrate the abbreviations, ABP-0-inter-5 denotes the system obtained by interleaving

five instances of ABP with unerring media, and ABP-4-pipe-7 denotes the system obtained

by piping seven instances of ABP with media loosing up to 4 messages in a row. Piping

means redirecting the output of a process to the input of another one and is defined in

terms of renaming, parallel composition and hiding, see [Ros98, Ros11b] for details. For the

sliding window protocol we performed tests on three families of instances SWP-1, SWP-2

and SWP-3, where the parameter indicates the size of the window. We use a similar naming

convention for denoting communication systems obtained by interleaving or piping several

instances of the protocol.
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4.10 Conclusion and Future Work

In this chapter, we introduced a novel static analysis framework for establishing livelock

freedom of CSP processes. Our framework employed a collection of rules on the syntac-

tic structure of a process to either soundly classify a process as livelock free or report an

inconclusive result, thereby compromising accuracy for speed. We proposed a general frame-

work, based on reasoning about fixed points in terms of metric spaces, and a framework for

finite-state processes, grounded upon analysis of fairness and co-fairness of visible events.

Experiments on a wide suite of benchmarks indicated that our approach, combined with

state-of-the-art symbolic techniques, outperformed the explicit checker FDR by multiple

orders of magnitude, while maintaining a high level of accuracy. We already incorporated

the framework for structurally-finite state processes in FDR.

We can follow several avenues for future work.

An interesting property of our approach is the possibility for our algorithm to produce

a certificate of livelock freedom, consisting among others in the various sets supporting the

final judgement. Such a certificate could then be checked by an independent tool.

Alternatively, in cases where livelock freedom cannot be established, we can provide

debug information to the user. For systems that are SFS, we can identify, for example,

all processes whose δ flag is false, and output, for each of those, the collection of fair/co-

fair sets of events computed by our tool. For infinite-state systems, we can in addition

output the collection of contractive sets CX(P ) for any subprocess µX � P whose set of

fair sets F(µX � P ) has been found to be empty. This would enable the user to analyse

whether certain patterns of behaviours match the intended behaviour of the system and its

subcomponents.

Other directions for future work include improving the efficiency of slap by incorpo-

rating various abstractions such as collapsing all events on a given channel, or placing a

priori bounds on the size of sets. Conversely, we plan to try to increase accuracy at modest

computational cost, for example by making use of algebraic laws at the syntactic level,

such as bounded unfoldings of parallel compositions. The framework for reasoning about

structurally finite-state processes can be viewed as an instance of abstract interpretation
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[CC77, CC02] and in this case perhaps narrowing operators could also be beneficial for

enhancing the precision of our tools.

Another interesting follow-up of our work is to try and generalise that an entire class of

systems is livelock-free, where systems in the class are parametric in the number of identical

process subcomponents. Examples include {Milner-n | n ∈ N}, {SWP-1-pipe-n | n ∈ N},

etc. This would involve analysing systems that spawn n subcomponents for any nondeter-

ministically chosen n.

As a more ambitious goal, we would like to investigate more closely how we can transfer

our analyses to other concurrent formalisms such as other process algebras or maybe even

shared-variable frameworks. Moreover, we would like to study more carefully the links

between livelock freedom and general termination analysis [CY10].

We have ideas how to formulate systems of rules for conservatively establishing deadlock

freedom of CSP processes. This is intended as an extension of the framework presented in

[Mar96], which is implemented in the tool Deadlock Checker [Mar95, MJ97]. The

framework requires as input a parallel network of normalised deadlock-free processes which

communicate only pairwise [RB85, RD87]:

Network = ||
i∈I αi @ Pi.

The algorithm is able to soundly classify the entire network as deadlock free based on

analysis of the so-called state dependency digraph of the network. In this digraph, nodes

are modelled by pairs (i, s), where i ∈ I is an index of a process in the network and s is a

state of the process Pi. There is an edge (i, s) −→ (j, q) in the digraph if and only if i 6= j,

Aij = αi∩αj 6= ∅ and the parallel composition Pi ‖
Aij

Pj can reach a configuration (s, q) such

that Pi in state s is limited to performing events from Aij only and the pair (s, q) refuses

the whole of Aij . In other words, an edge (i, s) −→ (j, q) models a potential ungranted

strong request from Pi in s to Pj in q. The state dependency digraph can be constructed

by only analysing individual processes and parallel compositions of pairs of processes and

is of size at most the sum of the sizes of the component processes (as opposed to their

product). Since a deadlock scenario necessarily results in a cycle in the state dependency

digraph of the network, the absence of cycles in the digraph soundly (although incompletely)

guarantees deadlock freedom of the network. We intend to extend this algorithm in two
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ways. Firstly, we plan to devise a system of rules that enables reasoning about an arbitrary

structurally-finite state process, without restrictions on the hierarchical structure of the

process and the number of processes that a given event can be shared among. Secondly, a

cycle in the state dependency digraph indicates a potential deadlock only if every process

contributes at most a single node on this cycle. In general, however, checking whether the

digraph contains a cycle of this type is NP-complete. Hence, adopting such an algorithm

would improve on accuracy but worsen performance. Nevertheless, similarly to slap, we

believe that employing symbolic techniques, in particular SAT solving, would be beneficial

for overcoming this bottleneck and would result in significant improvements in terms of

accuracy while incurring only minor performance penalties.



Chapter 5

Abstraction Schemes and CEGAR
Framework for CSP and FDR

5.1 Introduction

5.1.1 Abstraction

Broadly speaking, abstraction [CGL94, CGP99, BK08] is a mechanism for regulating the

amount of detail present in the system. It is a powerful state-space reduction technique,

invaluable in practice for tractably verifying industrial-scale applications, even infinite-state

ones. In the context of model checking, abstraction techniques have proven extremely ben-

eficial in cases where the specification refers only to certain aspects of the system under

consideration, drawing away from low-level details or from the behaviours of entire com-

ponents. Abstraction can then serve as a vehicle for extracting and narrowing the focus

mostly on those details that are relevant to the specific property, disregarding or simplifying

the irrelevant information, thereby reducing the size of the model.

In verification, and in real life, it is rarely the case that a single specification targets

to cover all possible notions of correctness of a system with a single shot—this approach is

rather unintuitive, error-prone and, furthermore, computationally expensive. Much in the

style of divide-and-conquer, the verification process is usually incremental in the sense that

the system is verified against a number of independent correctness properties that individ-

ually often do not address the full spectrum of details. Therefore, abstraction techniques

are quite versatile and applicable to many different contexts in practice.

In general, we distinguish between exact and inexact abstractions. Exact abstractions

146
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preserve all kinds of properties of the system under consideration, i.e., a property holds

in the concrete system precisely whenever it holds in the abstraction of the system. With

inexact abstractions, on the other hand, the concrete and the abstract model of the system

may satisfy a different set of properties. An abstraction is conservative with respect to a

certain property ϕ if it soundly preserves ϕ, i.e., if it guarantees that whenever ϕ holds in

the abstract model, then ϕ also necessarily holds in the concrete model of the system. Gen-

erally, abstractions that yield overapproximations of the behaviours of the system soundly

preserve safety properties—properties of the form “something bad will never happen”. In

contrast, abstractions resulting in underapproximations are conservative with respect to

liveness properties, which, broadly speaking, specify that “something good will eventually

happen”. The rationale behind using conservative abstractions is that they compromise

precision for efficiency—they generate more compact state spaces and are more powerful

for tackling the state-space explosion problem.

In practice, abstractions are often induced by certain partitions (equivalence relations)

on the concrete state spaces of the model of a system (see Section 2.1.3.2). Given a model

and a partition on its state space, existential and universal abstraction [CGL94, Kur94] are

uniquely defined and yield, respectively, an overapproximation and an underapproximation

of the behaviours of the concrete system.

We focus mainly on existential abstraction [CGL94] which yields an overapproximation

of the behaviours of the system and hence guarantees to preserve safety properties. If a

safety specification holds in the abstract system, then it also holds in the concrete system.

However, if the specification is violated in the abstract system, the counterexample gener-

ated might be spurious, i.e., it might correspond to a behaviour which is not present in the

concrete system. In this case, the abstraction must be refined in a way that the spurious

example be eliminated.

In general, coarser existential abstractions yield a more compact state space, but also

introduce a greater number of spurious counterexamples. Too refined abstractions, on the

other hand, are less likely to introduce spurious counterexamples, but suffer more severely

from the state-space explosion problem. Hence, hitting the right balance in granularity is

essential.
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5.1.2 Counterexample-Guided Abstraction Refinement

Counterexample-guided abstraction refinement (CEGAR)[CGJ+00, CGJ+03, Kur94] is an

automated iterative abstraction-refinement technique for establishing the correctness of

safety properties. Firstly, a coarse conservative initial abstraction of the system is gen-

erated. If model checking the abstraction against the specification fails and the counterex-

ample is spurious, the counterexample is used to automatically produce a finer abstraction

of the system. Thus, the specification is model-checked against a sequence of increasingly

refined abstractions until either the property is proven to hold or a genuine counterexam-

ple is derived. The process of checking whether the counterexample is spurious (i.e., is a

“false positive”) is called counterexample validation and the process of producing a finer

abstraction for eliminating the spurious counterexample is called abstraction refinement. It

is important to note that all stages of CEGAR can be completely automated and hence

no human support is required. A general issue to be careful about is the guarantee for

termination of the CEGAR loop—the sequence of refined abstractions has to converge in a

finite number of steps to a system which is equivalent to the original one with respect to

some equivalence relation.

5.1.3 Introducing a CEGAR Framework for CSP and FDR

Building upon FDR, we develop a series of abstraction/refinement schemes for the traces,

stable-failures and failures-divergences models of CSP and embed them into a fully auto-

mated and compositional CEGAR framework.

Since CSP refinement is monotonic and transitive (see Section 2.2.3), we carry out

the stages of initial abstraction, counterexample validation and abstraction refinement

component-wisely on the level of the transition systems of the sequential leaf processes.

This is facilitated by the fact that supercombinators act on a higher level to control how

leaf processes interact. The only point at which we consider the global state space is during

the verification phase but even then, FDR only explores the compact state space induced

by the abstracted leaf processes and, moreover, performs this on-the-fly.

Extending the original CEGAR framework [CGJ+00, CGJ+03], our abstractions are

identified by partitions of the state spaces of the leaf processes, coupled with minimal

existential abstraction and annotations for preserving nondeterminism-related information.
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In general, traditional existential abstraction is inadequate for preserving liveness properties;

in particular, in our setting it underapproximates refusal sets instead of overapproximating

them. To handle this, we extend the approach used in the tool magic [CCOS04, CCO+05]

to define abstract minimal acceptances and abstract divergences. We also devise a number

of strategies for refining the resulting spurious abstract behaviours.

FDR plays a crucial role in the compositional handling of counterexample validation

and abstraction refinement. First of all, upon detecting an erroneous behaviors of the overall

process, FDR provides contribution behaviours of the individual leaf processes that can be

validated separately. For establishing whether or not an abstract counterexample behaviour

is spurious, model checkers generally employ explicit or symbolic simulation techniques or

theorem provers. Our approach is to devise instead a suitable refinement check in FDR

and carry out this on leaf-process level. Similarly, we employ refinement checks FDR in

order to obtain all abstract executions of a given spurious behaviour. Consequently, we can

efficiently validate and eliminate, if necessary, all types of behaviours observable in the three

semantic models of interest—finite and lasso traces, divergence traces and stable failures.

Regarding abstraction and abstraction refinement, we follow and extend algorithms

for obtaining bisimulation quotients based on the iterative partition refinement framework

[CGP99, BK08]. The series of finer abstractions that we construct converge, in the worst

case, to a strong (or DRW) bisimulation quotient of the LTS of the implementation process

in question (see Section 2.2.4.3). Generally, we adopt lazy refinement strategies that yield

coarser abstractions even though it takes a greater number of iterations to converge.

Preliminary experiments with the CEGAR framework indicate a significant enhance-

ment in terms of performance when verifying both safety and liveness properties, including

checks for livelock and deadlock. High performance, however, depends on whether or not the

specification property is established or refuted before all leaf processes get fully expanded.

5.1.4 Related Work

To the best of our knowledge, the only application of CEGAR to the CSP setting is the one

in [Low04]. However, the technique described there is not automatic—initial abstraction and

consecutive refinements are devised by hand and brain on the higher CSP level. In contrast,

our CEGAR framework is completely automated and initial abstraction and subsequent
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abstraction refinements are carried out on the operational representation of the sequential

components.

A fully compositional CEGAR framework for analysing concurrent C programs com-

municating via synchronous message passing was introduced in the tool magic [COYC03,

CCO+05]. The magic framework handles parallel composition of sequential programs in a

very CSP-like process-algebraic manner to verify safety [COYC03] and liveness [CCO+05]

properties. Based on compositionality theorems for the alphabetised parallel operator proven

in [Ros98], magic incorporates a fully automatic CEGAR loop in which all operations of

initial abstraction, counterexample validation and abstraction refinement are carried out on

the sequential C programs and not on the entire parallel composition. For tackling liveness

properties, new notions of abstract refusals and abstract failures are introduced [CCO+05],

which we also adopt and extend. Those are necessary because standard abstraction schemes

do not preserve liveness properties, and in particular, they underapproximate refusal sets

instead of overapproximating them. Regarding the termination of the CEGAR loop, for

both safety and liveness properties, in the worst case the sequence of increasingly refined

overapproximations converges in a finite number of steps to a system that is bisimilar to

the original one.

The CEGAR schemes converging to bisimulation quotients that we incorporate are

extensions of those techniques. Differences and challenges in our settings are due to the

presence of silent τ actions and the need to deal with a richer collection of compositional

operators including hiding, renaming, choice, etc. Furthermore, regarding parallel compo-

sition, we need to be able to handle the generalised parallel operator by which sequential

components synchronise on a given set of events and not on the intersection of their al-

phabets as in alphabetised parallel. This makes our approach a bit less conservative in

that spurious counterexamples might not get completely eliminated from the system after

refining the abstractions—spurious behaviours might remain present owing to alternative

contributions of the component processes. Nevertheless, the abstraction-refinement phase

always produces a proper refinement of the abstraction, which provides a guarantee for

termination. We note, however, that in the general case, the rate of convergence of our

CEGAR loop might be considerably lower compared to the approaches in [COYC03] and

[CCO+05].
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In general, the CEGAR framework has been more actively investigated in the context

of shared-variable programs and state-based formalisms. The original proposal [CGJ+00,

CGJ+03] was initially integrated in the BDD engine of the model checker NuSMV [CCGR00]

and evaluated on a benchmark of hardware circuits. A CEGAR framework based on

predicate abstraction [GS97] was first implemented as a part of the model checker Slam

[BR01, BLR11]. The framework supports the verification of safety properties of C pro-

grams and focuses on the sequential model of computation. Extensions of Slam with

limited support for concurrency include [QW04], where the execution of multiple threads

within a bounded number of context switches is encoded into a sequential program. Sa-

tAbs [CKSY05] is a verification platform for reasoning about for C/C++ programs and

it also employs a CEGAR framework based on predicate abstraction. SatAbs offers sup-

port for reasoning about shared-variable multi-threaded programs by adopting partial-order

reductions [CKS05], and recently also by exploiting techniques based on symmetry reduc-

tions [DKKW11]. Another prominent model checker that provides support for verifying

multi-threaded C programs is Blast [HJMS02, HJMQ03], which embeds into its CEGAR

framework lazy predicate abstraction coupled with assume-guarantee reasoning . The model

checker boom [BMWK10] verifies concurrent Boolean programs spawning dynamic but

bounded number of threads; it achieves this by employing counter abstraction.

5.2 General Skeleton of the CEGAR Framework for CSP and
FDR

In this section, we outline the general skeleton for CEGAR that we use in all three seman-

tic CSP models of interest. We also highlight compositionality aspects, as well as discuss

convergence rates and guarantees.

Let us suppose that we want to establish that Spec vM P for M ∈ {T ,F ,N}. We

assume that after supercompilation P = (SCP , 〈P1, . . . , Pn〉), where P1, . . . , Pn are the se-

quential leaf processes of P , and SCP is the set of all supercombinator rules, i.e., all rules

mapping actions of a collection of those leaf processes to a resulting action of the high-level

process P . Let us recall that the list of leaf processes together with the set of supercombina-

tors is a complete characterisation of the high-level process P (see Section 2.3.1.2). Hence,
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Figure 5.1: CEGAR framework

to simplify the notation below, we will write P = P1 ‖ . . . ‖ Pn even though the process

tree of P may contain any CSP operator other than recursion.

As CSP refinement is monotonic and transitive (see Section 2.2.3), we carry out the

main stages of initial abstraction, counterexample validation and abstraction refinement

component-wisely on leaf-process level, facilitated by the capabilities of FDR. This is jus-

tified by the fact that supercombinators act on a higher level to control how leaf processes

interact and that strong bisimulation (as well as DRW bisimulation, see Section 2.2.4.3)

is a congruence for all CSP operators in all semantic models that we consider [Ros11b].

Essentially, we build upon the following two facts:

1. If for all i ∈ {1, . . . , n}, Ci vM Pi vM Bi, then the following refinement relations

hold:

(SCP , 〈C1, . . . , Cn〉) vM P = (SCP , 〈P1, . . . , Pn〉) vM (SCP , 〈B1, . . . , Bn〉). (5.1)

2. For any CSP operator ⊗ other then recursion, any CSP processes P,Q, P ′ and Q′,

and any strong (or DRW) bisimulation relation ∼,

if P ∼ P ′ and Q ∼ Q′, then P ⊗Q ∼ P ′ ⊗Q′. (5.2)

The only point at which we consider the global state space of the system is during the

refinement checking phase, and even then, we only need to construct (on-the-fly) the smaller

state space induced by the abstracted leaf processes.
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Regarding abstraction and abstraction refinement, the algorithm for all models is based

on the iterative partition refinement framework [CGP99, BK08].

In the remainder of this section, we briefly outline the major stages of our CEGAR loop,

which is depicted in Figure 5.1. We use the definitions of generalised labelled transition

systems (GLTS’s), minimal acceptances and divergence labellings as defined in [Ros94,

RGG+95] and described in Section 2.3.2. Let us recall that in a GLTS representation of a

process every process state is labelled with a set (an antichain) of minimal acceptance sets

and a flag indicating whether the state is divergent.

Preprocessing Step. In order to simplify the algorithms, prior to embarking on the

CEGAR loop, we transform the transition system of each leaf Pi into a semantically equiv-

alent τ -free (generalised) transition system. We do that by applying diamond elimination

compression [RGG+95, G+05] with the help of FDR (see Section 2.3.3.1). The transition

system of each Pi after diamond compression has the following properties:

• it has at most as many nodes as the original transition system,

• it is free of τ -transitions,

• as opposed to post normalisation, there still might be nondeterminism left as far as

visible actions are concerned,

• all τ -related nondeterminism of a node is stored as an annotation of the node, which

consists of a divergence flag and a set of minimal-acceptance sets (see Section 2.3.2

and Section 2.3.3).

This preprocessing transformation is relatively cheap in time and space: for each leaf Pi,

diamond elimination can be performed in time linear in the size of Pi to obtain a semantically

equivalent process with at most as many states as Pi. We note, however, that diamond

elimination typically results in an increase of the size of the minimal-acceptance annotations.

Initial Abstraction. To generate an initial abstraction A0 of P , for each leaf Pi, we

aggregate together states of Pi according to some criteria, e.g., depending on the semantic

model or the degree of granularity we want to start with (we discuss different strategies

in Section 5.6.1 but, in general, any partition would work). The resulting partition Π0
i ,
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combined with (minimal) existential abstraction and adjustment of the divergence flag and

the set of minimal acceptances, uniquely identifies the abstract process A0
i and guarantees

that A0
i vM Pi. We construct the initial abstraction A0 of P then as follows:

A0 = (SCP , 〈A0
1, . . . , A

0
n〉).

We note that for generating A0 we use the set of supercombinators SCP of P , but for

simplicity, we will write A0 = A0
1 ‖ . . . ‖ A0

n. Then, due to compositionality theorems

proven in [Ros98] and formalised as (5.1),

A0
1 ‖ . . . ‖ A0

n︸ ︷︷ ︸
A0

vM P1 ‖ . . . ‖ Pn︸ ︷︷ ︸
P

,

and hence performing the initial abstraction component-wisely is sound.

Refinement Checking. Let us suppose that at some iteration k of the CEGAR loop we

obtain an abstract process Ak = (SCP , 〈Ak1, . . . , Akn〉) = Ak1 ‖ . . . ‖ Akn that satisfies the

invariant:

∀ i ∈ {1, . . . , n}, A0
i vM Aki vM Pi,

and therefore also:

A0
1 ‖ . . . ‖ A0

n︸ ︷︷ ︸
A0

vM Ak1 ‖ . . . ‖ Akn︸ ︷︷ ︸
Ak

vM P1 ‖ . . . ‖ Pn︸ ︷︷ ︸
P

.

If Spec vM Ak, by transitivity of vM, Spec vM P and we are done. In case Spec 6vM
Ak1 ‖ . . . ‖ Akn, depending on the semantic model M, FDR generates a counterexample

behaviour b and a contribution bi of each leaf process Aki for obtaining b. It is important

to note that for a given behaviour b, the list of contributions 〈bi | i ∈ {1, . . . , n}〉 is not

uniquely identified, and therefore FDR plays a crucial role at this stage.

Counterexample Validation. For checking whether the behaviour b generated by FDR

is a valid behaviour of P = P1 ‖ . . . ‖ Pn, we simulate each bi on Pi, or more precisely, we

devise a special refinement check in FDR to infer that. If, for every i, bi is a valid behaviour

of Pi, then b is a genuine counterexample for the refinement Spec vM P—we report the

bug and exit the CEGAR loop.
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Otherwise, there exists a leaf process Pj for which the behaviour bj is spurious. We

note that, in this case, the behaviour b can still be a valid behaviour of P under some

other contributions of the leaves. Hence, our strategy for counterexample validation is

conservative. If we declare that the behaviour b is valid, then it is guaranteed to be valid.

However, the reverse does not necessarily hold and the subsequent abstraction refinement

step may result in the same b being found again, this time decomposed into different bi’s

that may or may not witness the validity of b.

Abstraction Refinement. Having established that bj is a valid behaviour of Akj but

not of Pj , we refine Akj to Ak+1
j in a way that eliminates bj from Ak+1

j and maintains

the invariant Akj vM Ak+1
j vM Pj . This is performed by splitting blocks on all paths in

Akj that accept bj . The blocks in Akj that correspond to the failure states in Pj are split

according to their reachable successor blocks, depending on the semantic model and the

type of counterexample behaviour. The resulting partition Πk+1
j is a proper refinement of

Πk
j which, after readjusting the existential abstraction, the divergence flag and the set of

minimal acceptances, guarantees Akj vM Ak+1
j . The partition-refinement step is similar to a

unit step in the Paige-Tarjan algorithm [PT87, BK08] and, therefore, subsequent abstraction

refinements of Akj converge in a finite number of steps to a (strong) bisimulation quotient

of Pj [COYC03, CCO+05]. Hence, Ak+1
j vM Pj . Then, due to compositionality theorems,

Ak1 ‖ . . . ‖ Akj ‖ . . . ‖ Akn︸ ︷︷ ︸
Ak

vM Ak1 ‖ . . . ‖ Ak+1
j ‖ . . . ‖ Akn︸ ︷︷ ︸

Ak+1

vM P1 ‖ . . . ‖ Pj ‖ . . . ‖ Pn︸ ︷︷ ︸
P

,

and we can continue with the next iteration (k + 1) of the CEGAR loop.

Let us note that the choice of how many leaf processes to refine at each iteration of

the CEGAR loop depends on whether we want to adopt a lazy or an aggressive strategy

for convergence. Generally, we lazily refine just a single leaf that contributes a spurious

behaviour. Nevertheless, we also support an aggressive strategy that refines all leaf processes

giving rise to spurious contributions.

Termination. At each iteration of the CEGAR loop, we properly refine a partition of at

least one leaf process. Hence, the procedure converges in at most |P1 |+ . . .+ |Pn | number

of steps, where |Pi | is the number of states in Pi. As each leaf Pi converges in the worst
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case to a strong (or DRW) bisimulation quotient of P and the corresponding bisimulation

equivalence is a congruence with respect to all CSP operators (5.2), the bisimulation-reduced

leaves together with the set of supercombinators SCP yield a bisimulation quotient of P

(perhaps not the coarsest one).

5.3 Abstraction Schemes for CSP

In this section we define our notion of abstraction for all semantic models T ,F and N . We

first list the general requirements that we need any abstraction to conform to. Then we show

how to generate different instances of abstraction meeting those requirements depending on

the semantic model we want to work in.

We carry out the stages of abstraction and abstraction refinement on the level of tran-

sition systems. Hence, in this section we identify processes with their associated labelled

transition systems (and possibly their generalised versions). As outlined in Section 2.1.3.2,

partitions and equivalence relations are in one-to-one correspondence, as are blocks in par-

titions and equivalence classes induced by equivalence relations. Hence throughout this

section we will use those notions interchangeably.

5.3.1 Requirements

Let us fix a process P = 〈S, init,Σ, T 〉 and a semantic model M ∈ {T ,F ,N}. We will say

that a process A = 〈SA, initA,ΣA, TA〉 is an abstraction of P in the model M if A satisfies

the following requirements:

1. ΣA = Σ,

2. A contains at most as many states as P ,

3. A vM P , and more specifically, for every execution s0
a0−→ s1

a1−→ . . . sn−1
an−1−→ sn of

P there exists an execution q0
a0−→A q1

a1−→A . . . qn−1
an−1−→A qn of A such that:

• if M ∈ {F ,N}, then for every X ∈ min acceptances(sn) there exists Y ∈

min acceptances(qn) such that Y ⊆ X,

• if M = N and sn is divergent, then qn is divergent as well.
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Typically, A will contain a lot less states and allow a lot more behaviours compared to

P . We will refer to states in S and SA as concrete states and abstract states, respectively.

Similarly, we will call T a concrete transition relation and TA an abstract transition relation.

We remark that the absence of τ actions in P simplifies significantly the requirements

we set out for A—it lets us reason about executions rather than (semantic) traces.

5.3.2 An Abstraction for the Traces Model

Let us first focus on the traces model exclusively. Similarly to [CGJ+03, COYC03], our

abstraction A of P is uniquely identified by a partition of the concrete state space S (which

defines the abstract state space SA) and existential abstraction [CGL94, CGP99] (which

defines the abstract transition relation TA).

Throughout this section we take an arbitrary partition ∼ of S. We also view ∼ as

an equivalence relation ∼ on S. Then we generate A as the quotient of P with respect

to the equivalence relation ∼, coupled with minimal existential abstraction. Formally,

A = 〈SA, initA,ΣA, TA〉, where:

• SA = S/∼, i.e., SA is the set {[s]∼ | s ∈ S} of all equivalence classes induced in S by

∼

• initA = [init]∼

• ΣA = Σ

• TA = {([si]∼, a, [sj ]∼) | (si, a, sj) ∈ T}. In other words, for all si, sj ∈ S and a ∈ A,

[si]
∼ a−→A [sj ]

∼ if and only if there exist s′i ∈ [si]
∼ and s′j ∈ [sj ]

∼ such that s′i
a−→ s′j .

The transition system we constructed is an instance of existential abstraction and, in

fact, of minimal existential abstraction [CGL94]. Non-minimal existential abstraction can

be derived from this construction by substituting TA by any proper superset of TA. We will

write P/∼ to denote the abstraction A of P obtained by the above construction and we will

refer to it as the minimal existential quotient of P under the equivalence relation ∼. We

state a result which is very well known in literature.
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Proposition 5.3.1 ([CGP99]). Let P = 〈S, init,Σ,−→〉 be a labelled transition system, ∼

be an equivalence relation on S, and P/∼ be the minimal existential quotient of P with

respect to ∼. If init
a0−→ s1

a1−→ . . . sn−1
an−1−→ sn is an execution of P , then [init]∼

a0−→

[s1]∼
a1−→ . . . [sn−1]∼

an−1−→ [sn]∼ is an execution of P/∼.

Proof. The proof proceeds by induction on the length of the execution and is a direct

consequence of the construction of the existential quotient.

The following proposition demonstrates that for any equivalence relation ∼ on S, A =

P/∼ satisfies the general requirements for abstraction that we imposed in Section 5.3.1.

Proposition 5.3.2. For any labelled transition system P and any equivalence relation ∼

on the state space of P , P/∼ vT P .

Proof. By Proposition 5.3.1 we can conclude that any trace of P is matched by a trace of

P/∼, whereby traces(P ) ⊆ traces(P/∼) and hence, P/∼vT P .

Let ∼ and ∼′ be equivalence relations on the concrete state space S. Let us recall (see

Section 2.1.3.2) that ∼′ is a refinement of ∼ if for all s ∈ S, [s]∼
′ ⊆ [s]∼. The refinement

relation on equivalence relations on S is then a partial order. We will write ∼ ≤ ∼′ if

∼′ is a refinement of ∼, and ∼ < ∼′ if ∼′ is a proper refinement of ∼. The following

proposition states that a refinement of the equivalence relation induces trace refinement of

the corresponding minimal existential quotient.

Proposition 5.3.3. Let P be a labelled transition system and P/∼ be an abstraction of P .

For any refinement ∼′ of the equivalence relation ∼,

P/∼ vT P/∼′ vT P.

Proof. By Proposition 5.3.2, P/∼ vT P and P/∼′ vT P . We now prove that the refinement

P/∼ vT P/∼′ also holds, having that for every s ∈ S, [s]∼
′ ⊆ [s]∼. In order to establish

that, let us define a relation ≡ on the state space S/∼′ of P/∼′. For any s, q ∈ S, we let:

[s]∼
′ ≡ [q]∼

′
if and only if s ∼ q.

In other words, we aggregate back together all those classes of equivalence under ∼′ that are

obtained by splitting the same equivalence class under ∼. Then, since ∼ is an equivalence



5.3. Abstraction Schemes for CSP 159

relation on S, ≡ is a well-defined equivalence relation on S/∼′. Therefore, by Proposi-

tion 5.3.2,

(P/∼′)/≡ vT P/∼′ . (5.3)

Let us further notice that the relation R = {([s]∼, [s]∼′/≡ ) | s ∈ S} is a strong bisimulation

relation for (P/∼, (P/∼′)/≡) and even more, it defines an isomorphism between the two

transition systems. Therefore, P/∼ ≡T (P/∼′)/≡. By this trace equivalence and (5.3) we

conclude that P/∼ vT P/∼′.

The latter proposition justifies the termination of our CEGAR cycle: starting with any

equivalence relation (partition) ∼ on S, subsequent proper refinements ∼ < ∼′ < ∼′′ < . . .

of ∼ generate a sequence of increasingly refined processes

P/∼ vT P/∼′ vT P/∼′′ vT . . . vT P,

that converges to P in at most |S | iterations.

In our implementation for the traces model, we start with the coarsest possible initial

abstraction, the one induced by aggregating all states in S in a single equivalence class. We

refer to the initial abstraction as A0.

5.3.3 A Collection of Abstractions for the Stable-Failures Model

Let us fix a process P = 〈S, init,Σ, T 〉 and an equivalence relation (partition) ∼ on S. In

this section we will introduce a collection of abstractions for the stable-failures model F

that satisfy the general requirements listed in Section 5.3.1.

Unfortunately, the abstraction P/∼ that we proposed in the previous section proves

inadequate for preserving liveness properties and, hence, for using in the stable-failures

model. As first observed in magic [CCOS04, CCO+05], existential abstraction naturally

underapproximates refusal sets at abstract states instead of overapproximating them. In

the setting of magic, a refusal Ref(s) of a concrete state s ∈ S is a set of events and

is defined as Σ \ initials(s). Following the construction of the existential quotient P/∼,

initials([s]∼) =
⋃
s′∈[s]∼ initials(s

′) which suggests that Ref([s]∼) =
⋂
s′∈[s]∼ Ref(s

′), which

is indeed the opposite of what we require for a conservative abstraction. The particular



160 5. Abstraction Schemes and CEGAR Framework for CSP and FDR

solution proposed in [CCOS04, CCO+05] revolves around the notion of an abstract refusal

of an abstract state, which is defined as AbsRef([s]∼) =
⋃
s′∈[s]∼ Ref(s

′).

In FDR, compression functions such as normalisation and diamond elimination merge

together sets of states of a process. Hence, after applying a compression, FDR transforms the

transition system of a process into a generalised transition system. In the latter, every state

is annotated by a flag indicating whether the process is divergent and, if it is not, by an extra

set of maximal refusals (or minimal acceptances). The maximal refusals (or alternatively,

the minimal acceptances) of a generalised state is an antichain over the powerset of Σ

under the set-containment order, i.e., is a set of pair-wise incomparable sets of events. The

antichain stores maximal-refusal (or alternatively, minimal-acceptance) information about

all states constituting the generalised state. Therefore, we need to extend the notion of an

abstract refusal proposed in magic and adapt it to the setting of a set of maximal refusals.

We follow the approach chosen by FDR to instead collect the set of minimal acceptances;

hence we define a set of abstract minimal acceptances. To recall, a minimal acceptance is

the dual of a maximal refusal (see Section 2.2.4.2).

We now devise an abstraction A for the stable-failures model F that meets the require-

ment A vF P . We obtain A from P/∼ by redefining the set of minimal acceptances of an

abstract state [s]∼. We need to ensure that:

∀X ∈ min acceptances(s) � ∃Y ∈ min acceptances([s]∼) � Y ⊆ X. (5.4)

In the following definitions, let us suppose that min basis is an operator which, given a

set of sets of events as an argument, returns the antichain of its minimal sets of events.

Proposal 1. Our first proposal is the following.

min acceptances([s]∼) = min basis(
⋃

s′∈[s]∼

min acceptances(s′)) (5.5)

In this case, the property (5.4) follows trivially. Indeed, suppose X ∈ min acceptances(s).

Then X ∈
⋃
s′∈[s]∼ min acceptances(s′). Therefore, there exists Y ⊆ X such that Y ∈

min basis(
⋃
s′∈[s]∼ min acceptances(s′)) = min acceptances([s]∼).

This proposal has the advantage of offering to devise a refinement of the abstraction in a

straightforward way, as we will demonstrate in Section 5.5. However in practice employing
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it turned out to blow-up exponentially the set of minimal acceptances of the high-level

process. In fact, our experiments indicated that abstracting traces and abstracting stable

failures (using this construction) were triggered by two opposite forces: the coarser the

equivalence relation, the better the abstraction in the traces model and the worse in the

stable-failures model (and conversely).

Proposal 2. Our second proposal is intended to fix this flaw by trying to decrease the

number and size of the abstract minimal acceptances that we generate. We do so by fully

expanding minimal acceptances of singleton abstract states and being as conservative as

possible in all other cases. Notice that if [s]∼ is not a singleton, then min acceptances([s]∼)

is a singleton, i.e., it contains just a single minimal-acceptance set.

min acceptances([s]∼) =

{
min acceptances(s) if [s]∼ is a singleton

{
⋂
s′∈[s]∼

⋂
Ak∈min acceptances(s′)Ak} otherwise

(5.6)

This proposal, however, might be overly conservative in certain occasions. If an abstract

state [s]∼ is composed of multiple concrete states with totally incompatible minimal accep-

tances, min acceptances([s]∼) can easily become the singleton set containing the empty set,

which does not contain any useful information.

Proposal 3. Our third proposal is intended to maintain a balance between the two pro-

posals suggested above:

min acceptances([s]∼) =


min acceptances(s) if [s]∼ is a singleton

min acceptances(sk) if | [s]∼ | > 1 and ∃ sk ∈ [s]∼�

∀ s′ ∈ [s]∼ � sk vf s′

{
⋂
s′∈[s]∼

⋂
Ak∈min acceptances(s′)Ak} otherwise

(5.7)

The notation sk vf s′ is derived from sk vF s′ by ignoring the initial events available in

both states: sk vf s′ if for all X ∈ min acceptances(s′) there exists Y ∈ min acceptances(sk)

such that Y ⊆ X.

5.3.4 Extensions for the Failures-Divergences Model

In order to generate an abstraction for the failures-divergences model, we need to further

overapproximate the divergence flag of each abstract state. We stipulate that an abstract
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state is divergent if any of its concrete representatives is divergent:

[s]∼ ⇑ iff ∃ s′ ∈ [s]∼ � s′ ⇑ .

This guarantees that s ⇑ implies [s]∼ ⇑, which is a prerequisite for establishing A vFD P .

Regarding the minimal acceptances of abstract states,

min acceptances([s]∼) =

{
∅ if [s]∼ ⇑
(5.5) or (5.6) or (5.7) otherwise

(5.8)

The initial abstraction in this case can be induced by a partition of the state space that

arranges all divergent states in one block and all non-divergent states in another (provided

both blocks are non-empty).

5.4 Refinement Checking and Counterexample Validation

Let us suppose that at some iteration of the CEGAR loop we obtain the abstracted process

A = A1 ‖ . . . ‖ An vM P = P1 ‖ . . . ‖ Pn, where for every 1 ≤ i ≤ n, Ai vM Pi. If

Spec vM A1 ‖ . . . ‖ An, by transitivity of vM, Spec vM P = P1 ‖ . . . ‖ Pn—we exit the

CEGAR loop and declare that the refinement holds.

In case Spec 6vM A1 ‖ . . . ‖ An, depending on the semantic model M, FDR generates

a counterexample behaviour b and a contribution bi of each leaf process Ai for obtaining b.

It is important to note that for a given behaviour b, the list of contributions 〈bi | 1 ≤ i ≤ n〉

is not uniquely identified, and therefore FDR plays a crucial role at this stage.

In order to establish that b is a valid behaviour of P = P1 ‖ . . . ‖ Pn, we need to verify

that each bi of Ai is a valid behaviour of its corresponding leaf Pi. If so, we report b as

a bug and exit the CEGAR loop. Otherwise, there exists a leaf process Pj for which the

behaviour bj is spurious.

We remark that the reverse implication does not necessarily follow: if there exists a

leaf process Pj for which the behaviour bj is spurious, the overall behaviour b can still be a

valid behaviour of P under some other contributions of the leaves. Hence, our strategy for

counterexample validation is conservative.

In the remainder of this section, we focus on strategies for determining whether a

behaviour b of an abstraction A = 〈SA, initA,Σ, TA〉 is valid or spurious for a leaf process

P = 〈S, init,Σ, T 〉. We skip the leaf indices of P , A and b to keep the notation simpler.
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5.4.1 Types of Counterexample Behaviours

In the most expressive of all three models, the failures-divergences model, there can be four

types of contributions to erroneous behaviours:

1. A bad initial event giving rise to an illegal trace.

2. A bad minimal-acceptance set resulting in an erroneous stable failure.

3. A bad divergence flag giving rise to a prohibited divergence trace.

4. A bad lasso trace of a subprocess that makes the overall process diverge. We remark

that a lasso trace is a finite representation of an infinite trace α = s_tω in which

a certain non-empty sequence of visible events t is repeated uninterruptedly and in-

finitely often. A subprocess Pi of P may contribute the lasso trace α to a divergence

of P if the whole set of events encountered in t is hidden in P (and no other process

prevents Pi from performing tω, or requires to interleave in between events not in t).

We recall that due to the BFS mode of state-space traversal employed in FDR for

carrying out the refinement check, every counterexample behaviour is somehow minimal.

We will assume then that all four types of counterexample behaviours are based on a valid

execution trace:

s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn.

By valid we mean that for every 0 ≤ i ≤ sn−1, the initials, the divergence flag and the

minimal acceptances at every state si do not make the overall system exhibit an illegal

behaviour. We also note that in case of a counterexample, FDR provides the execution

path π = 〈s0, . . . , sn〉 as well. On top of this valid behavioural base, we describe the

specifics of each erroneous behaviour according to its type:

bad initial An erroneous finite trace 〈a0, . . . , an−1, an〉 caused by a transition sn
an−→ sn+1.

bad minimal acceptance A (too small) set of events B ∈ min acceptances(sn) after fol-

lowing the trace 〈a0, . . . , an−1〉.

bad divergence An illegal divergence trace 〈a0, . . . , an−1〉, i.e., the divergence flag δ at

state sn is set to true.
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bad lasso trace A prohibited infinite trace 〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω resulting from a

back transition sn
an−→ sr for some 0 ≤ r ≤ n.

Let us note that in the traces model, a counterexample behaviour can only be a bad

initial, whereas in the stable-failures—a bad initial or a bad minimal acceptance.

5.4.2 Counterexample Validation of Finite Traces, Minimal Acceptances
and Divergences

If the counterexample behaviour b is of type bad initial, bad minimal acceptance or bad

divergence, we carry out the validation process in the following manner. First we construct

a deterministic labelled transition system (alternatively, a normalised process) N(b,M)

that allows all possible behaviours in the corresponding model M but b. Then we use

FDR to run a refinement check N(b,M) vM P . If the refinement relation holds, then the

original leaf process P does not exhibit the behaviour b in the model M, and therefore b

is spurious. Alternatively, if the refinement relation is refuted, then we can conclude that

b is a genuine behaviour of P . Let us observe that in the latter case, the counterexample

behaviour returned by FDR is necessarily precisely b. We exploit a similar refinement check

during the abstraction-refinement phase later on to get hold of and eliminate completely all

instances of a spurious behaviour b from an abstraction A.

It is important to note that in all three cases of behaviours, N(b,M) is normalised by

construction. Therefore, we do not need to normalise it prior to carrying out the refinement

check N(b,M) vM P . Moreover, because N(b,M) is intended to capture all possible

behaviours but one, it is amenable to a design in a compact state space. Hence the validation

process proves to be quite efficient in practice.

We now describe the constructions of N(b,M) for the different types of behaviours,

assuming that M = N , i.e., we present the most general constructions. In all the figures

illustrating the constructions, states are annotated with their sets of minimal acceptances

and divergent states are marked in circles. To keep the notation in the figures simple, we

write Σ− ai to denote Σ− {ai}.
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Case Bad Initial. Let first of all consider the case when b is a bad initial, i.e., b is of the

form

s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn

an−→ sn+1,

and the “bad event” is an. Then N(b,N ) = 〈SN , initN ,ΣN , TN 〉, where (see Figure 5.2):

• SN = {q0, . . . , qn+1} and initN = q0 and ΣN = Σ,

• TN = {qi
ai−→ qi+1 | 0 ≤ i ≤ n− 1} ∪ {qi

b−→ qn+1 | 0 ≤ i ≤ n and b ∈ Σ− {ai}} ∪

{qn+1
b−→ qn+1 | b ∈ Σ},

• min acceptances(qi) = {∅},

• δ(qi) =

{
true if i = n+ 1

false otherwise

q0 q1 q2

. . .

. . .

qn−1 qn qn+1

a0 a1 an−1

Σ− a0

Σ− a1

Σ− an

Σ

{∅} {∅} {∅} {∅} {∅} {∅}

Figure 5.2: N(b,N ) for b bad initial an after 〈a0, . . . , an−1〉

Case Bad Minimal Acceptance. Let us assume that b allows the bad minimal accep-

tanceB ⊆ Σ after the trace 〈a0, . . . , an−1〉. Then we constructN(b,N ) = 〈SN , initN ,ΣN , TN 〉,

where (see Figure 5.3):

• SN = {q0, . . . , qn+1} and initN = q0 and ΣN = Σ,

• TN = {qi
ai−→ qi+1 | 0 ≤ i ≤ n− 1} ∪ {qi

b−→ qn+1 | 0 ≤ i ≤ n− 1 and b ∈ Σ− {ai}} ∪

{qn
b−→ qn+1 | b ∈ Σ} ∪ {qn+1

b−→ qn+1 | b ∈ Σ},
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• min acceptances(qi) =

{
{{c} | c ∈ Σ−B} if i = n

{∅} otherwise,

• δ(qi) =

{
true if i = n+ 1

false otherwise

q0 q1 q2

. . .

. . .

qn−1 qn qn+1

a0 a1 an−1 Σ

Σ− a0

Σ− a1

Σ− an−1

Σ

{∅} {∅} {∅} {∅}

{{c} | c ∈ Σ−B}

{∅}

Figure 5.3: N(b,N ) for b bad minimal acceptance B after 〈a0, . . . , an−1〉

Case Bad Divergence. Let us assume that b is the divergence trace 〈a0, . . . , an−1〉. Then

we construct N(b,N ) = 〈SN , initN ,ΣN , TN 〉, where (see Figure 5.4):

• SN = {q0, . . . , qn+1} and initN = q0 and ΣN = Σ,

• TN = {qi
ai−→ qi+1 | 0 ≤ i ≤ n− 1} ∪ {qi

b−→ qn+1 | 0 ≤ i ≤ n− 1 and b ∈ Σ− {ai}} ∪

{qn+1
b−→ qn+1 | b ∈ Σ},

• min acceptances(qi) = {∅},

• δ(qi) =

{
true if i = n+ 1

false otherwise

5.4.3 Counterexample Validation of Lasso Traces

The validation of a lasso trace is of different nature compared to the validation approaches

described in the previous section. In this case the counterexample behaviour b is of the
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q0 q1 q2

. . .

. . .

qn−1 qn qn+1

a0 a1 an−1

Σ− a0

Σ− a1

Σ− an−1

Σ

{∅} {∅} {∅} {∅} {∅} {∅}

Figure 5.4: N(b,N ) for b bad divergence after 〈a0, . . . , an−1〉

form 〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω and is depicted in Figure 5.5. We employ the following

algorithm:

1. We construct a process B(b,N ) as the most nondeterministic livelock-free process

whose traces are precisely all prefixes of 〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω.

2. We devise a process P ‖
Σ
B(b,N ). Its traces are precisely all prefixes of

〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω that are also traces of P .

3. We check whether the process Test = (P ‖
Σ
B(b,N )) \ Σ is livelock-free. If it is, we

conclude that P does not exhibit b, hence b is spurious. If Test is divergent, then

there are two possibilities: either b is a valid behaviour of P , or P itself diverges on a

prefix of 〈a0, . . . , an〉. In the latter case, however, b is a valid behaviour of P as well

because the set of divergences is postfix-closed.

We now present the construction of the process B(b,N ) from step 1 above. B(b,N ) =

〈SB, initB,ΣB, TB〉, where (see Figure 5.5):

• SB = {q0, . . . , qn} and initB = q0 and ΣB = Σ,

• TB = {qi
ai−→ qi+1 | 0 ≤ i ≤ n− 1} ∪ {qn

an−→ qr},

• min acceptances(qi) = {{ai}},

• δ(qi) = false
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q0 q1

. . .
qr qr+1

. . .
qn−1 qn

a0 a1 ar an−1

an

{{a0}} {{a1}} {{ar}} {{an−1}} {{an}}

Figure 5.5: B(b,N ) for b bad lasso trace 〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω

5.5 Abstraction Refinement

Let us suppose that at some iteration of the CEGAR loop we establish that a given behaviour

b introduced by an abstract execution ρ of the abstracted leaf A = 〈SA, initA,Σ, TA〉 is

spurious for the original leaf P = 〈S, init,Σ, T 〉. Let us further suppose that A = P/∼ , i.e.,

that the abstraction A is induced by a given equivalence relation (partition) ∼ on S, with

the sets of minimal acceptances and the divergence flags adjusted accordingly, depending

on the CSP model M.

In this section we present strategies for obtaining a proper refinement ∼′ of ∼ such

that the corresponding abstraction A′ = P/∼′ does not allow the spurious execution ρ

and maintains the invariant A vM A′ vM P . We remark that after eliminating ρ from

A, the resulting refinement A′ might still have other instances of the spurious behaviour b

manifested on other paths of the transition system. Methods for obtaining and eliminating

all executions instances of b in A using subsequent refinement checks in FDR are presented

as Algorithms 6 and 7, for finite and lasso behaviours, respectively. The constructions of

N(b,M) and B(b,N ) are described in the previous section; they are the same as the ones

we used for counterexample validation. The function purge takes as input an abstraction

A along with an execution ρ of A giving rise to an observable behaviour b, and generates a

new refined abstraction A′ by splitting blocks in A along ρ.

In the remainder of this section we focus on eliminating a given spurious execution ρ

from A that gives rise to an observable behaviour b. In other words, we present strategies

for implementing the function purge depending on the type of behaviour of b. We note that,

even if we purge just a single execution ρ from A, instead of all execution instances of b

in A, our definition of ∼′ as a proper refinement of ∼ satisfies the progress requirement
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Algorithm 6 Obtaining all spurious executions of finite behaviours

Input: An abstraction A of P and an execution ρ of A exhibiting a behaviour b spurious for P in
a semantic model M

Output: A refined abstraction A′ with A vM A′ vM P and no manifestation of b in A′

1: purge(A, b, ρ) 7−→ A′

2: while N(b,M) 6vM A′ do
3: obtain a counterexample execution ρ′

4: // ρ′ necessarily exhibits b as well
5: purge(A′, b, ρ′) 7−→ A′′

6: A′ = A′′

7: end while
8: return A′

Algorithm 7 Obtaining all spurious executions of lasso traces

Input: An abstraction A of P and an execution ρ of A exhibiting a lasso trace b spurious for P
Output: A refined abstraction A′ with A vFD A′ vFD P and no manifestation of b in A′

1: purge(A, b, ρ) 7−→ A′

2: while (B(b,N ) ‖
Σ
A′) \ Σ diverges and the counterexample ρ′ is a lasso do

3: // ρ′ necessarily exhibits b as well
4: purge(A′, b, ρ′) 7−→ A′′

5: A′ = A′′

6: end while
7: return A′

necessary for the termination of the CEGAR loop.

To formalise our ideas, let us introduce a few auxiliary definitions and notations, revolv-

ing around the notions of abstraction and concretisation [CC77]. Throughout this section

we will use the small Greek letters α and β to denote the states of A. Furthermore, we will

write −→ instead of −→A to denote transitions of the abstract model A when the context

is unambiguous. First we define ∼-concretisation of an abstract state α:

∼−1(α) = {s ∈ S | s ∈ α},

We lift this definition to a concretisation of an abstract execution fragment. If ρ is of the

form:

ρ = α0
a0−→ α1

a1−→ . . . αn−1
an−1−→ αn,

then the ∼-concretisation of ρ is given by:

∼−1(ρ) = {s0
a0−→ s1

a1−→ . . . sn−1
an−1−→ sn | si ∈ αi and for 0 ≤ i ≤ n− 1, si

ai−→ si+1 }.
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We also use the following notation. For ρ defined as above and 0 ≤ i ≤ n, let ρ � i be

the execution fragment obtained from the first i steps of ρ, i.e.:

ρ � i = α0
a0−→ α1

a1−→ . . . αi−1
ai−1−→ αi.

5.5.1 Simulation of Abstract Executions

Let ρ = α0
a0−→ α1

a1−→ . . . αn−1
an−1−→ αn with α0 = [init]∼ be an execution of A = P/∼ . We

give an algorithm Simulate based on [CGJ+00] that aims to compute ∼−1(ρ), i.e., the set

of concrete executions of P = 〈init,Post〉 that correspond to ρ. At each step i we define a

set of reachable concrete states Ri inductively as follows:

R0 = ∼−1(α0) ∩ {init} = {init}

Ri = Post(Ri−1, ai−1) ∩ ∼−1(αi) for i = 1, . . . , n

We present the algorithm Simulate below. It simulates the trace 〈a0, . . . , an−1〉 on P by

propagating it as further as possible along ∼−1(ρ) executions of P . The algorithm computes

the maximum index i such that ∼−1(ρ � i) 6= ∅, i.e., the maximum index i satisfying Ri 6= ∅.

Algorithm 8 Simulate (Based on [CGJ+00])

1: R′ = ∅
2: R = ∼−1(α0) ∩ {init} = {init}
3: i = 0
4: while i < n and R 6= ∅ do
5: i = i+ 1
6: R′ = R
7: R = Post(R′, ai−1) ∩ ∼−1(αi)
8: end while
9: if R 6= ∅ then

10: return 〈R, i〉
11: else
12: return 〈R′, i− 1〉
13: end if

If upon termination the algorithm returns the tuple 〈R, i〉 with i = n, then the abstract

execution ρ of A corresponds to a genuine execution of P and we can conclude that the

trace 〈a0, . . . , an−1〉 is a valid trace of P . If i < n, then we call the abstract state αi the

pivot state of ρ (after [HJMS02]). We also refer to ai as the bad event. Intuitively, the

transition αi
ai−→ αi+1 is the last transition on the shortest failure of ∼−1 (ρ) in P . The

pivot abstract state αi can be partitioned to the following sets of concrete states:
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• dead end(αi) = R 6= ∅ are the states of P that are reachable from init through

〈a0, . . . , ai−1〉 along ∼-concretisations of ρ � i. For every s ∈ dead end(αi) there is no

transition s
ai−→ s′ in P for any s′ ∈ αi+1.

• bad(αi) = Pre(αi+1, ai) 6= ∅ are the states in αi that are not reachable from init

through 〈a0, . . . , ai−1〉 along ∼-concretisations of ρ � i, but have ai-successors in αi+1.

Those are the concrete states that contribute to the failure. bad(αi) 6= ∅ due to

the (minimal) existential nature of the abstract transition relation and the fact that

αi
ai−→ αi+1 is a valid abstract transition.

• dont care(αi) = αi − (dead end(αi) ∪ bad(αi)) is the set of concrete states in αi that

are neither reachable from init through 〈a0, . . . , ai−1〉 along ∼-concretisations of ρ � i,

nor have ai-successors in αi+1.

We highlight the following three observations: 1) both dead end(αi) and bad(αi) are non-

empty, 2) dont care(αi) may or may not be empty, and 3) all states in dead end(αi) and

dont care(αi) may have ai-successors in abstract states different from αi+1.

We now present our abstraction-refinement strategies depending on the type of spurious

behaviour, assuming that we work in the most general of all three modelsN . We also remark

that we perform the abstraction-refinement step after already having established that the

behaviour is spurious.

5.5.2 Abstraction-Refinement Strategies for Spurious Finite Traces

Let us first consider an abstract execution ρ of A = P/∼

ρ = α0
a0−→ α1

a1−→ α2 · · · αn−1
an−1−→ αn

an−→ αn+1,

giving rise to a finite trace w = 〈a0, . . . , an〉 spurious for P . Since w is spurious for P ,

we have Reach(P, init, w) = ∅. We use the algorithm Simulate on ρ to provide the failure

transition αi
ai−→ αi+1 of ρ together with the sets dead end(αi), bad(αi) and dont care(αi),

as described in Section 5.5.1.

We now describe a collection of refinement strategies that achieve the goal to purge

the spurious execution ρ from A. In all of those we derive a proper refinement ∼′ of ∼

that agrees with ∼ on all abstract states different from αi and splits αi to two or more
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equivalence classes in a way that detaches bad(αi) from dead end(αi). We recall that both

bad(αi) and dead end(αi) are non-empty. For strategies T3 to T7 below, we create a new

equivalence class αij only if the latter is non-empty.

T1 Split αi to:

1. αi1 = bad(αi), and

2. αi2 = dead end(αi) ∪ dont care(αi).

This corresponds to the original bisimulation quotienting algorithms suggested in

[KS83, PT87].

T2 Split αi to [CCO+05]:

1. αi1 = dead end(αi), and

2. αi2 = bad(αi) ∪ dont care(αi).

T3 Split αi to:

1. αi1 = dead end(αi),

2. αi2 = bad(αi), and

3. αi3 = dont care(αi).

T4 Split αi to:

1. αi1 = bad(αi),

2. αi2 = dont care(αi),

3. αi3 = {s ∈ dead end(αi) | Post(s, ai) 6= ∅}, and

4. αi4 = {s ∈ dead end(αi) | Post(s, ai) = ∅}.

Here we recall that states in dead end(αi) may have ai-successors to states not in

αi+1.

T5 Split αi to :

1. αi1 = dead end(αi),
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2. αi2 = bad(αi),

3. αi3 = {s ∈ dont care(αi) | Post(s, ai) 6= ∅}, and

4. αi4 = {s ∈ dont care(αi) | Post(s, ai) = ∅}.

T6 Split αi to [Val09, VF10]:

1. αi1 = {s ∈ bad(αi) | Post(s, ai) ⊆ αi+1},

2. αi2 = {s ∈ bad(αi) | Post(s, ai) ∩ αi+1 6= ∅ and Post(s, ai)− αi+1 6= ∅}, and

3. αi3 = dead end(αi) ∪ dont care(αi).

T7 Split αi to:

1. αi1 = {s ∈ bad(αi) | Post(s, ai) ⊆ αi+1},

2. αi2 = {s ∈ bad(αi) | Post(s, ai) ∩ αi+1 6= ∅ and Post(s, ai)− αi+1 6= ∅},

3. αi3 = dead end(αi), and

4. αi4 = dont care(αi).

T8 Split αi to multiple equivalence classes with respect to their abstract ai-successors

[COYC03]. For any s, q ∈ αi, s ∼′ q if and only if {[s′]∼ | s ai−→ s′} = {[q′]∼ | q ai−→ q′},

i.e., if s and q have overlapping sets of abstract ai-successors with respect to ∼. For

any s 6∈ αi, [s]∼
′

= [s]∼.

5.5.3 Abstraction-Refinement Strategies for Spurious Minimal Accep-
tances

Let us now consider the case when the spurious behaviour b is an abstract execution ρ of

A = P/∼ :

ρ = α0
a0−→ α1

a1−→ α2 · · · αn−1
an−1−→ αn,

giving rise to a bad minimal-acceptance set B ⊆ Σ at state αn. The spuriousness of b can

manifest itself in two ways:

1. either ρ cannot be matched by a valid execution of P , i.e., ∼−1(ρ) = ∅,

2. or, for all valid executions s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn ∈ ∼−1(ρ), the set of

events B is not an acceptance of sn, i.e., for all C ∈ min acceptances(sn), C 6⊆ B.
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Whether ρ is spurious because of reason 1 or 2 above we can check by running the algo-

rithm Simulate on ρ. Let us suppose that Simulate returns the tuple of values 〈R, i〉 upon

termination. As described in Section 5.5.1, if i < n, then ρ cannot be concretised to a valid

execution of P and we use the abstraction-refinement strategies described in Section 5.5.2.

Let us now focus on the case when Simulate returns i = n, together with the set of

reachable states R ⊆ αn of P . We distinguish different cases depending on the type of

abstraction that we use for minimal acceptances (see Section 5.3.3).

Proposal 1. Let us first consider the case when for each abstract state α we let:

min acceptances(α) = min basis(
⋃
s∈α

min acceptances(s)).

Then, since B ∈ min acceptances(αn), by construction there exists sb ∈ αn, such that B is

an acceptance of sb. For the sake of the argument, let us suppose that sb ∈ R. Then there

would be a valid execution s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn of P such that sn = sb

and B is an acceptance of sn. But then the behaviour b would not be spurious. Therefore

sb /∈ R. We distinguish three types of concrete states in αn:

1. dead end(αn) = R 6= ∅ is the set of concrete states of P that are reachable from init

through 〈a0, . . . , an−1〉 along ∼-concretisations of ρ. For every s ∈ dead end(αn), B

is not an acceptance of s. dead end(αn) 6= ∅ because the algorithm Simulate returns

an index i = n.

2. bad(αn) = {s ∈ αn | B is an acceptance (not necessarily minimal) of s}. bad(αn) 6= ∅

because B is a minimal acceptance of αn. Those are the concrete states that contribute

to b being spurious.

3. dont care(αn) = αn − (dead end(αn) ∪ bad(αn)), which may or may not be empty.

In order to eliminate the spurious behaviour b, we introduce a proper refinement ∼′ of

∼ that agrees on all abstract states different from αn and separates the two non-empty

sets dead end(αn) and bad(αn) of αn in different equivalence classes under ∼′. Any of the

following strategies below achieves this objective and A13 is only possible if dont care(αn) 6=

∅.
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A11 Split αn to αn1 = bad(αn) and αn2 = dead end(αn) ∪ dont care(αn).

A12 Split αn to αn1 = dead end(αn) and αn2 = bad(αn) ∪ dont care(αn).

A13 Split αn to αn1 = dead end(αn), αn2 = bad(αn) and αn3 = dont care(αn).

Proposal 2. Let us now consider the case when for each abstract state α we let:

min acceptances(α) =

{
min acceptances(s) if α is the singleton set {s}
{
⋂
s∈α

⋂
Ak∈min acceptances(s)Ak} otherwise

Given the set of concrete states R ⊆ αn of P , reachable after 〈a0, . . . , an−1〉 along ∼-

concretisations of ρ, we first check whether αn − R 6= ∅. If this is the case, we use the

following refinement ∼′ of ∼, which agrees with ∼ outside αn.

A21 Split αn to αn1 = R and αn2 = αn −R.

If all states of αn are reachable, i.e., αn = R, then we claim that αn consists of at least

two concrete states. Indeed, suppose for the sake of the argument that the abstract state

αn, which exhibits the bad minimal acceptance B, is the singleton set {s} for some s ∈ S.

But then by construction min acceptances(αn) = min acceptances(s), whereby B would be

a minimal acceptance of s. Then, since s ∈ R, the behaviour b would not be spurious for

P . Therefore, αn = R contains at least two states sn1 and sn1 . We detach sn1 from αn in

∼′ and let ∼′ of ∼ agree on all equivalence classes different from αn.

A22 Split αn to αn1 = {sn1} and αn2 = αn − {sn1}.

As a result, all minimal acceptances of sn1 will be expanded in the abstract state [sn1 ]∼
′
.

Proposal 3. Finally we consider the case when for each abstract state α we let:

min acceptances(α) =


min acceptances(s) if α is the singleton set {s}
min acceptances(sk) if |α | > 1 and ∃ sk ∈ α�

∀ s ∈ α � sk vf s
{
⋂
s∈α

⋂
Ak∈min acceptances(s)Ak} otherwise

This case is handled very similarly to the previous one. Given the set of concrete states

R ⊆ αn of P , reachable after 〈a0, . . . , an−1〉 along ∼-concretisations of ρ, we first check

whether αn −R 6= ∅. If so, we use the same refinement as A21.
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A31 Split αn to αn1 = R and αn2 = αn −R.

If αn = R, again αn contains at least two concrete states sn1 and sn1 , so we can just move

one of them in a new equivalence class under ∼′.

A32 Split αn to αn1 = {sn1} and αn2 = αn − {sn1}.

With this abstraction, however, we can as well try to identify a concrete state sk ∈ αn and

a subset Q of αn such that Q = {s ∈ αn | sk vf s}. Q will be a proper subset of αn because

otherwise the behaviour b would have been spurious for the concrete execution ending in

sk.

A33 Split αn to αn1 = Q and αn2 = αn −Q.

In this case the minimal acceptances of Q under ∼′ will be fully expanded to the set

min acceptances(sk).

5.5.4 Abstraction-Refinement Strategies for Spurious Divergences

Let us now consider the case when the spurious behaviour b is an abstract execution ρ of

A = P/∼

ρ = α0
a0−→ α1

a1−→ α2 · · · αn−1
an−1−→ αn,

ending in a divergent abstract state αn. The reasons for b being spurious can be the

following:

1. either ρ does not concretise to a valid execution of P , i.e., ∼−1(ρ) = ∅,

2. or, for all valid executions s0
a0−→ s1

a1−→ s2 · · · sn−1
an−1−→ sn ∈ ∼−1 (ρ), the last

concrete state sn is not divergent.

Whether ρ is spurious because of reason 1 or 2 above we can check by running the algo-

rithm Simulate on ρ. Let us suppose that Simulate returns the tuple of values 〈R, i〉 upon

termination. As described in Section 5.5.1, if i < n, then ρ cannot be concretised to a valid

execution of P and we use the abstraction-refinement strategies described in Section 5.5.2.

Let us now focus on the case when Simulate returns i = n, together with the non-empty

set of reachable states R ⊆ αn of P . It is clear then that all concrete states in R are not
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divergent as otherwise the behaviour b would not have been spurious. Let us notice as

well that, because αn is divergent, there exists a concrete state sb ∈ αn which is divergent.

Therefore we identify three types of concrete states in αn:

1. dead end(αn) = R 6= ∅ is the set of concrete states of P that are reachable from init

through 〈a0, . . . , an−1〉 along ∼-concretisations of ρ. For every s ∈ dead end(αn), s is

not divergent.

2. bad(αn) = {s ∈ αn | s is divergent}. bad(αn) 6= ∅ because αn is divergent. Those are

the concrete states that contribute to b being spurious.

3. dont care(αn) = αn − (dead end(αn) ∪ bad(αn)), which may or may not be empty.

Then in the new partition ∼′ we can employ the following strategies for splitting αn (and

for s /∈ αn,[s]∼
′

= [s]∼):

D1 Split αn to αn1 = bad(αn) and αn2 = dead end(αn) ∪ dont care(αn).

D2 Split αn to αn1 = dead end(αn) and αn2 = bad(αn) ∪ dont care(αn).

D3 Split αn to αn1 = dead end(αn), αn2 = bad(αn) and αn3 = dont care(αn).

5.5.5 Abstraction-Refinement Strategies for Spurious Lasso Traces

Let us finally consider the case when the spurious behaviour b is an infinite word w =

〈a0, . . . , ar−1〉_〈ar, . . . , an〉ω resulting from an abstract execution ρ as depicted in Figure 5.6

(where 0 ≤ r ≤ n).

α0 α1

. . .
αr αr+1

. . .
αn−1 αn

a0 a1 ar an−1

an

Figure 5.6: A spurious lasso trace

We first simulate the trace t = 〈a0, . . . , ar−1, ar, . . . , an〉 on P using the algorithm

Simulate to obtain the tuple of return values 〈R, i〉. If i < n+ 1, then

∼−1(α0
a0−→ α1

a1−→ . . . αn−1
an−1−→ αn

an−→ αn+1 = αr) = ∅
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and we use the abstraction-refinement strategies described in Section 5.5.2.

If i = n + 1, we check whether αn+1 = αr = R. If not, we can just detach R from αr

to obtain a proper refinement ∼′ of ∼. For any s 6∈ αr, we let [s]∼
′

= [s]∼.

L1 Split αr to αr1 = R and αr2 = αr −R.

If i = n + 1, regardless of whether R = αr or not, we can use the algorithm Simulate

on ρ until it terminates, i.e., until at some iteration of the loop αr
ar−→ αr+1 . . . αn−1

an−1−→

αn
an−→ αr, Simulate reaches a set of dead-end states R′ ⊆ αj for some j ∈ {αr, . . . , αn} and

Post(R′, aj)∩αj+1 = ∅ (we assume αn+1 = αr). Because ρ is spurious, Simulate reaches such

a tuple 〈R′, j〉 after at most minr≤k≤n |αk | iterations of the loop αr
ar−→ αr+1 . . . αn−1

an−1−→

αn
an−→ αr, as proven in [CGJ+00, CGJ+03]. Having the tuple 〈R′, j〉, we then use the

abstraction refinement strategies described in Section 5.5.2 to obtain a proper refinement

∼′ of ∼.

L2 Keep simulating the infinite abstract execution ρ until reaching a pivot state αj . Split

αj according to the selected strategy for refining abstract finite traces presented in

Section 5.5.2.

5.6 Implementation Details

We have implemented the CEGAR framework presented in this chapter in a prototype tool

developed in C++ on top of FDR.

As we pointed out in Section 5.3.3, abstracting models based on traces and abstracting

models based on stable failures are triggered by two opposite forces: the coarser the par-

titions on the state spaces of the leaf processes, the better the performance in the traces

model and the worse in the stable-failures model (and conversely). In order to achieve a

sensible balance between those two forces, our CEGAR framework performs two successive

CEGAR loops if working in the stable-failures or the failures-divergences model of CSP.

The first CEGAR loop focuses on establishing or refuting the trace-refinement relationship

exclusively. If trace refinement holds, the second CEGAR loop takes as initial partitions

the partitions obtained by the trace CEGAR loop and continues refining them as in the

standard CEGAR framework.
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5.6.1 Aggressive vs. Lazy Strategies

We have implemented and experimented with different strategies regarding the four main

stages of the CEGAR loop. More aggressive strategies generally yield a shorter sequence

of abstractions with larger state spaces. Lazy strategies refine abstractions only when

necessary, aiming to generate coarser partitions. In this case, the subsequent abstractions

have smaller state spaces, but the CEGAR loop might take a greater number of iterations

to converge. The choice of a particular strategy is configurable and some of the aggressive

strategies remain for future work. Nonetheless, empirical evidence suggests that generally

lazy strategies are more successful in combating the state-space explosion problem and,

hence, yield better performance results.

Regarding abstraction, our prototype supports all abstraction schemes described in

Section 5.3, including all three proposals for abstracting minimal acceptances. Regarding

initial partitions, the laziest strategy corresponds to aggregating together all states of a leaf

process. A slightly more precise initial abstraction if working in the failures-divergences

model is to partition the concrete state space into two equivalence classes—one for all

immediately divergent states and one for all immediately non-divergent states (provided

both classes are non-empty). An aggressive strategy for initial abstraction would be to

aggregate together all states that are willing to communicate exactly the same sets of

visible events, although we have not implemented this strategy yet.

In the refinement checking phase, at each iteration of the CEGAR loop we can consider

a single counterexample behaviour (of the entire implementation process) or multiple ones.

The latter one is a valid option as FDR provides functionality for extending the state-space

traversal until a configurable number of counterexample executions are found. Again, our

prototype tool currently supports the former lazy option only.

In the abstraction-refinement phase, we have different options for the number of leaf

processes to refine, the number of executions per spurious behaviour to eliminate and the

strategy to follow when splitting abstract states.

Firstly, we can lazily refine a single process [COYC03, CCO+05] or aggressively refine

all leaf processes whose contribution behaviours are spurious. Our prototype tool supports
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both options and we consider implementing a third option that randomises the number of

leaves to refine.

Regarding the number of executions giving rise to a spurious behaviour in a given

abstract leaf process, we have the option to eliminate just a single execution (the one

reported by FDR), all possible executions, or a random number of those. Currently only

the laziest first option is implemented, although in Section 5.5 we have demonstrated how

to get hold of subsequent execution instances of a spurious behaviour with the help of FDR.

And finally, our tool supports a variety of strategies for splitting abstract states, depend-

ing on the semantic model and the type of spurious behaviour detected. Those currently

include all strategies presented in Section 5.5, apart from T8, A33 and L2.

5.7 Experimental Results

In this section, we analyse the performance of our prototype tool on a number of case studies,

comparing it against the performance of FDR 2.91. We experimented with verifying both

safety and liveness properties, including checks for livelock and deadlock. Our test cases

include Milner’s scheduler, the alternating bit protocol, the mad postman network routing

protocol [YJ89], a distributed database algorithm [Ros98, Ros90], Fischer’s mutual exclusion

algorithm and the dining philosophers.

The experimental results are summarised in Tables 5.1, 5.2 and 5.3 below. In all tables,

times are reported in seconds, with * denoting a 30-minute timeout. The columns titled ]

report the number of iterations that it takes for CEGAR to converge, and the columns titled

Refinement reflect the abstraction-refinement strategies that are used for the particular test

case. All experimental results use Proposal 3 for abstracting minimal acceptances. The

experiments were performed on a 3.07 GHz Intel Xeon processor with 8 GB RAM running

Linux Ubuntu.

We note that the column for FDR represents its use with none of its compression

functions used. As shown in [Ros98], applying compression techniques on some of those

systems (e.g., on Milner’s scheduler) results in a significant state-space reduction and, hence,

in a much better performance. However, in general, picking the right compression function
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and compression strategy often requires a lot of experience and skill: it can be highly

beneficial, detrimental, or not have any effect at all.

In terms of performance, experiments indicated that the CEGAR approach can either

significantly boost or significantly deteriorate the process of refinement checking, depend-

ing on whether or not the property is established or refuted before all leaf processes get

fully expanded. We observed such polar results when verifying both safety and liveness

properties, as illustrated in Tables 5.1 and 5.2.

Table 5.1: CEGAR framework: experimental results. Times reported are in seconds, with
* denoting a 30-minute timeout.

Property Benchmark FDR CEGAR ] Refinement

Trace Milner-10 0 0.03 21 T1
(safety), Milner-20 158 0.07 41

holds Milner-30 * 0.16 61
Milner-50 * 0.64 101
Milner-100 * 4.42 201
Milner-200 * 40.01 401

Deadlock Mad Postman-3 4 0.03 4 T1, A31 + A32
(liveness), Mad Postman-5 * 0.22 4

holds Mad Postman-7 * 1.49 4
Mad Postman-9 * 7.13 4

Livelock Mad Postman-3 6 0.04 11 T1, A31 + A32 + D2
(liveness), Mad Postman-4 * 4.52 18

holds Mad Postman-5 * * —

Buffer property
(liveness), Divergent ABP-5 0 0.2 20 T1, A31 + A32 + D2
violated

Mutual exclusion T5 +
(safety), Fischer-5-3-20 0 29.3 22 refine multiple leaves

holds

Livelock DistributedDB-5 2.73 310 T1, A31 + A32 + D2
(liveness), DistributedDB-6 15 26.1 515

holds DistributedDB-7 541 1353.02 780
DistributedDB-8 * * —

For Milner’s scheduler, the a-rotation property (as described in Section 2.2.2) is estab-

lished after all cell process are refined to contain three instead of four states. The CEGAR

loop using abstraction-refinement strategy T1 is presented in Figures 5.7 and 5.8, where

the underlined concrete states are the bad states at pivot abstract states and spurious leaf
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traces are depicted in red. If considering just a single leaf process, the abstraction yields

a reduction of only 25% in its state space. However, due to the state-space explosion phe-

nomenon, when considering networks of multiple processes composed in parallel, even such

a minor reduction yields an enormous boost in the performance of the entire network. The

CEGAR framework outperforms the standard single-pass exploration mode of FDR by or-

ders of magnitude, even for networks of relatively average size of 20 or 30, as recorded in

Table 5.1.

The mad postman [YJ89] is a deadlock-free routing algorithm for forwarding message

packets across a network. It assumes a rectangular grid of network points and supports

message transfer from any source point to any destination point, where points can directly

communicate with their immediate neighbours only. In our experiments, a mad postman

network of size n constitutes a square grid of node processes {Ni,j | 1 ≤ i, j ≤ n}, where

each node process Ni,j can be concisely and elegantly modelled as a parallel composition

of two processes Ii,j and Oi,j . The key idea is that Ni,j delegates different responsibilities

to its component processes. Ii,j can only intercept messages from a user, forward messages

to the right and down I neighbours Ii+1,j and Ii,j−1, respectively, as well as transfer a

message to Oi,j . On the other hand, Oi,j is responsible for advancing messages to the left

and up neighbours Oi−1,j and Oi,j+1, as well as for delivering messages to recipient users.

In a nutshell, a message intended from a user at Ni,j to a user at Nk,l is input by Ii,j ,

propagated as far to the right and down as necessary until reaching a transfer point In,m,

passed from In,m to On,m, then propagated from On,m to Ok,l and then subsequently to the

recipient user. The values for n and m are calculated as n = max(i, k) and m = min(j, l)

and a CSP modelling of the entire algorithm can be found in [Ros98].

An interesting observation is that establishing both deadlock and livelock freedom of the

mad postman algorithm is in a way data independent. Deadlock freedom is established when

for some 1 ≤ i, j ≤ n, Ii,j and Oi,j get fully expanded, regardless of the size of the grid. The

first iteration is used to establish that the property holds in the traces model. Iterations two

and three expand Ii,j and Oi,j , respectively, and iteration four proves sufficient to establish

that the property holds in the stable-failures model. Similarly, livelock freedom for the

mad postman protocol is established after all Ii,j get fully expanded, again regardless of the
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size of the grid. For verifying both deadlock and livelock freedom, the CEGAR framework

significantly outperforms FDR, as is apparent from the results in Table 5.1.

For the alternating bit protocol with media losing up to 5 messages in a row (see

Section 4.2), we check whether the buffer property holds for the unconstrained divergent

version. The property is proven violated after reducing the state spaces of the erroneous

media E(4) and F (4) from 21 to 5 states and from 11 to 5 states, respectively. For all

livelock-free versions of ABP (for which the buffer property holds) there is no reduction in

the state space.

Similarly for Fischer’s mutual exclusion protocol for 5 processes using time constants 3

and 20, we detect a fair amount of state-space reduction, which, however, proves insufficient

for outperforming FDR.

The experiments with the distributed database illustrate how employing CEGAR can

also significantly worsen the refinement check, especially if working in CSP models that take

account of acceptances or refusals. As pointed out in Section 4.9.2, establishing livelock

freedom of the distributed database is exceptionally intricate and the CEGAR approach

yielded no reduction at all. Consequently, FDR is considerably more efficient in establishing

livelock freedom.

In Table 5.2, we analyse the performance of the CEGAR framework on a collection of

implementations of the classical dining philosophers—the original one that deadlocks, an

asymmetric one that includes a single left-handed philosopher, as well as a version that

employs a butler to schedule seats. As opposed to the distributed database, establishing

livelock freedom of this class of scripts is trivial and is accomplished by our prototype in

just two iterations, tremendously outperforming FDR. As it comes to establishing deadlock

freedom, however, the performance of the CEGAR prototype deteriorates compared to that

of FDR, despite achieving reductions in the state space. For both the deadlock-free and

the deadlock-manifesting versions, the prototype converges before all leaf processes get fully

expanded, but records a substantial overhead in intermediate stable-failures checks due to

the blow-up of minimal acceptances.

In Table 5.3, we compare a number of strategies for refining abstractions when en-

countering spurious traces, as defined in Section 5.3.2. The experiment is performed in the

context of establishing livelock freedom of the distributed database algorithm [Ros98, Ros90]
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Table 5.2: CEGAR framework: experimental results for the dining philosophers. The
strategies for abstraction refinement used are T1, A31 + A32 + D2.

Dining Philosophers

Property N Standard Asymmetric Butler

FDR CEGAR ] FDR CEGAR ] FDR CEGAR ]

Livelock 5 0 0 2 0 0 2 0 0 2
(liveness), 6 0 0.01 2 0 0.01 2 0 0.01 2

holds 7 1 0.01 2 1 0.01 2 1 0.01 2
8 11 0.01 2 11 0.01 2 9 0.01 2
9 93 0.02 2 90 0.02 2 76 0.02 2

10 846 0.02 2 824 0.02 2 756 0.02 2
50 — 1.95 2 — 2.06 2 — 2.22 2

Deadlock 5 0 0.25 28 0 0.40 32 0 0.15 46
(liveness), 6 0 1.64 34 0 6.58 41 0 0.87 55
holds for 7 0 15.34 38 0 34.41 43 1 5.65 64

Asymmetric 8 2 144.65 44 16 82.90 50 14 47.69 73
and 9 15 834.05 49 121 720 47 105 386.72 81

Butler 10 101 — — 864 — — 807 — —

for 6 nodes. For each of the refinement strategies, we also compare the performance and

convergence rate of the CEGAR framework depending on how many leaf processes are re-

fined on each iteration. In this respect, c = 1 indicates refining a single leaf process per

iteration, and c = ∗ indicates refining all leaf processes that contribute spurious behaviours.

Let us observe the following:

• When refining a single leaf, the strategies that do not mix bad and don’t care states

typically yield better results (e.g., T1, T4 and T6). Out of those strategies, the most

conservative one (T1, which detaches the bad states only) performs the best, even

though it takes the greatest number of iterations to converge. In terms of performance,

the worst of all strategies is T5, the one that undertakes the least number of CEGAR

cycles. This is the strategy that further partitions don’t care states. However, the

conclusions can not be generalised: the counterexample is strategy T2 that does not

mix bad and don’t care states but yields a second worst result in terms of performance.

• If comparing each strategy in terms of number of leaves refined at each iteration of the

CEGAR loop, there is no general rule either. For all of them, multiple leaf refinement

makes convergence faster, but for some strategies (T3, T5, T7) the performance is
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Table 5.3: CEGAR framework: comparison of different strategies for trace refinement. The
test case is establishing livelock freedom of a distributed database with 6 nodes. The rows
titled c = 1 and c = ∗ denote the number of leaves to refine at each iteration, with 1 meaning
one and ∗ meaning all spurious component processes (but each leaf process at most once).

DistributedDB-6

T1 T2 T3 T4 T5 T6 T7

c = 1 24.88 41.51 34.63 26.83 97.59 23.09 27.79
] 514 345 268 263 220 523 276

c = ∗ 22.71 41.09 18.67 24.48 32.6 35.53 21.24
] 240 302 151 128 120 191 141

significantly better, for others it is comparable (T1, T2, T4), and for T6 it is worse.

Based on those observations, we speculate that perhaps better results can be obtained

if, at each iteration, we randomise the choice of refinement strategy and number of leaves

to refine.

5.8 Conclusion and Future Work

In this chapter, we introduced a fully automated and compositional CEGAR framework for

refinement checking in the traces, stable-failures and failures-divergences models of CSP.

We proposed strategies for carrying out the stages of initial abstraction, counterexample

validation and abstraction refinement component-wisely on leaf-process level, exploiting the-

oretical results on the compositionality, transitivity and monotonicity of CSP operators and

facilitated by the capabilities of FDR. To the best of our knowledge, our work constituted

the first application of CEGAR, in its automated form, to the setting of CSP.

Experiments with a prototype tool developed on top of FDR indicated that the CEGAR

approach was in a position to significantly boost the performance of FDR when verifying

correctness properties which did not address the full spectrum of details present in the sys-

tem. We witnessed a significant enhancement in terms of performance when verifying both

safety and liveness properties, including checks for livelock and deadlock. High performance,

however, depended on whether or not the specification property was established or refuted

before all leaves of the implementation process got fully expanded. In the negative, the

subsequent abstraction/refinement steps naturally incurred a large performance overhead.
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A certain limitation of our approach stems from the fact that abstracting models based

on traces and abstracting models based on stable failures are triggered by two opposite

forces. Despite adopting abstraction/refinement strategies for balancing those forces and

an algorithm employing two consecutive CEGAR loops, we sometimes observed a massive

blow-up of the minimal acceptance sets in intermediate refinement steps. In order to further

minimise abstract minimal acceptances, we plan to investigate methods and possibly employ

symbolic (or antichain) techniques for efficiently identifying structural refinements between

groups of concrete states. Furthermore, we intend to make the refinement strategies more

flexible and let them split abstract states into multiple parts on demand, should suitable

structural refinements be detected.

As an alternative, we plan to extend the diamond elimination compression technique

[RGG+95, Ros11b], that we used as a preprocessing step, by introducing further methods

for detecting pairs of LTS states P,Q satisfying P v Q. After diamond elimination, in

contrast to after normalisation, there can be ambiguous branching with respect to visible

events. The technique is grounded on the observation that if N
a−→ P , N

a−→ Q and

Q ∈ τ∗(P ), then P v Q and eliminating Q would not change the semantic value of the

process. In the current implementation of FDR, iterated τ reachability is the only method

for detecting such structural refinement of states. We plan to introduce other techniques

based on simulation relations. For example, if P weakly or divergence-respecting weakly

simulates Q, then P v Q also holds and we can safely remove Q.

Different classes of simulation relations can be further exploited to obtain an equiv-

alence relation which is weaker than bisimulation but stronger than trace equivalence

[vG00, BK08]. As defined in [BK08], P simulates Q if there exists a simulation relation R

with (P,Q) ∈ R. P is then simulation equivalent to Q if there exist simulation relations

R1 and R2 such that (P,Q) ∈ R1 and (Q,P ) ∈ R2. As R−1
1 need not be the same as R2,

simulation equivalence is weaker than bisimulation and will result in a greater state-space

reduction. Furthermore, algorithms for simulation quotienting [BK08] can be embedded in

the CEGAR framework described in this chapter.

Other immediate extensions of our CEGAR framework include developing heuristics

for deciding how many leaf processes to refine at each step, how many spurious executions

of a process to eliminate and which refinement strategy to apply. We speculate that also
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introducing a certain degree of randomness in these decision processes would produce con-

sistently more favourable results, as is the case with state-of-the-art SAT solvers such as

MiniSAT.

We speculate that for systems that exhibit any form of symmetry, we can purge classes

of counterexamples, instead of just a single counterexample, by applying a certain refinement

step on all symmetric leaf processes instead of on just one. As illustrated with the CEGAR

loop for Milner’s scheduler (see Figures 5.7 and 5.8), the symmetric leaf processes Cell(1 )

and Cell(2 ) end up exhibiting the very same spurious counterexamples and undergoing

the very same abstraction-refinement steps. Hence, after identifying the symmetry between

Cell(1 ) and Cell(2 ), we could apply any given abstraction refinement of Cell(1 ) also on

Cell(2 ), and vice versa, within a single CEGAR iteration, thus speeding up the convergence

of the CEGAR loop.

As more general extensions of the CEGAR framework, we plan to exploit further ab-

straction mechanisms (e.g., counter abstraction, data abstraction, context-bounded analy-

sis) in the context of CEGAR and/or its mirror opposite—underapproximation widening

[GLST05]. We intend to also investigate methods for combining CEGAR with assume-

guarantee reasoning along the lines of [CCGP, BPG08].
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Figure 5.7: CEGAR loop for Milner’s scheduler: part I
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Figure 5.8: CEGAR loop for Milner’s scheduler: part II



Chapter 6

Conclusions and Future Work

6.1 Summary and Evaluation

The aim of this work was to develop novel verification techniques for reasoning about con-

current systems modelled in CSP, as well as to integrate those techniques in the refinement

checker FDR and experimentally evaluate their efficiency and impact on combating the

state-space explosion problem. We focused on compositional and/or symbolic verification

techniques, which hold a lot of promise. Our directions of research broadly fell into three

categories: bounded and unbounded trace refinement using SAT, symbolic compositional

static analysis for establishing livelock freedom and abstraction/refinement strategies auto-

mated in a compositional CEGAR framework. For each of these categories we implemented

prototype tools, which we empirically evaluated on a set of CSP benchmarks.

SAT-based trace refinement

In Chapter 3, we presented a SAT-based framework for carrying out refinement checking

in the traces model of CSP, which is sufficient for verifying safety properties. We adapted

bounded model checking (BMC), that can be used for bug detection, and temporal k-

induction, which builds upon BMC, aims at establishing inductiveness of properties and is

capable of both bug finding and establishing the correctness of systems.

Originally, the translation of BMC to SAT was modelled as reachability of error states.

In the setting of CSP refinement, we used the SAT solver to decide a harder problem—

bounded language inclusion. The latter is generally in PSPACE and is readily transformable

to an input for a QBF solver but not for a SAT solver due to the presence of implicit

190
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universal quantifiers. To overcome this limitation, exacerbated by the presence of invisible

τ actions, we reduced the problem to the bounded reachability setting by using watchdog

transformations. Essentially, this involved reducing a refinement check to analysing a single

process constructed by putting the implementation process in parallel with a transformed

specification process. The latter played the role of a watchdog that monitored and marked

violating behaviours, also flagging error states.

In Section 3.4, we described a new Boolean encoding of CSP processes based on FDR’s

hybrid two-level approach for operational representation based on supercombinators. We

demonstrated how to glue together encodings of sequential components into an encoding

of a composite concurrent system, while avoiding multiple levels of nesting, as in fully

compositional encodings.

In Section 3.5, we introduced our tool SymFDR that features both bounded trace re-

finement and temporal k-induction and builds upon FDR to obtain an alternative symbolic

refinement engine, with configurable support for an incremental SAT solver (MiniSAT,

PicoSAT or ZChaff), Boolean encoding (one-hot or binary), traversal mode (forward, back-

ward or simultaneous forward/backward), k-induction algorithm (“Zig-Zag” or “Dual”).

A crucial feature of SymFDR was that in BMC mode it was also possible to configure

the SAT invocation frequency, which specified how often a SAT check was run to look

for errors, relative to the number of steps of unfolding the transition relation. In the

original version of BMC, the system was unwound step by step until the predefined bound

was reached, i.e., the SAT frequency used was 1. Despite the tremendous advances in

SAT-solvers’ incremental and learning capabilities, we observed that the bottleneck of the

bounded refinement procedure was the SAT solver. Hence, SymFDR could jump multiple

steps at once before checking whether any of those steps could lead to an error, provided that

the system never deadlocked on an erroneous trace, which we guaranteed by the watchdog

construction.

In Section 3.6, we demonstrated the feasibility of integrating SAT-based BMC and k-

induction in FDR, and more specifically, of exchanging the expensive explicit state-space

traversal phase in FDR by a SAT check in SymFDR. To the best of our knowledge, our

evaluation of the application of temporal k-induction to concurrent systems was the first

one to appear in literature.



192 6. Conclusions and Future Work

In BMC mode, when finding counterexamples, SymFDR sometimes significantly out-

performed FDR and even coped with problems that were beyond FDR’s capabilities. In

our experience, those were generally large complex tightly-coupled combinatorial problems

for which a solution existed, the longest solution was relatively short (up to approximately

50–60) and was predictable in advance. In those cases, we could fix the SAT frequency close

to a sizeable divisor of this length and thus spare large SAT overhead. The search space

of those problems could be characterised as very wide (with respect to BFS), but relatively

shallow, i.e., with a relatively small forward radius, consequence from the tight coupling.

In k-induction mode, when trying to prove correctness, the completeness threshold (the

forward or backward recurrence radius) blew up in all cases, due to concurrency, and, there-

fore, high performance depended on whether or not the property was k-inductive for some

small value of k. Hence, the explicit tool FDR performed orders of magnitude better. Nev-

ertheless, we observed that applying compression techniques on atomic component processes

was often beneficial for reducing the recurrence radius, resulting in faster convergence and

better performance. Also, our experiments indicated that the backward algorithm, aiming

to reach the forward recurrence radius, often scaled better than the forward one [POR12].

Our conclusions were that SAT technology was worthwhile incorporating in FDR for

the sake of detecting bugs—the SAT techniques were beneficial mostly in cases when coun-

terexamples existed. Our first attempt of efficiently establishing correctness of systems

using SAT did not produce the desired results because, due to concurrency, the complete-

ness threshold often blew up, which resulted in intractable SAT instances. The reason

for this is that, similarly to the state-space explosion problem, every subsequent parallel

component potentially adds a further exponential blow up to the recurrence radii of the

system. In Section 6.2 we describe other SAT-based model checking techniques that we

plan to incorporate in order to boost the performance of unbounded SAT-based refinement

checking.

Static analysis framework for establishing livelock freedom

In Chapter 4, we introduced a novel static analysis framework for establishing livelock

freedom of CSP processes. Our framework employed a collection of rules on the syntactic

structure of a process to either soundly classify a process as livelock free or report an
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inconclusive result, thereby trading accuracy for speed. We proposed a general framework,

based on reasoning about fixed points in terms of metric spaces, and a framework for finite-

state processes, predicated upon analysis of fairness and co-fairness.

In the standard metric on processes, the hiding operator fails to be nonexpansive. In

Section 4.5, we defined a new family of metrics parametrised by sets of visible events,

under which all CSP operators other than recursion were at least nonexpansive in all their

arguments, including hiding. We proved that our semantic model equipped with our new

metric formed a complete ultrametric space, the set of livelock-free processes being a closed

subset thereof.

In Section 4.6, we presented our general framework that was able to handle the widest

variety of CSP process, including infinite-state ones. We introduced a system of rules based

on the syntactic structure of CSP terms which inductively generated a sound approximation

of the sets of metrics that witnessed the existence of unique and livelock-free fixed points.

In Section 4.7, we defined a class of structurally finite-state processes, for which we

introduced a simpler, more efficient and more precise algorithm, capable of identifying a

strictly larger class of processes as livelock free. We proposed a system of compositional rules

for inductively generating a livelock flag together with a fair/co-fair characterisation of the

infinite traces of a process. The algorithm benefited from being able to identify the minimal

closed sequential components and examine their transition systems in isolation. For those

it computed exact data and started becoming conservative only in the compositional rules

for handling compound CSP processes, thereby allowing more elaborate and finer data to

be computed efficiently. We proposed an overall algorithm that employed the more precise

framework upon establishing that the input process was structurally finite-state, and the

general framework otherwise.

In Section 4.8, we introduced our fully symbolic static analyser slap with support for

using a SAT engine (based on MiniSAT), a BDD engine (based on CUDD), or running a

SAT and a BDD analyser in parallel and reporting the results of the first one to finish.

We highlighted the significance of our symbolic approach for handling efficiently potentially

huge bottlenecks in our algorithms. Given a transition system of a process, we suggested an

algorithm for computing the set of fair/co-fair pairs of events of the process and proposed

methods for efficiently encoding this algorithm into a symbolic circuit of size polynomial
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in the syntactic description of the process. We also demonstrated how the entire static

analysis could be carried out symbolically by providing a BDD and a SAT encoding of the

collection of rules.

We note that the symbolic circuit construction that we presented in Section 4.8 is not

bound to our specific process-algebraic framework and can be generalised and applied to

various other contexts. A compact symbolic circuit can encode the input-output relationship

of a PTIME algorithm for all possible inputs of the algorithm all at once. A translation

of such a circuit into a BDD or into an input for SAT can be plugged into any symbolic

implementation. We consider the approach highly beneficial and one of the key factors for

the high performance of slap.

In Section 4.9, we illustrated the efficiency of slap by comparing it to the performance

of FDR. In all test cases, internal communications were hidden so that livelock freedom

could be viewed as progress or liveness property. The experiments indicated that our sym-

bolic conservative approach was substantially more efficient than exhaustive search—slap

outperformed FDR by multiple orders of magnitude, exhibiting a low rate of inconclusive

results on a wide range of benchmarks. In terms of precision, slap was successfully able to

establish livelock freedom of several network communication protocols, e.g., the alternating

bit protocol and the sliding window protocol, where synchronisation of parallel components

plays a subtle but vital role for ruling livelock out. In addition, due to the intricate reason-

ing based on metric spaces, slap was able to also efficiently handle infinite-state processes,

which are beyond the grasp of FDR.

We concluded that when modelling systems in practice, it makes sense to try to check

for livelock freedom using a simple and highly-economical static analysis before invoking

computationally-expensive state-space exploration algorithms. Hence, we integrated the

framework for analysing structurally finite-state processes in FDR, where it now constitutes

an alternative back-end for establishing livelock freedom.

We also note that although our analysis is focused on CSP, it could be readily applied

to other process algebras and, perhaps, other concurrent formalisms, in general.
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Abstraction schemes and CEGAR framework

In Chapter 5, we developed a series of abstraction/refinement schemes for the traces, stable-

failures and failures-divergences model of CSP, and demonstrated how to embed them into

a fully automated and compositional counterexample-guided abstraction refinement frame-

work (CEGAR).

In Section 5.2, we sketched the general skeleton of our CEGAR loop in which successive

abstraction refinements converge, in the worst case, to strong or DRW bisimulation quotients

of the systems under consideration. We proposed strategies for carrying out the stages

of initial abstraction, counterexample validation and abstraction refinement component-

wisely on leaf-process level, facilitated by the capabilities of FDR. This was justified by

theoretical results for the monotonicity and transitivity of CSP operators and the fact that

supercombinators act on a higher level to control how leaf processes interact.

In Section 5.3, we presented a series of abstraction schemes for the traces, stable-

failures and failures-divergences model of CSP. Our abstractions were identified by parti-

tions of the state spaces of the leaf processes, coupled with minimal existential abstraction

and annotations for preserving nondeterminism-related information. Since existential ab-

straction was inadequate for preserving liveness properties, we extended the proposal in

[CCOS04, CCO+05] to define abstract minimal acceptances and abstract divergences. We

observed that abstracting models based on traces and abstracting models based on sta-

ble failures were triggered by two opposite forces and proposed abstraction strategies for

balancing those forces.

For establishing whether or not an abstract counterexample behaviour is spurious,

model checkers generally employ explicit or implicit simulation techniques or theorem

provers. In Section 5.4, we proposed an approach for efficiently performing counterex-

ample validation by devising suitable refinement checks in FDR. We suggested methods for

validating finite and lasso traces, divergence traces and stable failures, for all three semantic

models that we considered.

In Section 5.5, we presented strategies for obtaining all abstract executions of a given

spurious behaviour by employing refinement checks in FDR. We also introduced and a
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number of abstraction refinement schemes for all types of counterexample behaviours—

finite and lasso traces, divergence traces and stable failures.

In Section 5.7, we reported on some preliminary experimental results with a prototype

tool developed on top of FDR. The tool offers configurable support for the abstraction

and refinement strategies, the number of leaf processes to refine on each iteration of the

CEGAR loop (just one or all spurious), etc. Generally, we adopted lazy refinement strategies

that yielded coarser abstractions even though it took a greater number of iterations to

converge. Experiments indicated a significant enhancement in terms of performance when

verifying both safety and liveness properties, including checks for livelock and deadlock. As a

major limitation, we observed that different test cases benefited/deteriorated from different

abstraction/refinement strategies and number of leaves to refine. Hence, we speculate that

randomising the choice of those would produce consistently more favourable results.

6.2 Future Work

We envision multiple directions for enhancing and augmenting the work presented in this

thesis. In addition to extending the three frameworks that we presented, we plan to in-

vestigate methods for applying a number of the underlying techniques in conjunction in

order to combine and amplify their advantages. We also consider incorporating a number

of other compositional model-checking techniques for tackling the challenges arising from

concurrency.

For the SAT refinement framework, we intend to focus on applying alternative tech-

niques for obtaining a complete SAT-based refinement checker. As stated in Section 3.7, we

plan to incorporate Craig-interpolation techniques [McM03, McM06] and proof-obligation

methods [EMB11, Bra11], both of which have proven more successful in practice. Both

methodologies have been little evaluated in the context of concurrent systems, even less

so for message-passing models of concurrency. Therefore we would be able to establish

whether or not those techniques are scalable and beneficial mainly after implementing and

empirically evaluating their performance. For the Craig interpolation framework, we also

plan to experiment with applying interpolants of different quality and strength as described

in [DKPW10] and with incorporating techniques for invariant strengthening [BHvMW09]
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in order to decrease the completeness threshold values. The latter can also be used for

improving the efficiency of the temporal k-induction algorithm.

For moderating the severity of the state-space explosion problem, we plan to explore in

more depth partial-order reduction methods targeted to concurrent systems. Approaches

exploiting the interleaving model of concurrent systems and the notion of independence of

concurrent events include the ample sets of Peled [Pel98], the persistent sets of Godefroid

[God95] and the stubborn sets of Valmari [Val97]. We also plan to investigate methods for

efficiently coupling partial-order reductions with SAT and a good starting point towards

this goal would be the work presented in [KWG09, Kah12], which however has been based

on shared-variable concurrency models and state-based formalisms.

Another approach combining iterative approximation and SAT techniques would be

to implement the proof-guided underapproximation widening algorithm [GLST05], which

is the mirror-opposite dual version of CEGAR and can be developed on top of a BMC

implementation. In this framework, the system is checked against a series of increasingly less

constrained underapproximations that gradually amplify the amount of concurrency allowed

in the system. Counterexamples detected during the model checking phase are guaranteed

to be genuine due to underapproximation. However, establishing correctness might be

spurious, i.e., a “false positive”, the check of which can be carried out automatically using

the proof of unsatisfiability generated by the SAT solver for the positive BMC instance. In

this case the system needs to be widened by adding more behaviours which eliminate the

“false positive” correctness result.

For all SAT-related tools, we would be looking forward to further progress in the area

of SAT technology. So far, only MiniSAT 2.0 has been able to tractably analyse encod-

ings of complex concurrent CSP processes. All the other state-of-the-art SAT-solvers that

we experimented with (PicoSAT, ZChaff and MiniSAT 1.14) were substantially less effi-

cient. Unfortunately, MiniSAT 2.0, as well as newer versions, do not yet provide utilities

for extracting an unsatisfiable core of clauses and a proof of unsatisfiability, which are

prerequisites for implementing the Craig-interpolation framework and the proof-guided un-

derapproximation widening algorithm. The main difficulties stem from the usage of variable

and clause elimination in the preprocessing phase [EB05] which modifies the unsatisfiable
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core and the proof of unsatisfiability. Without this optimisation, though, SymFDR with

MiniSAT 2 does not scale well either.

The CEGAR framework for CSP and FDR can also be extended in multiple ways. We

plan to investigate strategies for abstraction refinement that further minimize the blow-

up of minimal acceptances of abstract states. This would involve identifying structural

refinements between subsets of concrete states. Currently we have a plethora of options for

abstraction refinement for each possible type of behaviour. However, for a given test case,

we have little knowledge and experience in predicting which strategy would be beneficial

and which would worsen the performance of the tool. To combat this, we plan to develop

heuristics for choosing a suitable abstraction refinement strategy or, alternatively, use the

power of randomization to do so.

As more general extensions of the CEGAR framework, we plan to further incorporate

different abstraction mechanisms, e.g., data abstraction, counter abstraction, etc. Further-

more, different classes of simulation relations can be exploited to obtain equivalence relations

which are weaker than bisimulation but stronger than trace equivalence [vG00, BK08]. Al-

gorithms for simulation quotienting [BK08] can then be easily embedded in the CEGAR

framework that we presented and we expect greater state-space reduction compared to their

bisimulation quotienting counterparts. An exciting line of research would be to also combine

CEGAR with assume-guarantee reasoning along the lines of [CCGP, BPG08].

The static analysis framework for establishing livelock freedom sometimes over-con-

servatively marks certain CSP processes as potentially divergent even though they are live-

lock free. Some directions for future work include improving the accuracy of our analysis

without compromising the efficiency and vice versa. In terms of accuracy, we plan to ex-

periment with applying algebraic laws at the syntactic level, such as bounded unfoldings of

parallel compositions. To boost efficiency, options include incorporating certain abstraction

mechanisms, e.g., collapsing all events on a given channel, or placing bounds on the size of

sets that the static analyser generates.

As non-immediate extensions of the static analyser, we have ideas how to formulate

similar systems of rules for establishing deadlock freedom as well. Moreover, we would

like to study more carefully the links between livelock freedom and general termination

analysis [CY10]. As a more ambitious goal, we would like to investigate more closely how
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we can transfer our analyses to other concurrent formalisms such as other process algebras

or maybe even shared-variable frameworks.



Appendix A

Proofs

A.1 Proofs for Section 4.4.2.2

Throughout the section we will use the following notation. For every u ∈ Σω and i ∈ N

we will denote by ui the prefix of u of length i. Then, as explained in Section 4.4.2.2,

u ∈ tracesω(P ) if and only if for each i ∈ N, ui ∈ traces(P ) ∩ Σ∗. Let us recall that for

every i ∈ N, ui cannot contain a X and is therefore an element of Σ∗. We will frequently

make use of the following observation which relies on the set traces(P ) being prefix-closed.

If ui ∈ traces(P ) for infinitely many i ∈ N, then ui ∈ traces(P ) for all i ∈ N, and therefore

u ∈ tracesω(P ). Most proofs will be based on König’s Lemma, which we now recall.

Theorem A.1.1 (König’s Lemma). Suppose that for each i ∈ N, Xi is a non-empty finite

set and fi : Xi+1 → Xi is a total function. Then there is a sequence 〈xi | i ∈ N〉, such that

xi ∈ Xi and fi(xi+1) = xi.

In our proofs we will define the sets Xi as specific subsets of traces(P ) ∩ Σi. For each

i ∈ N, xi ∈ Xi and xi+1 ∈ Xi+1, fi(xi+1) = xi will imply that xi < xi+1, where < denotes

the strict prefix order on Σ∗. For a given xi+1 ∈ Xi+1, the choice for fi(xi+1) might not be

unique, but we can take an arbitrary prefix xi of xi+1 from Xi satisfying certain properties.

Then the sequence 〈xi | i ∈ N〉 will form an infinite chain x0 < x1 < x2 < . . . xn . . . under

prefix and x = lim∞i=0 xi ∈ tracesω(P ).

Lemma 4.4.2. Let u ∈ tracesω(a −→ P ). Then there exists u′ ∈ tracesω(P ), such that

u = 〈a〉_u′.

200
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Proof. Let u ∈ tracesω(a −→ P ). By definition, for each t < u, t ∈ traces(a −→ P ). Then,

for each t < u, t = 〈a〉_t′ for some t′ ∈ traces(P ). Let u = 〈a〉_u′ for some u′ ∈ Σω. Then,

for each t′ < u′, t′ ∈ traces(P ). Therefore, by definition, u′ ∈ tracesω(P ).

Lemma 4.4.3. Let u ∈ tracesω(P ⊕ Q) for ⊕ ∈ {2,u}. Then u ∈ tracesω(P ) or u ∈

tracesω(Q).

Proof. Let u ∈ tracesω(P ⊕Q). By definition, for each i ∈ N, ui ∈ traces(P ⊕Q). Therefore,

for each i ∈ N, ui ∈ traces(P ) or ui ∈ traces(Q). Then, due to the pigeonhole principle,

ui ∈ traces(P ) for infinitely many i ∈ N or ui ∈ traces(Q) for infinitely many i ∈ N. Let

without loss of generality the former holds. Then, ui ∈ traces(P ) for all i ∈ N, and hence

u ∈ tracesω(P ).

Lemma 4.4.4. Let u ∈ tracesω(P # Q). Then u ∈ tracesω(P ), or u = t_u′ with t_〈X〉 ∈

traces(P ) and u′ ∈ tracesω(Q).

Proof. Let u ∈ tracesω(P # Q). By definition, for each i ∈ N, ui ∈ traces(P # Q). Therefore,

for each i ∈ N, ui ∈ traces(P ) or ui = t1_t2 with t1_〈X〉 ∈ traces(P ) ∩ Σ∗X, t2 ∈

traces(Q) ∩ Σ∗. If for each i ∈ N, ui ∈ traces(P ), then, by definition, u ∈ tracesω(P ).

Otherwise, there exists N ∈ N, such that u0, u1, . . . , uN ∈ traces(P ), but uN+1 /∈ traces(P ).

Therefore, for j ≥ 1, uN+j /∈ traces(P ). By assumption, for every i ∈ N, ui ∈ traces(P # Q).

Therefore, for j ≥ 1, uN+j = tj_vj where tj_〈X〉 ∈ traces(P ) (and therefore tj ≤ uN )

and vj ∈ traces(Q). Then, there must be some t ≤ uN , such that tj = t for infinitely many

uN+j ’s. Let us write uj = t_wj for j ≥ |t|. We have that t_〈X〉 ∈ traces(P ) and infinitely

often wj ∈ traces(Q). Since for j < j′, wj < wj′ , and the set of traces is prefix-closed,

wj ∈ traces(Q) for each j ≥ |t|. Then, by definition, u′ = lim∞j=|t|wj ∈ tracesω(Q).

Lemma 4.4.5. Let u ∈ tracesω(P \ A) and P \ A be livelock-free. Then there exists

v ∈ tracesω(P ), such that u = v � (Σ\A).

Proof. Let u ∈ tracesω(P \ A). By definition, for each i ∈ N, ui ∈ traces(P \ A), i.e., there

exists vji ∈ traces(P ), such that ui = vji � (Σ\A).
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Let, for i ∈ N, \−1(ui) = {v ∈ traces∞(P ) | v � (Σ\A) = ui}. We claim that, for

each i ∈ N, \−1(ui) is finite. Suppose, for the sake of the argument, that there exists

k ∈ N such that \−1(uk) is infinite. We will prove that P \ A is divergent, which will be

a contradiction with P \ A being livelock-free. Let uk = 〈a1, a2, . . . , ak〉. It is clear that

{a1, a2, . . . , ak} ∩ A = ∅. Then, \−1(uk) = ((A∗ ∪ Aω) a1 (A∗ ∪ Aω) a2 (A∗ ∪ Aω) . . . (A∗ ∪

Aω) ak (A∗ ∪ Aω)) ∩ traces∞(P ). Let for i ∈ {0, . . . , k − 1}, ni be the maximum number

of occurrences of consecutive events from A before the occurrence of ai+1, and let nk be

the maximum number of consecutive events from A after ak. Then, for i = {0, . . . , k},

ni ∈ N ∪ {ω}. Since \−1(uk) is infinite, there exists j ∈ {0, . . . , k}, such that nj = ω.

Let jmin be the minimal j with this property. Then, for i < jmin, ni ∈ N. Let v ∈

(A∗a1A
∗a2A

∗ . . . A∗ajminA
ω) ∩ traces∞(P ). Therefore, v � (Σ\A) = 〈a1, a2, . . . ajmin〉 =

ujmin ∈ divergences(P \ A), which is a contradiction with P \ A being livelock-free. Hence,

for i = {0, . . . , k}, ni ∈ N, and therefore \−1(uk) is finite. Therefore, for each i ∈ N, we

have:

1. \−1(ui) 6= ∅ because ui ∈ traces(P \ A).

2. \−1(ui) is finite.

3. For each j > i, for each w ∈ \−1(uj), there exists v ∈ \−1(ui), such that v < w. The

trace v can be defined as an arbitrary prefix of w of (Σ\A)-length i.

Therefore, by König’s Lemma, there exists an infinite sequence vj1 < vj2 < . . . < vjn <

. . ., such that for i ∈ N, vji ∈ \−1(ui), i.e., vji ∈ traces(P ) and ui = vji � (Σ\A). Therefore,

v = lim∞i=0 vji ∈ tracesω(P ) and u = v � (Σ\A).

Lemma 4.4.6. Let u ∈ tracesω(P JRK). Then there exists v ∈ tracesω(P ), such that v R u.

Proof. Let u ∈ tracesω(P JRK). By definition, for each i ∈ N, ui ∈ traces(P JRK) ∩ Σ∗.

Therefore, for each i ∈ N, there exists vji ∈ traces(P ) ∩ Σ∗, such that vji R ui, i.e.,

length(ui) = length(vji) = i and for each 0 ≤ k ≤ i, vji(k) R ui(k). Let, for i ∈ N,

R−1(ui) = {v ∈ traces(P ) | v R ui}. Then, for i ∈ N:

1. R−1(ui) 6= ∅ because ui ∈ traces(P JRK).
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2. R−1(ui) is finite because Σ, and therefore R, are finite.

3. For each j > i and each w ∈ R−1(uj), there exists v ∈ R−1(ui), such that v < w. The

trace v can be constructed as the prefix of w of length i.

Therefore, by König’s Lemma, there exists an infinite sequence vj1 < vj2 < . . . < vjn <

. . ., such that for i ∈ N, vji ∈ R−1(ui), i.e., vji ∈ traces(P ) and vji R ui. Therefore,

v = lim∞i=0 vji ∈ tracesω(P ) and v R u.

Lemma 4.4.7. Let u ∈ tracesω(P ‖
A
Q). Then there exist u1 ∈ traces∞(P ), u2 ∈

traces∞(Q), such that u ∈ u1 ‖
A
u2, and u1 ∈ Σω or u2 ∈ Σω.

Proof. Let u ∈ tracesω(P ‖
A
Q). Then, for each n ∈ N, un ∈ traces(P ‖

A
Q) ∩ Σ∗. Therefore,

by definition, for each n ∈ N, there exist vin ∈ traces(P )∩Σ∗ and wjn ∈ traces(Q)∩Σ∗, such

that un ∈ vin ‖
A
wjn and n ≤ |vin |+ |wjn | ≤ 2n. Therefore, for each such triple (un, vin , wjn)

there exists a function fn : {1, . . . , n} 7→ {0, 1, 2} specifying a possible interleaving of vin

and wjn for obtaining un. More specifically, fn(i) indicates which process contributes for

communicating the i-th event of un, with 0 denoting both P and Q (for events in A), 1

denoting only P , and 2 denoting only Q. Given un = 〈a1, . . . an〉 and fn, vin and wjn are

identified uniquely as vin = 〈ai | 1 ≤ i ≤ n, fn(i) ⊆ {0, 1}〉, wjn = 〈aj | 1 ≤ j ≤ n, fn(j) ⊆

{0, 2}〉.

Let us define a partially-ordered set ((Σ∗X)2,≤) with (v, w) ≤ (v′, w′) iff v ≤ v′ and

w ≤ w′, where ≤ denotes a non-strict prefix on traces. We will prove that there exists an

infinite chain (vi1 , wj1) ≤ . . . ≤ (vin , wjn) ≤ . . ., such that for each n ∈ N, vin ∈ traces(P ),

wjn ∈ traces(Q) and un ∈ vin ‖
A
wjn .

Let for k ∈ N, ‖
A

−1
(uk) = {(vik , wjk) | vik ∈ traces(P ), wjk ∈ traces(Q), uk ∈ vik ‖

A
wjk}.

Then:

1. ‖
A

−1
(uk) 6= ∅ because uk ∈ traces(P ‖

A
Q).

2. ‖
A

−1
(uk) is finite because Σ is finite.

3. For each l < k and each (vik , wjk) ∈‖
A

−1
(uk), there exists (vil , wjl) ∈‖

A

−1
(ul), such

that (vil , wjl) < (vik , wjk). The pair of traces (vil , wjl) can be constructed as follows.
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Let for the triple (uk, vik , wjk) the function fk : {1, . . . , n} 7→ {0, 1, 2} specifies a

possible interleaving of vik and wjk for obtaining uk. We define f l(i) = fk(i) for

1 ≤ i ≤ l. Then, (vil , wjl) is the pair that is uniquely identified by f l and ul.

Therefore, by König’s Lemma, for each n ∈ N, there exists a chain (vi1 , wj1) ≤

(vi2 , wj2) ≤ . . . ≤ (vin , wjn), such that for each 1 ≤ k ≤ n, vik ∈ traces(P ), wjk ∈ traces(Q),

uk ∈ vik ‖
A
wjk and k ≤ |vik | + |wjk | ≤ 2k. Let v = lim∞k=1 vik and w = lim∞k=1wjk . Then

clearly, v ∈ traces∞(P ), w ∈ traces∞(Q) and u ∈ v ‖
A
w. Let us assume that both v and

w are finite, i.e., |v| = lv and |w| = lw, for some lv, lw ∈ N. Then, each prefix of u will be

of length at most lv + lw ∈ N, which is a contradiction with u being infinite. Therefore, at

least one of v and w is infinite.
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A.2 Proofs for Section 4.5.2

Lemma A.2.1 ([Sut75, Lemma 9.2.5]). In any metric space, if s is a Cauchy sequence that

has a subsequence that converges to a point x, then s also converges to x.

Proposition A.2.2. Let U ⊆ Σ. Then T ⇓ equipped with the metric dU is a complete metric

space.

Proof. We will prove that every Cauchy sequence converges.

Let 〈Pi | i ∈ N〉 be a Cauchy sequence in (T ⇓, dU ). By definition, for every ε > 0, there

exists Nε ∈ N such that, for every n,m ≥ Nε, dU (Pn, Pm) < ε. Therefore, for every r ∈ N

and ε = 2−r, there exists Nr ∈ N such that, for every n,m ≥ Nr, dU (Pn, Pm) < 2−r, i.e.,

Pn �U r = Pm �U r. Then, for every r,m ∈ N, dU (PNr , PNr+m) < 2−r. Therefore, the

subsequence 〈PNr | r ∈ N〉 of 〈Pi | i ∈ N〉 is itself a Cauchy sequence.

Let us define P =
d
q∈N

⊔
r≥q PNr . P ∈ T ⇓ because (T ⇓,v) is a complete lattice. We

will prove that the subsequence 〈PNr | r ∈ N〉 converges to P , i.e., that for every r ∈ N,

dU (PNr , P ) < 2−r.

Let us fix r. Suppose, for the sake of the argument, that dU (PNr , P ) ≥ 2−r and let, with-

out loss of generality, PNr and P disagree on the sets of their divergences. Therefore, there

exists t ∈ Σ∗X such that lengthU (t) < r and, either t ∈ divergences(PNr)\divergences(P ) or

t ∈ divergences(P )\divergences(PNr). To recall, by construction we have divergences(P ) =⋃
q∈N

⋂
r≥q divergences(PNr). We explore both alternatives.

• Suppose t ∈ divergences(PNr)\divergences(P ). Since t 6∈ divergences(P ), for every

q ∈ N there exists sq ≥ q such that t 6∈ divergences(PNsq
). Therefore, for q = r

there exists sr ≥ r such that t 6∈ divergences(PNsr
). Hence, since t ∈ divergences(PNr)

and lengthU (t) < r, we obtain dU (PNr , PNsr
) ≥ 2−r, which is a contradiction with

dU (PNr , PNr+m) < 2−r for m ≥ 0.

• Suppose t ∈ divergences(P )\divergences(PNr). Since t ∈ divergences(P ), there ex-

ists q ∈ N such that for every s ≥ q, t ∈ divergences(PNs). However, as t 6∈

divergences(PNr) and lengthU (t) < r, for every s ≥ r, t 6∈ divergences(PNs), which

again leads to a contradiction.
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Therefore, for every r ∈ N, dU (PNr , P ) < 2−r, and hence the subsequence 〈PNr | r ∈ N〉

converges to P . Therefore, from Lemma A.2.1, 〈Pi | i ∈ N〉 also converges to P , and hence

(T ⇓, dU ) is a complete metric space.

Proposition A.2.3. Let U ⊆ Σ. Then the set of livelock-free processes is a closed subset

of (T ⇓, dU ).

Proof. Let 〈Pi | i ∈ N〉 be a sequence of livelock-free elements of T ⇓ converging to a process

Q ∈ T ⇓. Therefore, by definition, for every ε > 0, there exists N ∈ N such that, for every

n ≥ N , dU (Pn, Q) < ε. We will prove that Q is also livelock-free.

Suppose for the sake of the argument that Q can diverge. Let t ∈ divergences(Q) and

lengthU (t) = k. If we take ε = 2−k, since 〈Pi | i ∈ N〉 converges to Q, there exists Nt ∈ N

such that, for every n ≥ Nt, dU (Pn, Q) < 2−k, and therefore Pn �U k = Q �U k. Therefore,

for every n ≥ Nt, t ∈ divergences(Pn), which is a contradiction with 〈Pi | i ∈ N〉 being all

livelock-free.

Therefore, Q is livelock-free, and hence the set of livelock-free processes is closed.
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A.3 Proofs for Section 4.5.3

Throughout this section let us fix a set of events U ⊆ Σ.

Lemma 4.5.7 (#1). For any CSP processes P , P ′ and Q,

dU (P # Q,P ′ # Q) ≤ dU (P, P ′).

Proof. Suppose (TP , DP ) �U k = (TP ′ , DP ′) �U k. We will prove that (TP #Q, DP #Q) �U k =

(TP ′#Q, DP ′#Q) �U k, from which we can conclude that dU (P # Q,P ′ # Q) ≤ dU (P, P ′).

Let t ∈ divergences(P # Q) and lengthU (t) ≤ k. We will prove that t ∈ divergences(P ′ #

Q), and therefore DP #Q �U k ⊆ DP ′#Q �U k. The reverse containment is established similarly

by symmetry.

Since t ∈ divergences(P # Q), by definition, t ∈ divergences(P ) or t = t1_t2 with

t1_〈X〉 ∈ traces⊥(P ), t2 ∈ divergences(Q). We consider both cases.

• Suppose t ∈ divergences(P ). Since lengthU (t) ≤ k and (TP , DP ) �U k = (TP ′ , DP ′) �U

k, t ∈ divergences(P ′). Therefore, by definition, t ∈ divergences(P ′ # Q).

• Suppose t = t1_t2 with t1_〈X〉 ∈ traces⊥(P ), t2 ∈ divergences(Q). Observe that

lengthU (t1_〈X〉) = lengthU (t1) ≤ lengthU (t) ≤ k. Then, since (TP , DP ) �U k =

(TP ′ , DP ′) �U k, t1_〈X〉 ∈ traces⊥(P ′). Hence, by definition we have t1_t2 =

t ∈ divergences(P ′ # Q).

Now let t ∈ traces⊥(P # Q) and lengthU (t) ≤ k. We will prove that t ∈ traces⊥(P ′ # Q)

and therefore, TP #Q �U k ⊆ TP ′#Q �U k. The reverse containment is established similarly by

symmetry. Since t ∈ traces⊥(P # Q), t ∈ divergences(P # Q) or t ∈ traces(P # Q). The latter

reduces to t ∈ traces(P ) ∩ Σ∗, or t = t1_t2 with t1_〈X〉 ∈ traces(P ), t2 ∈ traces(Q). We

consider all three alternatives.

• Suppose first that t ∈ divergences(P # Q). We already proved that t ∈ divergences(P ′ #

Q) and therefore, t ∈ traces⊥(P ′ # Q).

• Suppose now that t ∈ traces(P ) ∩ Σ∗. Therefore, t ∈ traces⊥(P ) ∩ Σ∗. Then, since

(TP , DP ) �U k = (TP ′ , DP ′) �U k, t ∈ traces⊥(P ′) ∩ Σ∗.
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– If t ∈ traces(P ′) ∩ Σ∗, then by definition, t ∈ traces(P ′ # Q) ⊆ traces⊥(P ′ # Q).

– If t ∈ divergences(P ′) ∩ Σ∗, then by definition, t ∈ divergences(P ′ # Q) ⊆

traces⊥(P ′ # Q).

• Suppose finally that t = t1_t2 with t1_〈X〉 ∈ traces(P ), t2 ∈ traces(Q). We note that

lengthU (t1_〈X〉) = lengthU (t1) ≤ lengthU (t) ≤ k. Then, since t1_〈X〉 ∈ traces(P )

and (TP , DP ) �U k = (TP ′ , DP ′) �U k, t1_〈X〉 ∈ traces⊥(P ′).

– Let t1_〈X〉 ∈ traces(P ′). By definition, t ∈ traces(P ′ # Q) ⊆ traces⊥(P ′ # Q).

– Let t1_〈X〉 ∈ divergences(P ′). By Axiom 2 of T ⇓, t1 ∈ divergences(P ′). Since

t1 ∈ Σ∗, by Axiom 4 of T ⇓, t = t1_t2 ∈ divergences(P ′). Then by definition,

t ∈ divergences(P ′ # Q) ⊆ traces⊥(P ′ # Q).

Therefore, (TP #Q, DP #Q) �U k = (TP ′#Q, DP ′#Q) �U k, and hence dU (P # Q,P ′ # Q) ≤

dU (P, P ′).

Lemma 4.5.7 (#2). For any CSP processes P,Q and Q′,

dU (P # Q,P # Q′) ≤ dU (Q,Q′).

Proof. Suppose (TQ, DQ) �U k = (TQ′ , DQ′) �U k. We will prove that (TP #Q, DP #Q) �U k =

(TP #Q′ , DP #Q′) �U k, from which dU (P # Q,P # Q′) ≤ dU (Q,Q′) follows immediately.

Let t ∈ divergences(P # Q) and lengthU (t) ≤ k. Similarly to the previous lemma, we consider

the possible alternatives.

• Suppose t ∈ divergences(P ). By definition, t ∈ divergences(P # Q′).

• Suppose t = t1_t2 with t1_〈X〉 ∈ traces⊥(P ) and t2 ∈ divergences(Q). Let us

observe that lengthU (t2) ≤ lengthU (t) ≤ k. Since by assumption DQ �U k = DQ′ �U k,

t2 ∈ divergences(Q′). Then by definition, t ∈ divergences(P # Q′).

Let t ∈ traces⊥(P # Q) and lengthU (t) ≤ k.

• Let first t ∈ divergences(P # Q). We already proved that t ∈ divergences(P # Q′) and

therefore, t ∈ traces⊥(P # Q′).
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• Let now t ∈ traces(P ) ∩ Σ∗. Then by definition, t ∈ traces(P # Q′) ⊆ traces⊥(P # Q′).

• Let finally t = t1_t2 with t1_〈X〉 ∈ traces(P ) ⊆ traces⊥(P ), t2 ∈ traces(Q) ⊆

traces⊥(Q). Since lengthU (t) ≤ k, lengthU (t2) ≤ k. Then, by assumption, t2 ∈

traces⊥(Q′).

– If t2 ∈ traces(Q′), by definition, t = t1_t2 ∈ traces(P # Q′) ⊆ traces⊥(P # Q′).

– Let t2 ∈ divergences(Q′). Since t1_〈X〉 ∈ traces⊥(P ), by definition, t = t1_t2 ∈

divergences(P # Q′) ⊆ traces⊥(P # Q′).

Therefore, DP #Q �U k ⊆ DP #Q′ �U k and TP #Q �U k ⊆ TP #Q′ �U k. The reverse

containments are established similarly by symmetry. Therefore, (TP #Q, DP #Q) �U k =

(TP #Q′ , DP #Q′) �U k, and hence dU (P # Q,P # Q′) ≤ dU (Q,Q′).

Lemma 4.5.11. Let P,Q and Q′ be CSP processes. Let P always communicate an event

from U ⊆ Σ before it does a X. Then,

dU (P # Q,P # Q′) ≤ 1

2
dU (Q,Q′).

Proof. Suppose (TQ, DQ) �U k = (TQ′ , DQ′) �U k. We will prove that (TP #Q, DP #Q) �U

k + 1 = (TP #Q′ , DP #Q′) �U k + 1, which implies dU (P # Q,P # Q′) ≤ 1
2dU (Q,Q′).

Let t ∈ traces⊥(P # Q) and lengthU (t) ≤ k + 1.

• Suppose t ∈ divergences(P # Q).

– If t ∈ divergences(P ), by definition, t ∈ divergences(P # Q′) ⊆ traces⊥(P # Q′).

– Let t = t1_t2 with t1_〈X〉 ∈ traces⊥(P ), t2 ∈ divergences(Q) ⊆ traces⊥(Q).

Since P always communicates an event from U ⊆ Σ before it can do a X, t1

contains an event from U . Therefore, lengthU (t2) ≤ k. Then, since by assumption

(TQ, DQ) �U k = (TQ′ , DQ′) �U k, t2 ∈ divergences(Q′). Therefore, by definition,

t = t1_t2 ∈ divergences(P # Q′) ⊆ traces⊥(P # Q′).

• Suppose t ∈ traces⊥(P # Q). Similarly to the previous lemmas, we consider the 3

possible alternatives.
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– If t ∈ divergences(P # Q), we already proved that t ∈ divergences(P # Q′) ⊆

traces⊥(P # Q′).

– If t ∈ traces(P ) ∩ Σ∗, then by definition, t ∈ traces(P # Q′) ⊆ traces⊥(P # Q′).

– Let t = t1_t2 with t1_〈X〉 ∈ traces(P ), t2 ∈ traces(Q). Since P always commu-

nicates an event from U ⊆ Σ before it does a X, t1 contains an event from U .

Therefore, lengthU (t2) ≤ k. Then, by assumption, t2 ∈ traces⊥(Q′).

∗ If t2 ∈ traces(Q′), by definition, t = t1_t2 ∈ traces(P # Q′) ⊆ traces⊥(P #

Q′).

∗ Let t2 ∈ divergences(Q′). Since t1_〈X〉 ∈ traces(P ), by definition, t =

t1_t2 ∈ divergences(P # Q′) ⊆ traces⊥(P # Q′).

Therefore, DP #Q �U k + 1 ⊆ DP #Q′ �U k + 1 and TP #Q �U k + 1 ⊆ TP #Q′ �U k + 1. The

reverse containments are established similarly by symmetry. Therefore, (TP #Q, DP #Q) �U

k + 1 = (TP #Q′ , DP #Q′) �U k + 1, and hence dU (P # Q,P # Q′) ≤ 1
2dU (Q,Q′).

Lemma 4.5.7 (u). For any CSP processes P, P ′ and Q,

dU (P u Q,P ′ u Q) ≤ dU (P, P ′).

Proof. Suppose (TP , DP ) �U k = (TP ′ , DP ′) �U k. We will prove that (TPuQ, DPuQ) �U k =

(TP ′uQ, DP ′uQ) �U k, which directly implies dU (P u Q,P ′ u Q) ≤ dU (P, P ′).

Let t ∈ divergences(P u Q) and lengthU (t) ≤ k.

• Suppose t ∈ divergences(P ). By assumption, DP �U k = DP ′ �U k. Therefore,

t ∈ divergences(P ′) ⊆ divergences(P ′ u Q).

• Suppose t ∈ divergences(Q). By definition, t ∈ divergences(P ′ u Q).

Let t ∈ traces⊥(P u Q) and lengthU (t) ≤ k. We have that traces⊥(P u Q) = traces(P u Q)∪

divergences(P u Q) = traces(P )∪divergences(P )∪traces(Q)∪divergences(Q) = traces⊥(P )∪

traces⊥(Q).
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• Let t ∈ traces⊥(P ). By assumption, TP �U k = TP ′ �U k. Therefore, t ∈ traces⊥(P ′) ⊆

traces⊥(P ′ u Q).

• Let t ∈ traces⊥(Q). By definition, t ∈ traces⊥(P ′ u Q).

Therefore, DPuQ �U k ⊆ DP ′uQ �U k and TPuQ �U k ⊆ TP ′uQ �U k. The reverse

containments are established similarly by symmetry. Therefore, (TPuQ, DPuQ) �U k =

(TP ′uQ, DP ′uQ) �U k, and hence dU (P u Q,P ′ u Q) ≤ dU (P, P ′).

Lemma 4.5.7 (2). For any CSP processes P, P ′ and Q,

dU (P 2 Q,P ′ 2 Q) ≤ dU (P, P ′).

Proof. Same as for u.

Lemma 4.5.7 (‖
A
). For any CSP processes P, P ′ and Q, and any A ⊆ Σ,

dU (P ‖
A
Q,P ′ ‖

A
Q) ≤ dU (P, P ′).

Proof. Suppose (TP , DP ) �U k = (TP ′ , DP ′) �U k. We will prove that (T
P‖
A
Q
, D

P‖
A
Q

) �U k =

(T
P ′‖
A
Q
, D

P ′‖
A
Q

) �U k, which directly implies dU (P ‖
A
Q,P ′ ‖

A
Q) ≤ dU (P, P ′).

Let t ∈ divergences(P ‖
A
Q) and lengthU (t) ≤ k. Therefore, t = u_v with u ∈ (s ‖

A
r ∩ Σ∗),

where s ∈ traces⊥(P ), r ∈ traces⊥(Q) and, s ∈ divergences(P ) or r ∈ divergences(Q). Let

us recall that v ranges over Σ∗X, in accordance with Axiom 4. Let us further observe that

lengthU (s) ≤ lengthU (u) ≤ lengthU (t) ≤ k. Therefore, by assumption, s ∈ traces⊥(P ′).

• Let s ∈ divergences(P ). By assumption, s ∈ divergences(P ′). Therefore by definition,

t ∈ divergences(P ′ ‖
A
Q).

• Let r ∈ divergences(Q). Since s ∈ traces⊥(P ′), by definition, t ∈ divergences(P ′ ‖
A
Q).

Let t ∈ traces⊥(P ‖
A
Q) and lengthU (t) ≤ k.

• Suppose t ∈ divergences(P ‖
A
Q). We already proved that t ∈ divergences(P ‖

A
Q′) ⊆

traces⊥(P ′ ‖
A
Q).
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• Suppose t ∈ traces(P ‖
A
Q). Therefore, there exist s ∈ traces(P ) ⊆ traces⊥(P ),

r ∈ traces(Q) ⊆ traces⊥(Q), such that t ∈ s ‖
A
r. By assumption, s ∈ traces⊥(P ′).

– If s ∈ traces(P ′), by definition, t ∈ traces(P ′ ‖
A
Q) ⊆ traces⊥(P ′ ‖

A
Q).

– If s ∈ divergences(P ′), by definition, t ∈ divergences(P ′ ‖
A
Q) ⊆ traces⊥(P ′ ‖

A
Q).

Therefore, D
P‖
A
Q
�U k ⊆ D

P ′‖
A
Q
�U k and T

P‖
A
Q
�U k ⊆ T

P ′‖
A
Q
�U k. The reverse

containments are established similarly by symmetry. Therefore, (T
P‖
A
Q
, D

P‖
A
Q

) �U k =

(T
P ′‖
A
Q
, D

P ′‖
A
Q

) �U k, and hence dU (P ‖
A
Q,P ′ ‖

A
Q) ≤ dU (P, P ′).

Lemma 4.5.9. Let P and Q be CSP processes and let A ⊆ Σ satisfy A ∩ U = ∅. Then,

dU (P \ A,Q \ A) ≤ dU (P,Q).

Proof. Suppose (TP , DP ) �U k = (TQ, DQ) �U k. We will prove that (TP\A, DP\A) �U k =

(TQ\A, DQ\A) �U k, which implies dU (P \ A,Q \ A) ≤ dU (P,Q).

Let t ∈ divergences(P \ A) and lengthU (t) ≤ k. We consider the possible alternatives for t.

• Suppose that there exists s ∈ divergences(P ), such that t = (s � (Σ\A))_r. Let

us recall that r ranges over Σ∗X, in accordance with Axiom 4. Since A ∩ U = ∅,

lengthU (s) = lengthU (s � (Σ\A)) ≤ lengthU (t) ≤ k. Then, by assumption, s ∈

divergences(Q). Therefore, by definition, t ∈ divergences(Q \ A).

• Now suppose that there exists u ∈ Σω, such that u � (Σ\A) is finite, for each s < u,

s ∈ traces⊥(P ), and t = u � (Σ\A) _ r (where r ranges over Σ∗X, in accordance with

Axiom 4). Since A ∩ U = ∅, lengthU (u) = lengthU (u � (Σ\A)) ≤ lengthV (t) ≤ k.

Then, by assumption, for each s < u, s ∈ traces⊥(Q). Then t ∈ divergences(Q \ A)

follows by definition.

Let t ∈ traces⊥(P \ A) and lengthU (t) ≤ k.

• Let first t ∈ divergences(P \ A). We already proved that t ∈ divergences(Q \ A) ⊆

traces⊥(Q \ A).
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• Let now t ∈ traces(P \ A). Therefore, there exists s ∈ traces(P ) ⊆ traces⊥(P ), such

that t = s � (Σ\A). From A∩U = ∅, lengthU (s) = lengthU (s � (Σ\A)) = lengthU (t) ≤

k. Then, by assumption, s ∈ traces⊥(Q).

– If s ∈ divergences(Q), by definition, t ∈ divergences(Q \ A) ⊆ traces⊥(Q \ A).

– If s ∈ traces(Q), by definition, t ∈ traces(Q \ A) ⊆ traces⊥(Q \ A).

Therefore, DP\A �U k ⊆ DQ\A �U k and TP\A �U k ⊆ TQ\A �U k. The reverse

containments are established similarly by symmetry. Therefore, (TP\A, DP\A) �U k =

(TQ\A, DQ\A) �U k, and hence dU (P \ A,Q \ A) ≤ dU (P,Q).

Lemma 4.5.10. Let P and Q be CSP processes, R ⊆ Σ× Σ be a renaming relation on Σ,

and R(U) = {y | ∃x ∈ U � x R y}. Then,

dR(U)(P JRK, QJRK) ≤ dU (P,Q).

Proof. Suppose (TP , DP ) �U k = (TQ, DQ) �U k. We will prove that (TP JRK, DP JRK) �R(U)

k = (TQJRK, DQJRK) �R(U) k.

Let t ∈ divergences(P JRK) and lengthR(U)(t) ≤ k. Then there exist s1, t1 ∈ Σ∗, r ∈ Σ∗X,

such that s1 ∈ divergences(P ) ∩ Σ∗, s1 R t1 and t = t1_r (where r ranges over Σ∗X,

in accordance with Axiom 4). Then, length(s1) = length(t1) and for 1 ≤ i ≤ length(s1),

s1i R t1i . Therefore, lengthU (s1) = lengthR(U)(t1) ≤ lengthR(U)(t) ≤ k and, by assumption,

s1 ∈ divergences(Q) ∩ Σ∗. Hence, by definition, t ∈ divergences(QJRK).

Let t ∈ traces⊥(P JRK) and lengthR(U)(t) ≤ k.

• If t ∈ divergences(P JRK), we already proved that t ∈ divergences(QJRK) ⊆ traces⊥(QJRK).

• Let t ∈ traces(P JRK). Then there exists s ∈ traces(P ), such that s R t. Therefore,

lengthU (s) = lengthR(U)(t) ≤ k and, by assumption, s ∈ traces⊥(Q).

– If s ∈ traces(Q), by definition, t ∈ traces(QJRK) ⊆ traces⊥(QJRK).

– If s ∈ divergences(Q), by definition, t ∈ divergences(QJRK) ⊆ traces⊥(QJRK).
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Therefore, DP JRK �R(U) k ⊆ DQJRK �R(U) k and TP JRK �R(U) k ⊆ TQJRK �R(U) k. The re-

verse containments are established similarly by symmetry. Therefore, (TP JRK, DP JRK) �R(U)

k = (TQJRK, DQJRK) �R(U) k, and hence dR(U)(P JRK, QJRK) ≤ dU (P,Q).
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A.4 Proofs for Section 4.6

Proposition 4.6.2. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a CSP term whose free variables

are contained within the set {X,Y1, . . . , Yn}. Let NX : CSP −→ P(P(Σ)×P(Σ)) be defined

recursively on the structure of P as shown in Figure 4.11. If (U, V ) ∈ NX(P ), then for all

T1, T2, Θ1, . . . , Θn ∈ T ⇓, dV (P (T1, Θ), P (T2, Θ)) ≤ dU (T1, T2).

Proof. Structural induction on P . Let us take arbitrary T1, T2, Θ1, . . . , Θn ∈ T ⇓.

• NX(P ) = P(Σ)× P(Σ) whenever X is not free in P

Proof. Let (U, V ) ∈ NX(P ). Then dU (T1, T2) ≥ 0 = dV (P (T1, Θ), P (T2, Θ)) =

dV (P (Θ), P (Θ)).

• NX(a −→ P ) = NX(P )

Proof. Suppose (U, V ) ∈ NX(a −→ P ). By construction, (U, V ) ∈ NX(P ). Then:

dU (T1, T2) ≥ dV (P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dV (a −→ P (T1, Θ), a −→ P (T2, Θ)) // Lemma 4.5.8

= dV ((a −→ P )(T1, Θ), (a −→ P )(T2, Θ))

• NX(P \ A) = {(U, V ) | (U, V ′) ∈ NX(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }

Proof. Suppose (U, V ) ∈ NX(P \ A). By construction, there exists V ′, such that

(U, V ′) ∈ NX(P ), V ′ ⊆ V and V ′ ∩ A = ∅. We will prove that for any T1, T2 ∈ T ⇓,

dU (T1, T2) ≥ dV (P (T1, Θ) \ A,P (T2, Θ) \ A).

dU (T1, T2) ≥ dV ′(P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dV ′(P (T1, Θ) \ A,P (T2, Θ) \ A) // V ′ ∩A = ∅, Lemma 4.5.9

≥ dV (P (T1, Θ) \ A,P (T2, Θ) \ A) // V ′ ⊆ V , U 7→ dU antitone

• NX(P1 ⊕ P2) = NX(P1) ∩ NX(P2) = {(U1 ∩ U2, V1 ∪ V2) | (Ui, Vi) ∈ NX(Pi)} for

⊕ ∈ {u,2, #, ‖
A
}.
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Proof. Suppose (U, V ) ∈ NX(P1⊕P2). By construction, there exist (U1, V1) ∈ NX(P1)

and (U2, V2) ∈ NX(P2), such that U = U1 ∩ U2 and V = V1 ∪ V2. Therefore, (U, V ) ∈

NX(P1), (U, V ) ∈ NX(P2) (antitoneness).

dV ((P1 ⊕ P2)(T1, Θ), (P1 ⊕ P2)(T2, Θ))

= dV (P1(T1, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T2, Θ))

// ultrametric inequality

≤ max{ dV (P1(T1, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T1, Θ)),

dV (P1(T2, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T2, Θ))}
// Lemma 4.5.7

≤ max{ dV (P1(T1, Θ), P1(T2, Θ)) // ≤ dU (T1, T2) by induction hypothesis for P1

dV (P2(T1, Θ), P2(T2, Θ))} // ≤ dU (T1, T2) by induction hypothesis for P2

≤ dU (T1, T2)

• NX(P JRK) = {(U, V ) | (U, V ′) ∈ NX(P ) ∧ R(V ′) ⊆ V }

Proof. Suppose (U, V ) ∈ NX(P JRK). By construction, there exists V ′, such that

(U, V ′) ∈ NX(P ) and R(V ′) ⊆ V .

dU (T1, T2) ≥ dV ′(P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dR(V ′)(P (T1, Θ)JRK, P (T2, Θ)JRK) // Lemma 4.5.10

≥ dV (P (T1, Θ)JRK, P (T2, Θ)JRK) // R(V ′) ⊆ V , U 7→ dU antitone

• NX(X) = {(U, V ) | U ⊆ V }

Proof.

dU (T1, T2) ≥ dV (T1, T2) // U ⊆ V , U 7→ dU antitone

= dV ((X)(T1, Θ), (X)(T2, Θ))

• NX(µY � P ) = {(U, V ) | (U ′, V ′) ∈ NX(P ) ∧ (V ′, V ′) ∈ NY (P ) ∧ U ⊆ U ′ ∧ V ′ ⊆ V } if

Y 6= X

Proof. Suppose (U, V ) ∈ NX(µY �P ) for X 6= Y and X,Y free in P (X,Y, Z1, . . . , Zn).

By construction, there exist UX , VX ⊆ Σ such that:

1. (UX , VX) ∈ NX(P )

2. U ⊆ UX , VX ⊆ V
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3. (VX , VX) ∈ NY (P )

Therefore, by induction hypothesis, we have the following for all T1, T2, ξ, Θ ∈ T ⇓:

dUX
(T1, T2) ≥ dVX (P (T1, ξ, Θ), P (T2, ξ, Θ)) (A.1)

dVX (T1, T2) ≥ dVX (P (ξ, T1, Θ), P (ξ, T2, Θ)) (A.2)

dU (T1, T2) ≥ dUX
(T1, T2) // U ⊆ UX , antitoneness

≥ dVX (P (T1, ξ, Θ), P (T2, ξ, Θ)) // from A.1

Let P1(Y ) = P (T1, Y,Θ), P2(Y ) = P (T2, Y,Θ). P1(Y ) and P2(Y ) are continuous over

v. Therefore, there exist µY �P1(Y ) =
⋂∞
n=0 P

n
1 = P ∗1 and µY �P2(Y ) =

⋂∞
n=0 P

n
2 =

P ∗2 , where for i = 1, 2, P 0
i = ⊥ = DIV , Pn+1

i = Pi(P
n
i ).

We will prove by induction that

dVX (Pn1 , P
n
2 ) ≤ dUX

(T1, T2) for n ≥ 1. (A.3)

– Let n = 1.
dUX

(T1, T2) ≥ dVX (P (T1,DIV , Θ), P (T2,DIV , Θ)) // from A.1

= dVX (P 1
1 , P

1
2 )

– Suppose dVX (Pn1 , P
n
2 ) ≤ dUX

(T1, T2).

dVX (Pn+1
1 , Pn+1

2 ) = dVX (P (T1, P
n
1 , Θ), P (T2, P

n
2 , Θ))

// ultrametric inequality

≤ max{dVX (P (T1, P
n
1 , Θ), P (T2, P

n
1 , Θ)),

dVX (P (T2, P
n
1 , Θ), P (T2, P

n
2 , Θ))}

≤ max{dUX
(T1, T2), // from A.1

dVX (Pn1 , P
n
2 )} // from A.2

≤ max{dUX
(T1, T2),

dUX
(T1, T2} // from A.3, local i.h.

≤ dUX
(T1, T2)

Let dUX
(T1, T2) = 2−k for some k ∈ N. Now suppose for the sake of the argument

that dVX (P ∗1 , P
∗
2 ) > dUX

(T1, T2) = 2−k, and let without loss of generality P ∗1 and P ∗2

differ on the sets of their divergences. Therefore, again without loss of generality,

there exists s ∈ divergences(P ∗1 ) such that s 6∈ divergences(P ∗2 ) and lengthVX (s) ≤ k.

Then, since P ∗i =
⋂∞
n=0 P

n
i , s ∈ Pn1 for all n ∈ N, but there exists l ∈ N such that

s 6∈ P l2. But then dVX (P l1, P
l
2) > 2−k = dUX

(T1, T2), which is a contradiction with
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A.3. Therefore, dVX (P ∗1 , P
∗
2 ) ≤ dUX

(T1, T2). Then, since U ⊆ UX and VX ⊆ V , by

antitoneness, dV ((µY � P )(T1, Θ), (µY � P )(T2, Θ)) = dV (P ∗1 , P
∗
2 ) ≤ dU (T1, T2).

Proposition A.4.1. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a CSP term whose free variables

are contained within the set {X,Y1, . . . , Yn}. Let G : CSP −→ P(P(Σ)), CX : CSP −→

P(P(Σ) × P(Σ)) and F : CSP −→ P(P(Σ) × P(Σ)) be defined recursively on the structure

of P as shown in Figures 4.12, 4.13 and 4.14, respectively. Then:

1. If V ∈ G(P ), then, with any processes substituted for the free variables of P (and in

particular DIV ), P must communicate an event from V before it can do a X.

2. If (U, V ) ∈ CX(P ), then for all processes T1, T2, Θ1, . . . , Θn ∈ T ⇓,

dV (P (T1, θ), P (T2, θ)) ≤ 1
2dU (T1, T2).

3. If (U, V ) ∈ F(P ), then, for any collection of U -fair livelock-free processes θ0, . . . , θn ∈

T ⇓, the process P (θ0, . . . , θn) is livelock-free and V -fair.

Proof. We carry out the proof by induction on the structure of P . For clarity, we prove (1),

(2) and (3) one by one, in Propositions 4.6.3, 4.6.4 and 4.6.6, respectively. In each of these

propositions, our induction hypothesis is that at any point all (1), (2) and (3) hold for any

subterm of P .

Proposition 4.6.3. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a CSP term whose free variables

are contained within the set {X,Y1, . . . , Yn}. Let G : CSP −→ P(P(Σ)) be defined recursively

on the structure of P as shown in Figure 4.12. If V ∈ G(P ), then, with any processes

substituted for the free variables of P (and in particular DIV ), P must communicate an

event from V before it can do a X.

Proof. Structural induction on P . We will write P̂ to denote the result of substituting all

free variables in P with the most general process ⊥ = DIV . For each process ξ, DIV v ξ.

Therefore, by monotonicity of CSP operators (see Section 2.2.3), for any process term C(X),

C(DIV ) v C(ξ).
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• G(STOP) = P(Σ).

Proof. STOP cannot terminate and therefore the property holds vacuously.

• G(a −→ P ) = G(P ) ∪ {V | a ∈ V }.

Proof. Let V ∈ G(a −→ P ) and t = s_〈X〉 ∈ traces⊥( ̂a −→ P ) = traces⊥(a −→ P̂ ).

Therefore t = 〈a〉_r_〈X〉 for some r ∈ Σ∗ such that r_〈X〉 ∈ traces⊥(P̂ ) and

s = 〈a〉_r. Since V ∈ G(a −→ P ), by construction, V ∈ G(P ) or a ∈ V .

– Suppose V ∈ G(P ). Then by induction hypothesis, r_〈X〉 contains an event

from V , and therefore so do s and t.

– Suppose a ∈ V . Then t = 〈a〉_r_〈X〉 contains the event a ∈ V before X.

• G(SKIP) = ∅.

• G(P1 ⊕ P2) = G(P1) ∩ G(P2) for ⊕ ∈ {u,2}.

Proof. Let V ∈ G(P1 ⊕ P2) and t = s_〈X〉 ∈ traces⊥(P̂1 ⊕ P2) = traces⊥(P̂1) ∪

traces⊥(P̂2). Therefore t ∈ traces⊥(P̂1) or t ∈ traces⊥(P̂2). Let, without loss of gener-

ality, t ∈ traces⊥(P̂1). By construction, V ∈ G(P1). Then by induction hypothesis, s

contains an event from V .

• G(P1 # P2) =

{
G(P1) ∪ G(P2) if P1 is closed and F(P1) 6= ∅
G(P1) otherwise

Proof. Let V ∈ G(P1 # P2) and t = s_〈X〉 ∈ traces⊥(P̂1 # P2).

Let first P1 be closed and F(P1) 6= ∅. Then by Proposition A.4.1 (3), P1 is livelock-

free, and therefore divergences(P1) = ∅. Therefore, t = t1_t2_〈X〉 with t1_〈X〉 ∈

traces(P̂1) and t2_〈X〉 ∈ traces⊥(P̂2). In this case by construction V ∈ G(P1)∪G(P2).

Let without loss of generality V ∈ G(P1). Then by induction hypothesis, t1 contains

an event from V , and therefore so does t.
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Let now P1 be open or F(P1) = ∅. Then by construction V ∈ G(P1). We consider the

two possibilities for t.

– Let first t = t1_t2_〈X〉 with t1_〈X〉 ∈ traces⊥(P̂1) and t2_〈X〉 ∈ traces⊥(P̂2).

Since V ∈ G(P1), by induction hypothesis t1 contains an event from V , and

therefore so does t.

– Let now t ∈ divergences(P1) and therefore, t ∈ traces⊥(P1). Then again, by

induction hypothesis, t1 contains an event from V , and therefore so does t.

• G(P1 ‖
A
P2) =

{
G(P1) ∪ G(P2) if, for i = 1, 2, Pi is closed and F(Pi) 6= ∅
G(P1) ∩ G(P2) otherwise

Proof. Let V ∈ G(P1 ‖
A
P2) and t = s_〈X〉 ∈ traces⊥(P̂1 ‖

A
P2).

Let first both P1 and P2 be closed, F(P1) 6= ∅ and F(P2) 6= ∅. Then, by Propo-

sition A.4.1 (3), P1 and P2 are livelock-free, and therefore P1 ‖
A
P2 is livelock-free.

Therefore, divergences(P̂1 ‖
A
P2) = ∅ and traces⊥(P̂1 ‖

A
P2) = traces(P̂1 ‖

A
P2). By con-

struction, V ∈ G(P1) ∪ G(P2). Let without loss of generality V ∈ G(P2). Since

t ∈ traces(P̂1 ‖
A
P2), then, due to distributed termination, there exist t1, t2, such that

t1_〈X〉 ∈ traces(P̂1), t2_〈X〉 ∈ traces(P̂2) and t ∈ t1 ‖
A
t1. By induction hypothesis,

t2 contains an event from V and therefore so does t.

Otherwise, t ∈ traces(P̂1 ‖
A
P2) or t ∈ divergences(P̂1 ‖

A
P2). We consider both alterna-

tives. By construction, V ∈ G(P1) ∩ G(P2), i.e., V ∈ G(P1) and V ∈ G(P2).

– Let t = s_〈X〉 ∈ traces(P̂1 ‖
A
P2). Then, due to distributed termination, there

exist t1, t2, such that t1_〈X〉 ∈ traces(P̂1), t2_〈X〉 ∈ traces(P̂2) and t ∈ t1 ‖
A
t1.

By induction hypothesis, both t1 and t2 contain an event from V and therefore

so does t.

– Let t = s_〈X〉 ∈ divergences(P̂1 ‖
A
P2). Therefore, there exist s1, s2, t1, t2, such

that t1 ∈ traces⊥(P̂1), t2 ∈ traces⊥(P̂2), s1 ∈ (t1 ‖
A
t2) ∩ Σ∗, t = s1

_s2
_〈X〉,

and t1 ∈ divergences(P̂1) or t2 ∈ divergences(P̂2). Let without loss of generality
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t1 ∈ divergences(P̂1). Then t1 ∈ Σ∗, and by Axiom 4, t1_〈X〉 ∈ divergences(P̂1).

Since V ∈ G(P1), by induction hypothesis t1 contains an event from V and

therefore so does t.

• G(P JRK) = {V | V ′ ∈ G(P ) ∧ R(V ′) ⊆ V }.

Proof. Let V ∈ G(P JRK). Then, by construction, there exists V ′ ∈ G(P ) with

R(V ′) ⊆ V . Let t = s_〈X〉 ∈ traces⊥(P̂ JRK). Then, t ∈ divergences(P̂ JRK) or

t ∈ traces(P̂ JRK). We consider both alternatives.

– Suppose t = s_〈X〉 ∈ divergences(P̂ JRK). Therefore, there exist s1, s2, r1 ∈

Σ∗, such that r1 ∈ divergences(P ), r1 R s1 and t = s1
_s2

_〈X〉. As r1 ∈

divergences(P ), by Axiom 4 we have r1
_〈X〉 ∈ divergences(P ). Then, by induc-

tion hypothesis for P , r1 contains an event from V ′. Since r1 R s1, s1 contains

an event from R(V ′) ⊆ V . Therefore, since t = s1
_s2

_〈X〉, t contains an event

from V .

– Suppose t = s_〈X〉 ∈ traces(P̂ JRK). Therefore, there exist t′, s′ ∈ traces(P̂ ),

such that t′ = s′_〈X〉 and s′ R s. By induction hypothesis for P and t′, s′

contains an event from V ′. Since s′ R s, s contains an event from R(V ′) ⊆ V ,

and hence t contains an event from V .

• G(P \ A) =


{V | V ′ ∈ G(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V } if P is closed and

(∅,Σ−A) ∈ F(P )
∅ otherwise

Proof. Let V ∈ G(P \ A). Let furthermore P be closed and (∅,Σ−A) ∈ F(P ). Then

P does not have free process variables and by Proposition A.4.1 (3) we can conclude

the following:

1. P is livelock-free, i.e., divergences(P ) = ∅ and traces⊥(P ) = traces(P ).

2. Any infinite trace u of P contains infinitely many events from Σ−A. Therefore

u � (Σ\A) is infinite.
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Let t = s_〈X〉 ∈ traces⊥(P̂ \ A) = traces⊥(P \ A). Then either t ∈ divergences(P \

A) or t ∈ traces(P \ A). We consider both alternatives.

– Let t = s_〈X〉 ∈ divergences(P \ A). As from (1) divergences(P ) = ∅ (i.e., t

cannot arise from a divergence of P ), by definition there exists u ∈ tracesω(P )

such that s1 = u � (Σ\A) is finite and t = s1
_s2

_〈X〉. However, by (2),

u � (Σ\A) cannot be finite for any infinite trace u of P . Due to the contradiction,

this case is not possible.

– Therefore, t = s_〈X〉 ∈ traces(P \ A). Therefore, there exists t′ = s′_〈X〉 ∈

traces(P ), such that s = s′ � (Σ\A). Since V ∈ G(P \ A), by construction there

exists V ′ ∈ G(P ) with V ′ ⊆ V and V ′ ∩ A = ∅. By induction hypothesis for t′

and P , s′ contains an event from V ′ ⊆ V . But V ′∩A = ∅. Hence, s = s′ � (Σ\A)

contains an event from V ′ and therefore from V .

• G(X) = ∅.

• G(µX � P ) = G(P ).

Proof. Let V ∈ G(µX � P ) and t = s_〈X〉 ∈ traces⊥(µ̂X � P ). We have µ̂X � P =

(µX � P )(DIV ) = P ∗ =
⋂∞
i=0 P

n, where P 0 = DIV , Pn+1 = P (Pn,DIV ). Since t ∈

traces⊥(P ∗), t ∈ traces⊥(Pn) for every n ∈ N. Therefore, t = s_〈X〉 ∈ traces⊥(P 1) =

traces⊥(P (DIV ,DIV )) = traces⊥(P̂ ). By construction, V ∈ G(P ). Therefore, by

induction hypothesis for P and t, s contains an event from V .

Proposition 4.6.4. Let P (X,Y1, . . . , Yn) = P (X,Y ) be a CSP term whose free variables

are contained within the set {X,Y1, . . . , Yn}. Let CX : CSP −→ P(P(Σ)×P(Σ)) be defined

recursively on the structure of P as shown in Figure 4.13. If (U, V ) ∈ CX(P ), then for all

processes T1, T2, Θ1, . . . , Θn ∈ T ⇓, dV (P (T1, θ), P (T2, θ)) ≤ 1
2dU (T1, T2).

Proof. Structural induction on P . Let us take arbitrary T1, T2, Θ1, . . . , Θn ∈ T ⇓.
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• CX(P ) = P(Σ)× P(Σ) whenever X is not free in P .

Proof. Let (U, V ) ∈ CX(P ).

1
2dU (T1, T2) ≥ 0 = dV (P (T1, Θ), P (T2, Θ)) = dV (P (Θ), P (Θ)).

• CX(a −→ P ) = CX(P ) ∪ {(U, V ) ∈ NX(P ) | a ∈ V }.

Proof. Suppose (U, V ) ∈ CX(a −→ P ). By construction, (U, V ) ∈ CX(P ), or (U, V ) ∈

NX(P ) and a ∈ V . We consider both cases.

– Suppose (U, V ) ∈ CX(P ). Then:

1
2dU (T1, T2) ≥ dV (P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dV (a −→ P (T1, Θ), a −→ P (T2, Θ)) // Lemma 4.5.8

– Suppose (U, V ) ∈ NX(P ) and a ∈ V .

1
2dU (T1, T2) ≥ 1

2dV (P (T1, Θ), P (T2, Θ)) // (U, V ) ∈ NX(P ),
// Proposition 4.6.2

= dV (a −→ P (T1, Θ), a −→ P (T2, Θ)) // a ∈ V

• CX(P1 ⊕ P2) = CX(P1) ∩ CX(P2) = {(U1 ∩ U2, V1 ∪ V2) | (Ui, Vi) ∈ CX(Pi)} for

⊕ ∈ {u,2, ‖
A
}.

Proof. Suppose (U, V ) ∈ CX(P1⊕P2). By construction, there exist (U1, V1) ∈ CX(P1)

and (U2, V2) ∈ CX(P2), such that U = U1 ∩ U2 and V = V1 ∪ V2. Therefore, (U, V ) ∈

CX(P1), (U, V ) ∈ CX(P2) (antitoneness). Then:

dV ((P1 ⊕ P2)(T1, Θ), (P1 ⊕ P2)(T2, Θ))

= dV (P1(T1, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T2, Θ))

// ultrametric inequality

≤ max{ dV (P1(T1, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T1, Θ)),

dV (P1(T2, Θ)⊕ P2(T1, Θ), P1(T2, Θ)⊕ P2(T2, Θ))}
// Lemma 4.5.7

≤ max{ dV (P1(T1, Θ), P1(T2, Θ)) // ≤ 1
2dU (T1, T2), induction hypothesis for P1

dV (P2(T1, Θ), P2(T2, Θ))} // ≤ 1
2dU (T1, T2), induction hypothesis for P2

≤ 1
2dU (T1, T2)
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• CX(P1 # P2) = CX(P1) ∩ (CX(P2) ∪ {(U, V ) ∈ NX(P2) | V ∈ G(P1)}.

Proof. Suppose (U, V ) ∈ CX(P1 # P2). By construction, (U, V ) ∈ CX(P1 # P2) yields

2 possibilities:

– (U, V ) ∈ CX(P1) ∩ CX(P2). The proof is the same as the proof for u,2 and ‖
A

.

– (U, V ) ∈ CX(P1)∩ {(U, V ) ∈ NX(P2) | V ∈ G(P1)}. Again, using the ultrametric

inequality:

dV (P1(T1, Θ) # P2(T1, Θ), P1(T2, Θ) # P2(T2, Θ))

≤ max{ dV (P1(T1, Θ) # P2(T1, Θ), P1(T2, Θ) # P2(T1, Θ)),

dV (P1(T2, Θ) # P2(T1, Θ), P1(T2, Θ) # P2(T2, Θ))}
// Lemma 4.5.7

≤ max{ dV (P1(T1, Θ), P1(T2, Θ)), // ≤ 1
2dU (T1, T2), induction hypothesis for P1

dV (P2(T1, Θ), P2(T2, Θ))} // ≤ 1
2dU (T1, T2), Prop. A.4.1 (1) and 4.5.11

≤ 1
2dU (T1, T2)

• CX(P \ A) = {(U, V ) | (U, V ′) ∈ CX(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }.

Proof. Suppose (U, V ) ∈ CX(P \ A). By construction, there exists V ′ such that

(U, V ′) ∈ CX(P ), V ′ ⊆ V and V ′ ∩A = ∅.
1
2dU (T1, T2) ≥ dV ′(P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dV ′(P (T1, Θ) \ A,P (T2, Θ) \ A) // V ′ ∩A = ∅, Lemma 4.5.9

≥ dV (P (T1, Θ) \ A,P (T2, Θ) \ A) // V ′ ⊆ V , U 7→ dU antitone

• CX(P JRK) = {(U, V ) | (U, V ′) ∈ CX(P ) ∧ R(V ′) ⊆ V }.

Proof. Suppose (U, V ) ∈ CX(P JRK). By construction, there exists V ′ such that

(U, V ′) ∈ CX(P ) and R(V ′) ⊆ V .

1
2dU (T1, T2) ≥ dV ′(P (T1, Θ), P (T2, Θ)) // induction hypothesis

≥ dR(V ′)(P (T1, Θ)JRK, P (T2, Θ)JRK) // Lemma 4.5.10

≥ dV (P (T1, Θ)JRK, P (T2, Θ)JRK) // R(V ′) ⊆ V , U 7→ dU antitone

• CX(X) = ∅.

• CX(µY � P ) = {(U, V ) | (U ′, V ′) ∈ CX(P ) ∧ (V ′, V ′) ∈ NY (P ) ∧ U ⊆ U ′ ∧ V ′ ⊆ V } if

Y 6= X
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Proof. Suppose (U, V ) ∈ CX(µY �P ) for X 6= Y and X,Y free in P (X,Y, Z1, . . . , Zn).

Then by construction, there exist U ′, V ′ ⊆ Σ such that:

1. (U ′, V ′) ∈ CX(P )

2. U ⊆ U ′, V ′ ⊆ V

3. (V ′, V ′) ∈ NY (P )

Since (U ′, V ′) ∈ CX(P ), by induction hypothesis we have the following for all T1, T2, ξ,

Θ ∈ T ⇓:
1

2
dU ′(T1, T2) ≥ dV ′(P (T1, ξ, Θ), P (T2, ξ, Θ)) (A.4)

Since (V ′, V ′) ∈ NY (P ), from Proposition 4.6.2:

dV ′(T1, T2) ≥ dV ′(P (ξ, T1, Θ), P (ξ, T2, Θ)) (A.5)

Let P1(Y ) = P (T1, Y,Θ), P2(Y ) = P (T2, Y,Θ). Then, (µY � P )(T1, θ) = P ∗1 =⋂∞
i=0 P

n
1 and (µY � P )(T2, θ) = P ∗2 =

⋂∞
i=0 P

n
2 , where for i = 1, 2, P 0

i = ⊥ = DIV ,

Pn+1
i = P (Ti, P

n
i , θ) = Pi(P

n
i ).

We will prove by induction that for every n ≥ 1:

dV ′(P
n
1 , P

n
2 ) ≤ 1

2
dU ′(T1, T2) (A.6)

– Let n = 1.
1
2dU ′(T1, T2) ≥ dV ′(P (T1,DIV , Θ), P (T2,DIV , Θ)) // from (A.4)

= dV ′(P
1
1 , P

1
2 )

– Suppose dV ′(P
n
1 , P

n
2 ) ≤ 1

2dU ′(T1, T2).

dV ′(P
n+1
1 , Pn+1

2 ) = dV ′(P (T1, P
n
1 , Θ), P (T2, P

n
2 , Θ))

// ultrametric inequality

≤ max{dV ′(P (T1, P
n
1 , Θ), P (T2, P

n
1 , Θ)),

dV ′(P (T2, P
n
1 , Θ), P (T2, P

n
2 , Θ))}

≤ max{1
2dU ′(T1, T2), // from (A.4)
dV ′(P

n
1 , P

n
2 )} // from (A.5)

≤ max{1
2dU ′(T1, T2),

1
2dU ′(T1, T2} // from (A.6), local i.h.

≤ 1
2dU ′(T1, T2)
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Now suppose that dV ′(P
∗
1 , P

∗
2 ) > 1

2dU ′(T1, T2) and let dU ′(T1, T2) = 2−k. Let without

loss of generality, P ∗1 and P ∗2 differ on the sets of their divergences and let there

exists s ∈ divergences(P ∗1 ) such that lengthV ′(s) < k + 1 and s 6∈ divergences(P ∗2 ).

Then, since P ∗i =
⋂∞
n=0 P

n
i , there exists l ∈ N such that s /∈ P l2, but for all n ∈ N,

s ∈ Pn1 . But then dV ′(P
l
1, P

l
2) > 2−(k+1) = 1

2dU ′(T1, T2), which is a contradiction with

(A.6). Therefore, dV ′(P
∗
1 , P

∗
2 ) ≤ 1

2dU ′(T1, T2). Then, since U ⊆ U ′ and V ′ ⊆ V , by

antitoneness, dV ((µY � P )(T1, Θ), (µY � P )(T2, Θ)) = dV (P ∗1 , P
∗
2 ) ≤ 1

2dU (T1, T2).

Proposition 4.6.6. Let P (X1, . . . , Xn) = P (X) be a CSP term whose free variables are

contained within the set {X1, . . . , Xn}. Let F : CSP −→ P(P(Σ) × P(Σ)) be defined re-

cursively on the structure of P as shown in Figure 4.14. If (U, V ) ∈ F(P ), then, for

any collection of U -fair livelock-free processes θ1, . . . , θn ∈ T ⇓, the process P (θ1, . . . , θn) is

livelock-free and V -fair.

Proof. Structural induction on P .

• F(STOP) = F(SKIP) = P(Σ)× P(Σ).

Proof. STOP and SKIP are livelock-free and do not contain infinite traces.

• F(a −→ P ) = F(P )

Proof. Let (U, V ) ∈ F(a −→ P ), θ1, . . . , θn be a collection of livelock-free U -fair

processes.

Since (U, V ) ∈ F(a −→ P ), by construction we have (U, V ) ∈ F(P ). Therefore by

induction hypothesis, P (Θ) is livelock-free and V -fair. Therefore, a −→ P (Θ) is

livelock-free.

We will prove that a −→ P (Θ) is V -fair. Let u ∈ tracesω(a −→ P (Θ)). Therefore,

by Lemma 4.4.2, there exists u′ ∈ tracesω(P (Θ)), such that u = 〈a〉_u′. Since P (Θ)

is V -fair, u′ contains infinitely many events from V , and so does therefore u. Hence,

a −→ P (Θ) is V -fair.
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• F(P1 ⊕ P2) = F(P1) ∩ F(P2) for {u,2}

Proof. Let (U, V ) ∈ F(P1 ⊕ P2), θ1, . . . , θn be a collection of livelock-free U -fair pro-

cesses.

Since (U, V ) ∈ F(P1 ⊕ P2), by construction, (U, V ) ∈ F(P1) and (U, V ) ∈ F(P2).

Therefore, by induction hypothesis, P1(Θ) and P2(Θ) are livelock-free and V -fair.

Therefore, P1(Θ)⊕ P2(Θ) is livelock-free.

Let u ∈ tracesω(P1(Θ) ⊕ P2(Θ)). Then, by Lemma 4.4.3, u ∈ tracesω(P1(Θ)) or

u ∈ tracesω(P2(Θ)). Let without loss of generality the former holds. Then, since

P1(Θ) is V -fair, u contains infinitely many events from V . Therefore, P1(Θ)⊕ P2(Θ)

is V -fair.

• F(P1 # P2) = F(P1) ∩ F(P2)

Proof. Let (U, V ) ∈ F(P1 # P2), θ1, . . . , θn be a collection of livelock-free U -fair pro-

cesses.

Since (U, V ) ∈ F(P1 # P2), by construction we have (U, V ) ∈ F(P1) and (U, V ) ∈ F(P2).

Therefore by induction hypothesis, P1(Θ) and P2(Θ) are livelock-free and V -fair.

Therefore P1(Θ) # P2(Θ) is livelock-free.

Let u ∈ tracesω(P1(Θ) # P2(Θ)). Then by Lemma 4.4.4, u ∈ tracesω(P1(Θ)), or

u = t1_u2 with t1_〈X〉 ∈ traces(P1(Θ)) ∩ Σ∗X and u2 ∈ tracesω(P2(Θ)).

– Suppose u ∈ tracesω(P1(Θ)). Since P1(Θ) is V -fair, u contains infinitely many

events from V .

– Suppose u = t1_u2 with t1_〈X〉 ∈ traces(P1(Θ))∩Σ∗X and u2 ∈ tracesω(P2(Θ)).

Since P2(Θ) is V -fair, u2 contains infinitely many events from V and so does

therefore u.

Therefore, P1(Θ) # P2(Θ) is V -fair.

• F(P1 ‖
A
P2) = (F(P1) ∩ F(P1)) ∪

{(U1 ∩ U2, V1) | (U1, V1) ∈ F(P1) ∧ (U2, A) ∈ F(P2)} ∪
{(U1 ∩ U2, V2) | (U2, V2) ∈ F(P2) ∧ (U1, A) ∈ F(P1)}
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Proof. Let (U, V ) ∈ F(P1 ‖
A
P2), θ1, . . . , θn be a collection of livelock-free U -fair pro-

cesses.

Since (U, V ) ∈ F(P1 ‖
A
P2), by construction, F(P1) 6= ∅, F(P2) 6= ∅ and, by induction

hypothesis, P1(Θ) and P2(Θ) are livelock-free. Therefore, P1(Θ) ‖
A
P2(Θ) is livelock-

free.

Let u ∈ tracesω(P1(Θ) ‖
A
P2(Θ)). Therefore by Lemma 4.4.7, there exist u1 ∈

traces∞(P1(Θ)), u2 ∈ traces∞(P2(Θ)), such that u ∈ u1 ‖
A
u2, and u1 ∈ Σω or u2 ∈ Σω.

Let without loss of generality u1 ∈ Σω. By construction, we have three alternatives

for (U, V ).

– Suppose (U, V ) ∈ F(P1) ∩ F(P2). By induction hypothesis, P1(Θ) is V -fair.

Therefore, u1 contains infinitely many events from V and so does u.

– Suppose (U, V ) is (U1 ∩ U2, V ) with (U1, V ) ∈ F(P1), (U2, A) ∈ F(P2). Then

U = U1 ∩U2 ⊆ U1, and therefore θ1, . . . , θn are also U1-fair. Hence, by induction

hypothesis, P1(Θ) is V -fair. Then, u1 contains infinitely many events from V

and so does therefore u.

– Suppose (U, V ) is (U1 ∩ U2, V ) with (U2, V ) ∈ F(P2), (U1, A) ∈ F(P1). Since

U = U1 ∩U2, we have U ⊆ U1, U ⊆ U2, and hence θ1, . . . , θn are all both U1-fair

and U2-fair. By induction hypothesis for P1, u1 contains infinitely many events

from A. Since u1 and u2 synchronise on the events in A, u2 contains infinitely

many events from A. Therefore, u2 ∈ Σω and by induction hypothesis for P2, u2

contains infinitely many events from V . Hence, u contains infinitely many events

from V .

Therefore, P1(Θ) ‖
A
P2(Θ) is V -fair.

• F(P \ A) = {(U, V ) | (U, V ′) ∈ F(P ) ∧ V ′ ∩A = ∅ ∧ V ′ ⊆ V }

Proof. Let (U, V ) ∈ F(P \ A) and θ1, . . . , θn be a collection of livelock-free U -fair

processes.

Since (U, V ) ∈ F(P \ A), by construction there exists V ′ ⊆ V , such that V ′∩A = ∅ and

(U, V ′) ∈ F(P ). Therefore by induction hypothesis, P (Θ) is livelock-free and V ′-fair.
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Suppose P (Θ) \ A is not livelock-free. Therefore, since P (Θ) is livelock-free, there

exists u ∈ tracesω(P ) such that u � (Σ\A) is finite. Since P (Θ) is V ′-fair, u contains

infinitely many events from V ′. Since V ′ ∩A = ∅, u � (Σ\A) contains infinitely events

from V ′, which is a contradiction with u � (Σ\A) being finite. Therefore, P (Θ) \ A is

livelock-free.

Let u ∈ tracesω(P (Θ) \ A). Then, by Lemma 4.4.5, there exists u′ ∈ tracesω(P (Θ)),

such that u = u′ � (Σ\A). Since P (Θ) is V ′-fair, u′ contains infinitely many events

from V ′. Since V ′ ∩ A = ∅, u = u′ � (Σ\A) contains infinitely many events from

V ′ ⊆ V . Therefore, u contains infinitely many events from V . Therefore, P (Θ) \ A

is V -fair.

• F(P JRK) = {(U, V ) | (U, V ′) ∈ F(P ) ∧ R(V ′) ⊆ V }

Proof. Let (U, V ) ∈ F(P JRK) and θ1 . . . , θn be a collection of livelock-free U -fair pro-

cesses.

Since (U, V ) ∈ F(P JRK), by construction there exists V ′, such that R(V ′) ⊆ V and

(U, V ′) ∈ F(P ). Therefore by induction hypothesis, P (Θ) is livelock-free and V ′-fair.

Hence, P (Θ)JRK is also livelock-free.

Let u ∈ tracesω(P (Θ)JRK). Then, by Lemma 4.4.6, there exists u′ ∈ tracesω(P (Θ)),

such that u′ R u. Since P (Θ) is V ′-fair, u′ contains infinitely many events from V ′.

Since u′ R u, u contains infinitely many events from R(V ′) ⊆ V . Therefore, u contains

infinitely many events from V . Hence, P (Θ)JRK is V -fair.

• F(X) = {(U, V ) | U ⊆ V }

Proof. Let (U, V ) ∈ F(X), θ be a livelock-free U -fair process. X(θ) = θ is then

livelock-free, and since U ⊆ V , X(θ) = θ is V -fair.

• F(µX�P ) =

{
{(U, V ) | (W,W ) ∈ CX(P ) ∩ F(P ) ∧ U ⊆W ⊆ V } if µX � P is open
P(Σ)× {V | (W,W ) ∈ CX(P ) ∩ F(P ) ∧W ⊆ V } otherwise
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Proof. Let P (X,Y1, . . . , Yn) be a CSP term whose free variable are contained within

the set {X,Y1, . . . , Yn}. Let (U, V ) ∈ F(µX �P ) and (µX �P ) be open. Let θ1, . . . , θn

be a collection of livelock-free U -fair processes.

Since (U, V ) ∈ F(µX �P ), by construction there exists W , such that U ⊆W ⊆ V and

(W,W ) ∈ CX(P )∩F(P ). Therefore θ1, . . . , θn are W -fair and, by induction hypothesis:

P (ξ,Θ) is livelock-free and W -fair for any livelock-free W -fair process ξ. (A.7)

Since (W,W ) ∈ CX(P ), by Proposition A.4.1 (2), P (X,Θ) is contractive in X with

respect to the metric dW . Therefore, from Banach’s fixed point theorem, P (X,Θ)

has a unique fixed point (µX � P )(θ) =
⋃∞
n=0 P

n = P ∗, where P 0 = > = STOP ,

Pn+1 = P (Pn, Θ).

We will prove by induction that for every n ∈ N, Pn is livelock-free and W -fair.

– Let n = 0. The process STOP is livelock-free and does not contain infinite traces.

– Suppose that Pn is livelock-free and W -fair. From (A.7), Pn+1 = P (Pn, Θ) is

also livelock-free and W -fair.

Therefore, for every n ∈ N, Pn is livelock-free. Then, since by Proposition A.2.3 the

set of livelock-free processes is closed, (µX � P )(θ) =
⋃∞
n=0 P

n = P ∗ is livelock-free.

Now let u ∈ tracesω((µX �P )(Θ)). Then, for every finite prefix t of u, t ∈ traces(P ∗),

i.e., there exists some sufficiently large nt, such that t ∈ traces(Pnt).

If there exists m ∈ N such that for each prefix t of u, t ∈ traces(Pm), then u ∈

tracesω(Pm). In this case, since Pm is W -fair, u contains infinitely many events from

W . Then, since W ⊆ V , u contains infinitely many events from V .

Otherwise, we can conclude the following:

for each m ∈ N, there exists a prefix t of u, such that t 6∈ traces(Pm). (A.8)

Let ε = 2−k for some k ∈ N. Since the sequence 〈P i | i ∈ N〉 converges to P ∗

with respect to the metric dW , there exists nε ∈ N, such that for each n ≥ nε,

dW (P ∗, Pn) < ε. From our assumption (A.8) for m = nε, there exists tε, such that
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tε is a prefix of u and tε 6∈ traces(Pnε). Then, since dW (P ∗, Pnε) < ε = 2−k and

tε ∈ traces(P ∗), we obtain lengthW tε ≥ k. Since k was arbitrary, we can conclude

that u contains infinitely many events from W . Then again, since W ⊆ V , u contains

infinitely many events from V . Therefore, (µX � P )(θ) is V -fair.
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A.5 Proofs for Section 4.7

Proposition 4.7.2. Let P be a structurally finite state process. Let Φ : SFS −→ P(P(Σ)×

P(Σ)) and δ : SFS −→ {true, false} be defined recursively on the structure of P as shown in

Figures 4.18 and 4.19, respectively. Then, if δ(P ) = false, P is livelock-free. Moreover, if

Φ(P ) = {(F1, C1), . . . , (Fk, Ck)}, then, for each infinite trace u of P , there exists 1 ≤ i ≤ k,

such that u is fair in Fi and u is co-fair in Ci.

Proof. Induction on the structure of the SFS process P .

Note that by construction, all fair/co-fair pairs of sets thus generated remain disjoint,

i.e., for each (F,C) ∈ Φ(P ), F∩C = ∅. This is key in the rule for parallel composition, where

the fair/co-fair data of individual subcomponents enables one to rule out certain pairs for

the resulting parallel process. We prove this property only for the case of renaming as for all

other cases it follows trivially from the induction hypothesis and the specific construction.

Let us also remark that it might be the case that δ(P ) = false and Φ(P ) = ∅, and this

indicates that P is livelock free but exhibits only finite traces. We note, however, that if

δ(P ) = false and Φ(P ) 6= ∅, then for every (F,C) ∈ Φ(P ), F 6= ∅. This is true for atomic SFS

processes by construction and follows for compound SFS processes by induction hypothesis

and construction. We prove the property only for the cases of hiding and renaming where

the argument is more subtle.

• For P an atomic SFS process, Φ(P ) and δ(P ) are computed directly from the labelled

transition system associated with P (see Section 4.7.2).

• δ(a −→ P ) = δ(P ) and Φ(a −→ P ) = Φ(P ).

Proof. Let δ(a −→ P ) = false. By construction, δ(P ) = false and, therefore, by

induction hypothesis, P is livelock-free. Hence, by definition, a −→ P is also livelock-

free.

Let u ∈ tracesω(a −→ P ). Then, by Lemma 4.4.2, there exists u′ ∈ tracesω(P ), such

that u = 〈a〉_u′. By induction hypothesis for P , there exists (F,C) ∈ Φ(P ), such

that u′ is fair in F and co-fair in C. But then u is also fair in F and co-fair in C and,

by construction, (F,C) ∈ Φ(a −→ P ).
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• δ(P1 ⊕ P2) = δ(P1) ∨ δ(P2) and Φ(P1 ⊕ P2) = Φ(P1) ∪ Φ(P2) if ⊕ ∈ {u,2}.

Proof. Let δ(P1 ⊕ P2) = false. By construction, δ(P1) = false and δ(P2) = false.

Therefore, by induction hypothesis, P1 and P2 are livelock-free. Hence, by definition,

P1 ⊕ P2 is livelock-free.

Let u ∈ tracesω(P1 ⊕ P2). By Lemma 4.4.3, u ∈ tracesω(P1) or u ∈ tracesω(P2). Let

without loss of generality the former holds. Then, by induction hypothesis for P1,

there exists (F,C) ∈ Φ(P1), such that u is fair in F and co-fair in C. By construction,

Φ(P1) ⊆ Φ(P1 ⊕ P2) and, therefore, (F,C) ∈ Φ(P1 ⊕ P2).

• δ(P1 # P2) = δ(P1) ∨ δ(P2) and Φ(P1 # P2) = Φ(P1) ∪ Φ(P2).

Proof. Let δ(P1 # P2) = false. By construction, δ(P1) = false and δ(P2) = false.

Therefore, by induction hypothesis, P1 and P2 are livelock-free. Hence, by definition,

P1 # P2 is livelock-free.

Let u ∈ tracesω(P1 # P2). By Lemma 4.4.4, u ∈ tracesω(P1), or u = t_u′ with

t_〈X〉 ∈ traces(P1) ∩ Σ∗X and u′ ∈ tracesω(P2). We consider both alternatives.

– If u ∈ tracesω(P1), by induction hypothesis for P1, there exists (F,C) ∈ Φ(P1),

such that u is fair in F and co-fair in C. By construction, Φ(P1) ⊆ Φ(P1 ⊕ P2)

and, therefore, (F,C) ∈ Φ(P1 ⊕ P2).

– Let u = t_u′ where t_〈X〉 ∈ traces(P1) ∩ Σ∗X and u′ ∈ tracesω(P2). By

induction hypothesis for P2, there exists (F,C) ∈ Φ(P2), such that u′ is fair in F

and co-fair in C. The finite prefix t of u does not affect fairness and co-fairness.

Therefore, u = t_u′ is fair in F and co-fair in C and (F,C) ∈ Φ(P1 ⊕ P2) by

construction.

• δ(P \ A) =

{
false if δ(P ) = false and, for each (F,C) ∈ Φ(P ), F −A 6= ∅
true otherwise

and Φ(P \ A) = {(F −A,C ∪A) | (F,C) ∈ Φ(P )}.
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Proof. Let δ(P \ A) = false. By construction, δ(P ) = false and for each (F,C) ∈

Φ(P ), F − A 6= ∅. Since δ(P ) = false, by induction hypothesis, P is livelock-free.

Suppose P \ A can diverge. Since P is livelock-free, by definition, the only alternative

is that there exists u ∈ tracesω(P ), such that u � (Σ\A) is finite. By induction

hypothesis for P , there exists (F,C) ∈ Φ(P ), such that u is fair in F and co-fair in

C. By construction, since δ(P \ A) = false, F −A 6= ∅. Therefore, there exists b ∈ F

such that b /∈ A and b occurs infinitely many times in u. But then b should also occur

infinitely many times in u � (Σ\A), which is a contradiction with u � (Σ\A) being

finite. Therefore, P \ A is livelock-free.

Now, let u ∈ tracesω(P \ A). Since P \ A is livelock-free, by Lemma 4.4.5, there exists

v ∈ tracesω(P ) such that u = v � (Σ\A). By induction hypothesis for P , there exists

(F,C) ∈ Φ(P ) such that v is fair in F and co-fair in C. Then, since u is obtained by

deleting all A-events from v, u is fair in F −A and co-fair in C ∪A. Both F −A 6= ∅

and (F −A,C ∪A) ∈ Φ(P \ A) are guaranteed by construction.

Let δ(P \ A) = false and let (F,C) ∈ Φ(P \ A). We now prove that F 6= ∅. Since

δ(P \ A) = false, by construction we have the following:

for each (F ′, C ′) ∈ Φ(P ), F ′ −A 6= ∅. (A.9)

As (F,C) ∈ Φ(P \ A), by construction F = F ′−A for some F ′ with (F ′, C ′) ∈ Φ(P ).

By (A.9), F ′ −A 6= ∅, and hence F 6= ∅.

• δ(P JRK) = δ(P ) and

Φ(P JRK) = {(F,C) | (F ′, C ′) ∈ Φ(P ) ∧ F ′ ⊆ R−1(F ) ∧ F ⊆ R(F ′) ∧

C = {b ∈ Σ | R−1(b) ⊆ C ′}}

Proof. In the proof we use the following notation. For any A ⊆ Σ, a, b ∈ Σ, we write

R(A) = {b | ∃ a ∈ A � a R b} and R−1(b) = {a | a R b}. Let us also clarify that in the

setting of CSP [Ros98] renaming relations are assumed to be total. If an event a ∈ Σ

is not renamed to any other event b ∈ Σ, it is assumed that a is renamed to itself,

and hence R({a}) 6= ∅.
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Let δ(P JRK) = false. By construction, δ(P ) = false. Then by induction hypothesis,

P is livelock-free, and hence by definition so is P JRK.

Let u ∈ tracesω(P JRK). By Lemma 4.4.6, there exists v ∈ tracesω(P ), such that

v R u, i.e., for every i ∈ N, v(i) R u(i). By induction hypothesis for P , there exists

(U ′, V ′) ∈ Φ(P ), such that v is fair in F ′ and co-fair in C ′.

Let C = {b ∈ Σ | R−1(b) ⊆ C ′} and let b ∈ C. By construction, for each a ∈ R−1(b),

a ∈ C ′ and, therefore, v is co-fair in a. Now suppose for the sake of contradiction

that u contains infinitely many occurrences of b. By definition, there exists a ∈ Σ,

such that a R b and a occurs infinitely many times in v. Therefore, a /∈ C ′ and

R−1(b) 6⊆ C ′, which is a contradiction with R−1(b) ⊆ C ′. Therefore, u contains only

finitely many b’s and, more generally, u is co-fair in C.

We will construct F from F ′ in a way that F ⊆ R(F ′) (which will bound F from

above), F ′ ⊆ R−1(F ) (which will bound F from below and will guarantee F 6= ∅) and

u is fair in F . Then (F,C) ∈ Φ(P JRK) by construction.

By induction hypothesis, F ′ 6= ∅. Let F ′ = {a1, . . . , am} and for each 1 ≤ i ≤ m,

R({ai}) = {bi1 , . . . , bini
}. As each ai occurs infinitely many times in v and v R u, for

each 1 ≤ i ≤ m, there exists bji , such that ai R bji and bji occurs infinitely many times

in u. We define F = {bj1 , . . . , bjm}. Since F ′ 6= ∅, F 6= ∅. By the construction of F , u

is fair in F and F ⊆ R(F ′). As by construction for each ai ∈ F ′ there exists bji ∈ F

with ai R bji , then for every 1 ≤ i ≤ m, ai ∈ R−1(bji). Therefore, F ′ ⊆ R−1(F ).

We will also prove that for any F that satisfies F ⊆ R(F ′) and F ′ ⊆ R−1(F ), the sets

F and C are disjoint. Suppose there exists b ∈ Σ such that b ∈ F ∩ C. As b ∈ C, by

construction, for each a with a R b, we have a ∈ C ′. Since b ∈ F and by construction

F ⊆ R(F ′), there exists a ∈ F ′, such that a R b. Therefore, a ∈ C ′ ∩ F ′. This is a

contradiction with the induction hypothesis according to which F ′ and C ′ are disjoint.

Therefore, F ∩ C = ∅.

• δ(P1 ‖
A
P2) = δ(P1) ∨ δ(P2) and

Φ(P1 ‖
A
P2) = {(F,C) | F ∩ C = ∅ ∧ (Fi, Ci) ∈ Φ(Pi) for i = 1, 2 ∧ F = F1 ∪ F2 ∧

C = (C1 ∩A) ∪ (C2 ∩A) ∪ ((C1 −A) ∩ (C2 −A))} ∪
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{(F,C) | (F,C) ∈ Φ(P1) ∧ F ∩A = ∅} ∪

{(F,C) | (F,C) ∈ Φ(P2) ∧ F ∩A = ∅}

Proof. Let δ(P1 ‖
A
P2) = false. By construction, δ(P1) = false and δ(P2) = false.

Therefore, by induction hypothesis, P1 and P2 are livelock-free. Hence by definition,

P1 ‖
A
P2 is livelock-free.

Let u ∈ tracesω(P1 ‖
A
P2). From Lemma 4.4.7, there exist u1 ∈ traces∞(P1) and

u2 ∈ traces∞(P2), such that u ∈ u1 ‖
A
u2, and u1 ∈ Σω or u2 ∈ Σω. We will consider

three different cases.

– Let u1 ∈ Σω and u2 ∈ Σ∗X. By induction hypothesis for P1, there exists (F,C) ∈

Φ(P1) such that u1 is fair in F and co-fair in C. Suppose for the sake of the

argument that F ∩ A 6= ∅. Then, u1 contains infinitely many occurrences of

events from A. Since P1 and P2 synchronise on the events in A, u2 must also

contain infinitely many events from A, which is a contradiction with u2 ∈ Σ∗X.

Therefore, F ∩ A = ∅ and, by construction, (F,C) ∈ Φ(P1 ‖
A
P2). Now, since u2

is finite and does not affect fairness and co-fairness, u is fair in F and co-fair in

C.

– The case where u2 ∈ Σω and u1 ∈ Σ∗X is handled in the same way.

– Let u1 ∈ Σω and u2 ∈ Σω. By induction hypothesis for P1 and P2, there exist

(F1, C1) ∈ Φ(P1) and (F2, C2) ∈ Φ(P2), such that u1 is fair in F1 and co-fair in C1

and u2 is fair in F2 and co-fair in C2. We note, that for each a ∈ A, the number

of occurrences of a in u1, u2 and u is the same due to P1 and P2 synchronising

on a. Therefore, for each a ∈ A, u1 contains infinitely many occurrences of a if

and only if u2 contains infinitely many occurrences of a. Hence, F1 ∩C2 ∩A = ∅

and F2 ∩ C1 ∩A = ∅.

Let F = F1 ∪ F2 and C = (C1 ∩A) ∪ (C2 ∩A) ∪ ((C1 −A) ∩ (C2 −A)).

We will first prove that F ∩ C = ∅. Suppose for the sake of contradiction that

there exists b ∈ Σ such that b ∈ F ∩ C. Since b ∈ F , by construction, b ∈ F1 or

b ∈ F2. Let without loss of generality b ∈ F1. We will consider the cases b ∈ A

and b /∈ A.
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∗ Suppose b ∈ A. Since b ∈ F1, u1 is fair in b and, therefore, b /∈ C1. Since

b ∈ C and b ∈ A, b ∈ C1∩A or b ∈ C2∩A. As b /∈ C1, b ∈ C2∩A. Therefore,

b ∈ F1 ∩ C2 which is a contradiction with F1 ∩ C2 ∩ A = ∅. Therefore, this

case is not possible.

∗ Suppose b /∈ A. Since b ∈ C, b ∈ C1 and b ∈ C2. Therefore, b ∈ F1 ∩ C1

which is a contradiction with the induction hypothesis by which F1 and C1

are disjoint. Therefore, this case is not possible either.

Therefore, F ∩ C = ∅.

Now, for any event b ∈ Σ, if b ∈ F1 or b ∈ F2, i.e., b has infinitely many

occurrences in u1 or u2, then b has infinitely many occurrences in u ∈ u1 ‖
A
u2 as

well. Therefore, u is fair in F1 ∪ F2.

Let for some a ∈ A, a ∈ C1 or a ∈ C2 and let without loss of generality the

former holds. Then, a occurs only finitely many times in u1, and since P1 and

P2 synchronise on a, a occurs only finitely many times in u2 and u as well.

Therefore, u is co-fair in a and, more generally, in (C1 ∩A) ∪ (C2 ∩A). Now let

b ∈ (C1−A)∩ (C2−A). Therefore, b /∈ A, b ∈ C1 and b ∈ C2. Therefore, since b

occurs only finitely often in both u1 and u2, b occurs only finitely often in u as

well. Therefore, u is also co-fair in (C1 − A) ∩ (C2 − A). Hence, u is co-fair in

(C1 ∩A)∪ (C2 ∩A)∪ ((C1 −A)∩ (C2 −A)) and (F1 ∪ F2, (C1 ∩A)∪ (C2 ∩A)∪

((C1 −A) ∩ (C2 −A)) ∈ Φ(P1 ‖
A
P2) by construction.
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[LcW06] S. Leue, A. Ştefănescu, and W. Wei. A livelock freedom analysis for infinite

state asynchronous reactive systems. In Proceedings of the 17th International

Conference on Concurrency Theory (CONCUR’06), volume 4137 of LNCS,

pages 79–94. Springer, 2006.
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