
Generating and Contributing Test Cases for
C Libraries from Client Code: A Case Study

Ahmed Zaki, Arindam Sharma, Cristian Cadar
Imperial College London

{ahmed.zaki, arindam.sharma, c.cadar}@imperial.ac.uk

Abstract—Software libraries are at the core of software
development, and any bugs can affect a potentially large number
of present and future client applications. Therefore, thorough
testing of libraries is of key importance. Unfortunately, writing
library test cases is often difficult, requiring awareness of complex
data structures and preconditions.

We report our experience implementing APISLICER, a tech-
nique (and tool) which starting from the client of a library under
test, extracts self-contained library test cases that can be used
to enhance the library’s test suite. Such test cases provide a
key benefit: they represent real-world usage scenarios of the
APIs exported by the target library, which may not have been
envisioned by the library developers.

We have conducted a case study in which we have applied
APISLICER on seven mature libraries, with a total of twelve
clients. Our experience highlights that while APISLICER has
successfully extracted compilable test cases for all these libraries,
library developers are oftentimes cautious about accepting the test
cases. Out of seven libraries, three (LIBUNISTRING, AMPLGSL,
and GSL) accepted our contributions. We report on the reaction
of the developers to our contributions and more generally on the
opportunities and challenges facing this approach.

Index Terms—Test case contributions, software libraries, API
testing, test generation

I. INTRODUCTION

While comprehensively testing any type of software is
difficult, testing library code is particularly so, because it
involves writing complicated test harnesses. In particular,
writing test cases for libraries often requires the creation of
complex data structures, invoking APIs in a certain order, and
satisfying various additional preconditions. What is worse, such
test cases might not reflect the way real clients of the library
use the library’s APIs.

Developers of software libraries test their software by
creating test suites that represent the way they envision
their APIs to be used. A client’s use of a library does not
always adhere to those usage scenarios. For example, a library
developer might not foresee a certain permutation of a set
of APIs that a client invokes. By writing test cases based on
clients usage scenarios, library developers can exercise the
library’s APIs in ways that represent how the library is used
in the real world.

In this paper we report on our experience generating and
contributing test cases to seven libraries, using a total of twelve
clients. Our objective is to generate test cases that not only
represent the sequence of statements clients use to invoke
an API, but also the parameter values the clients use to call
the API. Our hypothesis is that such an approach can help

library developers in various ways including, but not limited
to, increasing test coverage of the library and having realistic
test cases that mimic how clients use their API.

We developed an automated technique and tool, APISLICER,
for library test case generation, which we complement with
manual steps in order to integrate the test cases into a library’s
test suite. APISLICER uses clients of a target library to generate
test cases that are independent of the clients they are extracted
from. Our technique starts by identifying the client functions
which call a given library’s APIs. It then uses a combination
of data- and control-flow analysis to prune from the client
code statements which are not needed to invoke the library
APIs. The remaining statements are then used to generate a
test case which can be compiled independently of the client.
Using the client test suite, we then extract the values required
to initialise the parameters of the APIs. The end result is a test
case that represents very closely how the client of a library
uses its API. Finally, to validate the utility of the generated
test cases, we integrate the test cases into the library’s test
suite and contribute them to the library developers. We report
on our end-to-end experience, from test case generation to
contribution, and discuss the lessons learned throughout each
stage.

Our experience has highlighted some positive and negative
insights. On the positive side, we show that our design decisions
allow us to generate compilable test cases from clients of a
library for the C programming language. These test cases
represent how client functions invoke a library’s API. We have
managed to construct test cases for all library-client pairs, for
a total of 176 test cases. We also show that for some of the
generated test cases, we are able to increase test coverage in the
target library. In fact, we were able to successfully contribute
our test cases to three different libraries. This proves our initial
hypothesis that library developers can benefit from using their
clients for test case generation.

Unfortunately, our experience also highlighted several chal-
lenges. Using client test suites to extract the exact values
used to initialise parameters of an API might not always be
feasible, as clients do not always test the APIs they use from
third-party libraries, directly or indirectly [1]. As a result,
we could not initialise many of the test cases extracted from
the clients. Furthermore, generating human-readable test cases
is challenging, as is integrating them into existing test suite
infrastructures—we have found these to be important aspects,
which have been largely neglected by the research community.

On a non-technical front, the reaction from library devel-
opers towards our contributed test cases was in many cases
underwhelming. Since our test cases do not uncover bugs in
the library, it was hard to convince some developers of the
utility of the test cases. In cases where our test cases did not
improve coverage, it was challenging to convince developers
of the benefit of client-extracted test cases.

Lastly, we designed our tool, APISLICER, to work on the
source code level, in order to construct test cases that look
as similar as possible to how the clients use the library. This
imposes several constraints: the tests need to be created in the
same programming language as the one used for the library
APIs (as opposed to say, at the LLVM bitcode or binary level)
and the tests have to be self-contained, readable, with good
oracles, and integrated into the existing library test suites. This
is particularly challenging for C, as the tools are not as mature
as in the case of the intermediate compiler representation level
(e.g., LLVM IR) and one needs to deal with numerous language
constructs, including macros, complex expressions, variadic
functions and various types of loops.

To summarise, our paper makes the following contributions:
1) An automated approach for extracting source-code, self-

contained library test cases starting from client code.
2) An implementation of our approach into APISLICER, a tool

targeting the C programming language. We complement
APISLICER with manual steps to integrate the generated
test cases into the libraries test suites and contribute them
to the library developers.

3) Our experience and lessons learned applying APISLICER
to seven libraries and twelve clients. While we were able
to contribute test cases to three libraries, we discuss the
challenges encountered in contributing to the other libraries
and potential research directions that could address them.

4) An artifact containing our implementation and benchmarks
for reproducibility.

II. OVERVIEW

APISLICER aims to generate small and self-contained
source-code test cases that are useful to library developers and
represent how clients of the library use the API. In particular,
this means that the test cases should only contain statements
that are needed to call the library APIs and only depend on
definitions in the target library and system header files. To
keep extracted test cases small, APISLICER operates at the
level of individual client functions. Given a client function
that invokes one or more library APIs, its job is to remove
irrelevant statements, include only the necessary function
and data structure definitions, and initialise all the relevant
parameters of the client function. More precisely, using a
combination of data- and control-flow analysis, APISLICER
computes dependency information between the statements of
the client function. This information is used to slice the client
function, keeping only the statements that are relevant for
invoking the library APIs. Starting from the APIs of a target
library (in the form of a C header file) and a client application
that uses that library, APISLICER produces as output a set

of library test cases extracted from the client code (test case
generation). Our techniques are inspired by research in fuzz
driver generation [2]–[4], but our goal is different. We aim
to generate and contribute self-contained, concrete test cases
which is arguably more challenging to generate than fuzz
drivers due to the fact that not only do these test cases have to
capture all necessary dependencies, but they also need to be
human-readable, realistic, and contain test inputs that represent
how the clients use the API.

To obtain inputs needed to execute the extracted test case
(test case initialisation), we run the test suite of the client to
record values with which the original client function is run. We
instrument the client functions of interest to collect these values.
Previous research in unit test carving used system executions
to gather values to initialise unit tests [5]–[8]. However, while
work in this area generated test cases that use real-world values
extracted from execution of the target, they did not use the
source code of the caller. BASILISK [6] operates on the LLVM-
IR level of a target application and generates unit tests in
LLVM-IR, making them not human-readable and as a result
hard to integrate into a test suite. Our objective is to generate
readable test cases that mimic how a client uses a library and
integrate those test cases in the test suite of the library.

Finally, we integrate the test cases into the target library’s
test suite (test case integration) and gather feedback from the
library developers (developer feedback). Integrating a test case
into the test suite of a library is non-trivial to automate. The
process involves understanding the test suite design in order to
identify how and where to add the new test case. Each library
has its own coding guidelines that need to be adhered to when
contributing to it. As a result, contributing a test case to a
library involves taking feedback from the library developers
and incorporating it in the test case. Not much attention has
been given in the literature to the challenges involved in adding
test cases to a test suite. We believe our experience can help
show opportunities for future work.

Figure 1 shows the main components of APISLICER, which
are discussed in detail in §III.

III. APISLICER

In this section we discuss the different stages of our
approach including the design of APISLICER. As a running
example, we show how APISLICER generates a test case for
the LIBICONV [9] text encoding/decoding library, using the
GNUPG [10] client. Figure 2 shows one of the client functions
selected from GNUPG, while Figure 3 shows the generated
test case. For the sake of readability, we have removed some
preprocessing code and comments, and abbreviated some of
the conditional checks while preserving the structure of the
original function.

A. Test Case Generation

Since our goal is to contribute tests to library test suites,
we need to conduct our analyses at the source code level.
This is particularly challenging for C, as we need to deal
with numerous language constructs, including macros, complex

Fig. 1. The main components of APISLICER.

expressions and various types of loops. We use CLANG
LIBTOOLING [11] to analyse the abstract syntax tree (AST) of
the client functions. To simplify our analysis, we designed a
number of semantics-preserving normalisations, which make
the resultant program’s AST easier to deal with in the
subsequent steps. Prior to processing a translation unit, we
transform for loops into while loops and split nested function
calls into separate statements. We also simplify if-statement
conditions by replacing them with temporary variables and
convert switch-case statements into blocks of simplified if-else
statements. The normalised translation unit is then processed
in multiple stages by APISLICER.

Function Selection For each translation unit, we identify
functions that invoke APIs from the target library by checking
if the APIs are defined in the library header files. Statements
that call the API of the target library in those functions are
seed statements. We filter these functions using two strategies:
• Primitive-client: The primitive-client strategy looks for

client functions that either take no parameters at all or only
parameters of primitive types or compounds of primitive
types such as arrays or pointers to primitive types. Void
pointers are excluded from the criteria since it is too complex
to infer the pointee type and initialise it accordingly. Our
rationale behind this mode of selection is to try and capture
the initialisation of any variables of such types that could
be passed, directly or indirectly, as parameters to the API
calls in the function. This allows us to limit our analysis to
be intra-procedural.

• Primitive-API: In this mode, we select a client function if it
calls a library API with primitive types as parameters and/or
compounds of primitive types. Since our seed statements
are the API call expressions, then our backwards slicing
will capture the correct initialisation of the parameters. The
rationale for the primitive-API was the observation that
while the primitive-client strategy works in many cases,
we found that in some instances it discards functions that
take compound types of user-defined types or pointers to
user-defined types which are not required for the correct
invocation of the API call, since the call would not have any
data- or control-flow dependency on those parameters.
In our example test case shown in Figure 2, both modes

would select the function set native charset for analysis since

the parameters of the function are pointers to primitive types
and so are the parameters to the library API calls.

Slicing Once we have identified the client functions of interest,
we slice them with respect to the called APIs. Conceptually,
our approach is similar to slicing using a Program Dependence
Graph (PDG) [12]. Constructing the PDG for each function of
interest in a language like C is difficult and inefficient. Instead,
we choose to perform a data- and control-flow analysis on
demand as we identify statements of interest.

• Data-Flow Analysis: Prior to slicing, we perform a reaching
definitions analysis on the selected function. For our example
in Figure 2, the API calls for LIBICONV on lines 42
(iconv open), 49 (iconv close), 50 (iconv open) and 57
(iconv close) would be seed statements. Note that the call
expressions on lines 44 and 52 are to GNUPG functions and
not LIBICONV APIs, so they are not selected. We perform a
data-flow analysis which consists of a use-def analysis [13]
for each argument in the call expression. We combine this
with information from our reaching definitions analysis to
select all statements that define variables required for the
correct invocation of the call expression.

• Control-Flow Anlaysis: For each of the collected statements
from the data-flow analysis, we identify any control state-
ments that dominate any of those statements. Taking a closer
look at our example, we can see that the if statement on
line 31 dominates the block where our seed statement is
(line 50). We include this control-flow statement and analyse
the condition inside it for usages and definitions. We identify
that newset is used in this condition and consequently find
the reaching definitions for that usage using our data-flow
analysis. As a result, we would include the definitions at
lines 26 and 28. For both those definitions, our control
dependency analysis would identify the if statement on line
25 and the if statement on line 27 as dominating statements
for those definitions. Our algorithm would also identify that
the if statement on line 3 dominates the definition selected
on line 22 and include it.

The result of the slicing process is a set of statements that
are then passed to the synthesiser to create a test function.

Synthesis The synthesiser first creates a function with no
parameters, with the same name as the client function, but

1 int set_native_charset (const char *newset){
2 const char *full_newset;

3 if (!newset) {

4 static char codepage[30];
5 unsigned int cpno;
6 const char *aliases;
7 cpno = GetConsoleOutputCP ();
8 if (!cpno) cpno = GetACP ();
9 sprintf (codepage, "CP%u", cpno);

10 newset = codepage;
11 for (aliases = ("CP936" "\0" "GBK" "\0"...);

*aliases; aliases += strlen (aliases) + 1,
aliases += strlen (aliases) + 1){

12 if (!strcmp (codepage, aliases) || (*
aliases == ’*’ && !aliases[1])){

13 newset = aliases + strlen (aliases) + 1
;

14 break;
15 }
16 }

22 newset = nl_langinfo (CODESET);
23 }
24 full_newset = newset;
25 if (strlen (newset) > 3

&& !ascii_memcasecmp (newset, "iso", 3)) {
26 newset += 3;
27 if (*newset == ’-’ || *newset == ’_’) {
28 newset++;
29 }
30 }
31 if (!*newset

|| !ascii_strcasecmp (newset, "8859-1")
|| ...) {

37 active_charset_name = "iso-8859-1";
38 no_translation = 0;
39 use_iconv = 0;

40 } else{
41 iconv_t cd;

42 cd = iconv_open (full_newset, "utf-8");

43 if (cd == (iconv_t)-1){

44 handle_iconv_error (full_newset,
"utf-8", 0);

47 return -1;
48 }

49 iconv_close (cd);
50 cd = iconv_open ("utf-8", full_newset);

51 if (cd == (iconv_t)-1){

52 handle_iconv_error ("utf-8",
full_newset,0);

55 return -1;
56 }

57 iconv_close (cd);

58 active_charset_name = full_newset;
59 no_translation = 0;
60 use_iconv = 1;
61 }
62 return 0;
63 }

Fig. 2. GNUPG function with sliced statements highlighted: seed statements
in green and other sliced statements in blue.

1 int Test_set_native_charset() {
2 // begin function parameters
3 const char *newset = NULL;
4 // end function parameters
5 const char *full_newset;
6 if (!newset) {
7 newset = nl_langinfo(CODESET);
8 }
9 full_newset = newset;

10 if (strlen(newset) > 3 && !ascii_memcasecmp(
newset, "iso", 3)) {

11 newset += 3;
12 if (*newset == ’-’ || *newset == ’_’) {

newset++; }
13 }
14
15 if (!*newset || !ascii_strcasecmp(newset, "

8859-1") ||
16 !ascii_strcasecmp(newset, "646") || !

ascii_strcasecmp(newset, "ASCII") ||
17 !ascii_strcasecmp(newset, "ANSI_X3.4-1968")

) {
18 } else {
19 libiconv_t cd;
20 cd = libiconv_open(full_newset, "utf-8");
21
22 if (cd == (libiconv_t)-1) {
23 return -1;
24 }
25 libiconv_close(cd);
26 cd = libiconv_open("utf-8", full_newset);
27
28 if (cd == (libiconv_t)-1) {
29 return -1;
30 }
31 libiconv_close(cd);
32 }
33 }

Fig. 3. Test function auto-generated by APISLICER from the code in Figure 2.

prefixed with Test . For example, the client function gener-
ated by the synthesiser for our running example is called
Test set native charset(), as shown in Figure 3.

The synthesiser iterates over each collected statement,
checking definitions, function calls and types used. For each
statement, the synthesiser ensures that a declaration is available
for the variables used by the statement. For example, the
declaration of variable full newset on line 2 in Figure 2 is
added during this iteration by copying it from the original
function. If a declaration is not collected by the slicer, the
synthesiser checks if the variable is declared as part of the
function signature. In our running example, the synthesiser
identifies that newset is declared as a parameter to the client
function and includes it as a separate statement at the beginning
of the synthesized function. Finally, the synthesiser checks the
types used in each statement and, if any, calls to functions. If
any of the types are user-defined and their definition is in the
same source file as the collected statement, the definition is
added to the test case. Similarly, if any of the calls are made to
functions in the same source file, then the function definition is
added. The synthesiser does not try to fetch types and functions
defined outside the function source file, as we found that this
could lead to recursive fetching which would generate very

large test cases. Instead, we keep all the header files from
the translation unit in the generated test case and allow the
developer to decide which definitions to fetch manually.

The end result of the test case generation step is a test case
that compiles using the compile commands extracted from the
compilation database of the client. We perform an automated
de-normalisation step at the end to reverse as much as possible
the normalisations introduced prior to processing the translation
unit.

Implementation notes. In our implementation, we used
CLANG LIBTOOLING [11] (with CLANG-11), which provides
an interface to analyse the program at the abstract syntax tree
(AST) level. In particular, we used the recursive AST visitor
interface and implemented our algorithms on top of it.

Since CLANG LIBTOOLING requires the same compilation
flags that were used for compiling the client code in order to
construct a valid AST, we observed that typically for clients
using cmake build systems, this information can be found in the
compile commands.json database. If no compilation database
is found, it can be generated using BEAR [14].

We used INCLUDE-WHAT-YOU-USE [15], a tool that trims
unnecessary headers in our generated test cases. The tool has
some issues and limitations, so we first try to compile the test
case with INCLUDE-WHAT-YOU-USE and if it fails to compile,
we try again without it.

B. Test Case Initialisation

After the test function is created, we need to initialise the
parameters and global state used by the test case. We obtain
those values from the client itself, by observing how the original
function is called in the client test suite. We identify which
of the parameters of the client function and global variables
are required by our test case, and add instrumentation in the
client function to record their values to a file. We then run the
client test suite, obtain those values, and then modify the test
case to use them. If the client test suite invokes that function
multiple times, we create multiple test cases.

C. Test Case Integration

With the test case initialised, the next step is to integrate it
into the library test suite. This stage is non-trivial to automate
as it involves first learning how and where to integrate the test
case into the test suite. This often includes understanding the
test suite structure and the associated configuration files and
scripts.

The test case itself might also need to be adapted to use the
kind of oracles used by other tests, or to merge it with other
test cases that exercise similar APIs. In addition, there could
also be formatting guidelines that the test case needs to follow.

D. Developer Feedback

Finally, we submit the updated test suite to the library
developers, typically as a pull request, but sometimes by email,
according to the library’s contribution model. Depending on
the feedback, we might need to make further updates to our
test case. We use the developer feedback to better understand

the needs of developers and the challenges we would need to
overcome to contribute such test cases (see §IV).

E. Design decisions

Test case generation. We made a few key design decisions
when performing our slicing stage. Our analysis supports structs
and is field-sensitive. This allows us to fetch definitions for
fields of user-defined structures localized in the client function.
We also support arrays and the slicing is index-insensitive. We
do not perform an alias analysis which means that we could
lose some accuracy when it comes to value redefinitions.

Our analysis is intra-procedural so when we include callees
of a caller we do not perform any slicing on them. We would
still include the callees during the synthesis stage as part of
the generated test case. Our function selection strategies help
alleviate the absence of an alias analysis due to our focus on
primitive types.

Given our goal of generating test cases that represent how
clients use library APIs, we aimed to preserve the structure of
the original client function code. This allows the developers to
use these test cases as representative examples of how their
library is being used in the field.

Test case initialisation and integration. Instead of trying to
automate everything, we have taken the approach of requiring
some development involvement.

The instrumentation done for test case initialisation is
currently manual, but we believe it can be automated.

In terms of test case integration, the need for developer
involvement is partly because fully automating the process
is challenging due to the variety of test suite designs used
by the library developers (see §III-C), but also because we
see APISLICER as a developer tool, which would be used by
library developers, who have the necessary domain knowledge
of where and how to integrate the test cases.

IV. CASE STUDY

In this section, we report on our experience applying
APISLICER on several mature libraries, and creating and
contributing test cases to these libraries.

A. Benchmarks

We applied APISLICER to seven mature libraries, using
twelve clients in total. Both libraries and clients are written in
C. To pick our libraries, we used as a starting point Awesome-
C [16], which lists popular C frameworks and applications.
We focused on libraries that were actively developed and easy
to build and test on a Linux system. For each library, we
searched for obvious clients by using GITHUB’s search engine.
We picked clients that had a permissive license to allow us to
contribute source code extracted from the client to the library
test suite. For both libraries and clients, we either use a recent
released version or the latest version from their development
repositories at the time we started to evaluate that library.

An overview of these libraries and clients is provided in
Table I. For each library, we report its size in lines of code

TABLE I
LIBRARIES AND CLIENTS USED, TOGETHER WITH THE LINE COVERAGE
ACHIEVED BY THE LIBRARY TEST SUITES, AND THE ADDITIONAL LINES

COVERED BY EACH CLIENT IN THE LIBRARY.

Library LoC Line Coverage Client Extra lib. lines

AMPLGSL 71,547 55,941 (78.2%) APOPHENIA 40
HSTAXE -

GSL 66,130 51,892 (78.5%) APOPHENIA 43
HSTAXE -

LIBICONV 8,895 6,865 (77.2%)

MUTT -
GNUSASL 0
GETTEXT 4
GNUPG 11

LIBSODIUM 10,289 8,895 (86.5%) DOVECOT 0
BLOBCRYPT -

LIBTASN1 4,322 3,469 (80.3%)
GNUTLS 44
P11KIT 7
SWTPM 46

LIBUNISTRING 8,289 5,725 (69.0%) GNUTLS 1

LIBXML2 117,351 79,946 (68.1%) XMLSEC 329

(LoC), and the line coverage achieved by its test suite. These
numbers are obtained via the GCOV/LCOV tools and thus
depend on how the applications are built on our machine (due
to conditional compilation, some code is not included in all
configurations). For each client, which has a test suite, we
also measured extra line coverage (if any) achieved in the
target library by running the client’s test suite. Some clients
did not have test suites such as BLOBCRYPT and HSTAXE.
Furthermore, our measurements exclude any test files (on a
best-effort basis).

AMPLGSL [17] (commit d77d742) and GSL [18] (v2.7).
GSL is the GNU Scientific Library, a numerical library which
provides a wide range of mathematical routines. AMPLGSL
enhances GSL with AMPL bindings, which speed up certain
numerical computations. We tested two common clients of
GSL and AMPLGSL: APOPHENIA [19], from its pkg branch
(commit 35e1093) and HSTAXE (commit 0316860).

LIBICONV [9] (commit 8844744) is a text encoding/decoding
library, part of the GNU project. We tested four clients
for LIBICONV: MUTT [20] 2.2.11, GNUSASL [21] 2.2.0,
GNUPG [10] 2.4.2 and GETTEXT [22] 0.22.

LIBSODIUM [23] (v1.0.18) is a cryptographic library which
includes support for encryption, decryption, signatures, and
password hashing. We selected two clients that use LIBSODIUM:
BLOBCRYPT [24] (commit 726daa4) and DOVECOT [25]
(commit a753734).

LIBTASN1 [26] (commit 2f19433) is a portable ASN.1 library.
We used three clients of LIBTASN1: GNUTLS [27] 3.6.16,
P11KIT [28] 0.24.1 and SWTPM [29] (commit 4b008b9).

LIBUNISTRING [30] (commit cb3f069) is a text processing
library, part of the GNU project. We used one client, GNUTLS
3.6.16.

TABLE II
CLIENT FUNCTIONS SELECTED IN EACH MODE AND TOTAL GENERATED

FUNCTIONS FROM APISLICER.

Benchmark Client Candidates P-Client P-API Total Generated

AMPLGSL/GSL APOPHENIA 69 15 41 41 28
HSTAXE 247 28 108 116 75

LIBICONV

GETTEXT 7 4 3 4 2
GNUPG 6 4 4 4 3
GNUSASL 3 1 1 1 1
MUTT 10 6 1 6 4

LIBSODIUM
BLOBCRYPT 15 6 6 6 6
DOVECOT 4 1 4 4 4

LIBTASN1
GNUTLS 146 5 9 13 11
P11KIT 39 13 13 16 14
SWTPM 10 2 1 3 3

LIBUNISTRING GNUTLS 4 1 4 4 4

LIBXML2 XMLSEC 183 18 11 24 21

LIBXML2 [31] (commit 8844744) is an XML library originally
developed for the GNOME Project. We used one client for
LIBXML2: XMLSEC [32] 1.2.37.

B. Test Case Generation Results

As discussed in §III-A, APISLICER first selects a subset of
the client functions that use library APIs. Table II shows, for
each library-client pair, the results of this selection process.

The Candidates column reports the number of client func-
tions with library API calls. As can be seen, some clients,
such as XMLSEC for LIBXML2 and GNUTLS for LIBTASN1
have many such calls, while others, such as GNUSASL for
LIBICONV and GNUTLS for LIBUNISTRING, only a few.

The next two columns, P-Client and P-API report the
number of client functions selected by each mode; primitive-
client and primitive-API respectively (see §III-A). Overall,
the total functions selected vary between a single one for
GNUSASL/LIBICONV and 116 for HSTAXE/GSL. The next
column, Total reports the total number of functions selected,
i.e. the union of the functions selected in each mode. If a
client function has primitive types and calls library APIs with
primitive types, it will be selected by both modes, so the total
is typically much smaller then the sum of the functions selected
by both modes. This number represents the total number of
test cases generated including test cases that fail to compile.

The Generated column reports the number of compilable
test cases automatically generated by our approach. These are
in most cases close to the Total column, meaning that for most
client functions selected, APISLICER is able to generate a test
function that compiles, but without its parameters initalised
yet. We saw significant losses in the case of HSTAXE and
APOPHENIA. The reason for which we could not generate
compilable test cases in those instances had to do with
APISLICER’s limitations around function-like macros and
variadic functions.

One limitation of the automatically generated test cases
was often readability. This is partly due to limitations of the
denormalisation process, which may not be able to recover
the syntax of the original code, particularly when macros and
include directives are involved. We have typically spent a few

TABLE III
GENERATED AND CONTRIBUTED TEST CASES. FOR CLIENTS THAT DID NOT

HAVE A TEST SUITE WE SHOW ’-’ INSTEAD OF 0 FOR THE TESTS
INITIALISED.

Library Client Tests Added
Generated Initialised Contributed Cov.

AMPLGSL/ GSL APOPHENIA 28 1 0 0HSTAXE 75 - 0

LIBICONV

GETTEXT 2 1 0
0GNUPG 3 1 0

GNUSASL 1 0 0
MUTT 4 - 0

LIBSODIUM
BLOBCRYPT 6 1 1 112DOVECOT 4 2 2

LIBTASN1 GNUTLS 11 1 1
12P11KIT 14 1 1

SWTPM 3 1 1

LIBUNISTRING GNUTLS 4 4 1 1

LIBXML2 XMLSEC 21 3 3 10

APOPHENIA

GNUSASL

GETTEXT

GNUPG

DOVECOT

GNUTLS

P11
KIT

SW
TPM

GNUTLS
 (L

IB
UNIS

TRIN
G)

XMLS
EC

0

20

40

60

80

100

Uncovered 1%-50% 51% - 99% 100%

Clients

N
um

be
r O

f F
un

ct
io

ns
 (%

)

Fig. 4. The percentage of functions from the total number of candidate
functions per client split by coverage achieved by each client test suite.

minutes to make the test case more readable before contributing
it to the developers.

C. Test Case Initialisation

After generating compilable test cases, we need to initialise
them by extracting the values of interest from the client test
suites. Some clients did not have test suites, such as MUTT,
HSTAXE and BLOBCRYPT. Where available, we used built
example tools, such as in the case of BLOBCRYPT, to extract
concrete inputs.

In Table III we list the cases we were able to initialise by
running the client test suites along with the added coverage
the combined test cases were able to achieve. The column
Tests Initialised shows the number of test cases for which all
parameters could be initialised. 1

1A small number of test cases only invoked trivial APIs such as simple
logging functions, we did not attempt to initalise these test cases.

The reason for which not all generated tests could be
initialised is due to the limited coverage of the client’s test
suite. Figure 4 shows the distribution of coverage by the client
test suites for the candidate functions (Candidates) shown
in Table II. As shown, in the case of APOPHENIA, only 7 out
of 69 candidate functions were fully covered, with the majority
of the candidates unreachable by the client test suite. In the
case of GNUSASL, all of the 3 functions were unreachable.
Note that functions with coverage within 51%– 99% do not
guarantee that the library API will be exercised, as the API
call could be in the uncovered lines.

For each case we were able to initalise, we investigated if
extra coverage could be achieved by the test case in the library.
The last column in Table III shows the extra coverage achieved
by these tests on top of the library test suite. We managed to
increase the library coverage in all cases except for LIBICONV
and AMPLGSL/GSL. The extra coverage varies from only 1
LoC in LIBUNISTRING to 112 in LIBSODIUM.

D. Test Case Integration

In our experience, we found libraries to have a wide variety
of designs for their test suites. To integrate a test case, we first
had to understand how the current tests in the library’s test
suite are run, and then had to adapt the test case in a format
that resembles other test cases already used by the library.

For example, the test case in Figure 5 is already a usable test
case that increases coverage in LIBUNISTRING. To integrate
this test case in the test suite of LIBUNISTRING, we had
to adapt it to the version shown in Figure 6. We found
that there was already a test case in LIBUNISTRING that
had three tests which resembled our test case. We added
our new test case as a fourth assertion. We also trimmed
our test function as we realized that to exercise the added
coverage we do not need the whole of Figure 5. As a result,
we removed the function is allowed exception and the for
loop in Test check for valid freeformclass. This trimming
could be automated by leveraging existing reducers such as C-
Reduce [33] and Perses [34]. The process of integrating this test
case into the test suite of LIBUNISTRING took us approximately
two hours. Of course, we expect LIBUNISTRING developers
to be able to integrate the test case into their test suite much
quicker, given their familiarity with the code.

E. Developer Feedback

The Tests Contributed column of Table III shows the number
of test cases that we contributed to the libraries’ test suites.
After initial feedback from the LIBXML2 library developers
who were reluctant to accept a test case based solely on the fact
that it represented usage of the library in the real world [35],
we decided not to contribute test cases for libraries where we
have not managed to increase line coverage. We started by
making a single contribution per library, but we sometimes
grouped a few test cases together. We contributed between
1 and 3 test cases to six libraries—LIBSODIUM, LIBTASN1,
LIBUNISTRING, and LIBXML2 (see Table III), together with
AMPLGSL and GSL, for which we have followed a slightly

1 #include <stddef.h>
2 #include <stdint.h>
3 #include <unictype.h>
4 #include <uninorm.h>
5
6 inline static int is_allowed_exception(uint32_t ch)
7 {
8 switch (ch) {
9 case 0xB7:

10 case 0x0375:
11 ...
12 return 0; /* disallowed */
13 case 0xDF:
14 case 0x03C2:
15 ...
16 return 1; /* allowed */
17 default:
18 return -1; /* not exception */
19 }
20 }
21 int Test_check_for_valid_freeformclass() {
22 // begin function parameters
23 unsigned ucs4_size = 14;
24 uint32_t *ucs4 = (uint32_t *)malloc(sizeof(uint32_t)*ucs4_size);
25 // end function parameters
26 ucs4[0] = 1055;
27 ucs4[1] = 1072;
28 ucs4[2] = 1088;
29 ...
30 unsigned i;
31 int rc;
32 uint32_t tmp[4];
33 size_t tmp_size;
34 uint32_t *nrm;
35 uc_general_category_t cat;
36 unsigned is_invalid;
37 cat = uc_general_category_or(UC_CATEGORY_Ll, UC_CATEGORY_Lu);
38 cat = uc_general_category_or(cat, UC_CATEGORY_Lo);
39 cat = uc_general_category_or(cat, UC_CATEGORY_Nd);
40 cat = uc_general_category_or(cat, UC_CATEGORY_Lm);
41 cat = uc_general_category_or(cat, UC_CATEGORY_Mn);
42 ...
43 cat = uc_general_category_and_not(cat, UC_CATEGORY_Cc);
44 for (int i=0; i<ucs4_size; i++) {
45 if (uc_is_property_default_ignorable_code_point(ucs4[i]) ||
46 uc_is_property_not_a_character(ucs4[i])) {
47 return 0;
48 }
49 rc = is_allowed_exception(ucs4[i]);
50 if (rc == 0 || uc_is_property_join_control(ucs4[i])) {
51 return 0;
52 }
53 if (rc == 1) {
54 continue;
55 }
56 if (uc_is_general_category(ucs4[i], UC_CATEGORY_Zs)) {
57 ucs4[i] = 0x20;
58 }
59 ...
60 }
61 }
62
63 int main(){
64 Test_check_for_valid_freeformclass();
65 }

Fig. 5. Test case generated from GNUTLS for LIBUNISTRING.

different approach (described below). We next discuss each of
our contributions.

LIBUNISTRING contribution. Our contribution to LI-
BUNISTRING was accepted and integrated in the test suite of
the library [36]. The test case contributed covers an extra line
in LIBUNISTRING. That extra line exercised behaviour that was
not previously tested. The response from the developer in this
instance was quick and positive. They initially inquired about
the compatibility of the licensing of GNUTLS but accepted
the case, with some simplifications, once this was clarified.
Our contribution can be seen in Figure 6.

1 int control_category_check() {
2 uc_general_category_t cat;
3 cat = uc_general_category_or(UC_CATEGORY_Ll, UC_CATEGORY_Lu);
4 cat = uc_general_category_or(cat, UC_CATEGORY_Lo);
5 cat = uc_general_category_or(cat, UC_CATEGORY_Nd);
6 cat = uc_general_category_or(cat, UC_CATEGORY_Lm);
7 cat = uc_general_category_or(cat, UC_CATEGORY_Mn);
8 cat = uc_general_category_or(cat, UC_CATEGORY_Mc);
9 cat = uc_general_category_or(cat, UC_CATEGORY_Lt);

10 cat = uc_general_category_or(cat, UC_CATEGORY_Nl);
11 cat = uc_general_category_or(cat, UC_CATEGORY_No);
12 cat = uc_general_category_or(cat, UC_CATEGORY_Me);
13 cat = uc_general_category_or(cat, UC_CATEGORY_Sm);
14 cat = uc_general_category_or(cat, UC_CATEGORY_Sc);
15 cat = uc_general_category_or(cat, UC_CATEGORY_So);
16 cat = uc_general_category_or(cat, UC_CATEGORY_Sk);
17 cat = uc_general_category_or(cat, UC_CATEGORY_Pc);
18 cat = uc_general_category_or(cat, UC_CATEGORY_Pd);
19 cat = uc_general_category_or(cat, UC_CATEGORY_Ps);
20 cat = uc_general_category_or(cat, UC_CATEGORY_Pe);
21 cat = uc_general_category_or(cat, UC_CATEGORY_Pi);
22 cat = uc_general_category_or(cat, UC_CATEGORY_Pf);
23 cat = uc_general_category_or(cat, UC_CATEGORY_Po);
24 cat = uc_general_category_or(cat, UC_CATEGORY_Zs);
25 cat = uc_general_category_and_not(cat, UC_CATEGORY_Cc);
26
27 return (!uc_is_general_category(0x00, cat));
28 }
29
30 int main (){
31 ASSERT (uc_is_general_category (’a’, ct));
32 ASSERT (!uc_is_general_category (’7’, ct));
33 ASSERT (uc_is_general_category (0x00B2, ct));
34 ASSERT(control_category_check());
35 return 0;
36 }

Fig. 6. Final contributed test case to LIBUNISTRING.

LIBSODIUM contribution. In the case of LIBSODIUM we
were able to generate and initialise test cases that achieved
significant added coverage—112 line of coverage. Integrating
the test case in the library’s test suite locally achieved the
extra coverage, yet when submitting the pull-request to add it
the continuous integration (CI) pipeline, it failed to show this
added coverage. Despite our test case independently adding an
additional 112 lines of coverage, we discovered that these lines
cannot be reached when the test is part of the LIBSODIUM’s
test suite. On further investigation, we identified that this is
due to some macro definitions done at the global level, when
running the test suite in the CI pipeline. In other words, our
understanding is that our test cases would need to be run from
a different CI target/configuration in order for those lines to
be reached [37], [38].

LIBTASN1 contribution. In the case of LIBTASN1, the
maintainers have not merged our contributions due to two
separate concerns: one related to licensing (“contributions
should be assigned to FSF and under the libtasn1 license”) and
the other related to adding generated test cases (“you [must]
automate the extraction process”) [39]. Since our approach
currently has a manual component, we cannot address the
latter concern; furthermore, adding APISlicer to the regression
test framework of LIBTASN1 would be heavyweight.

AMPLGSL and GSL contribution. As discussed before,
we envision APISLICER as a tool which would be used by
library developers to understand how clients use their library
and to extract and then incorporate library test cases from the
client codebase.

Both GSL and AMPLGSL have regression test suites
that achieve a relatively high coverage, of 78.5% and 78.2%
respectively. However, not all modules are equally tested. For
instance, INTERPOLATION achieved lower coverage than most
other modules—around 52% in both libraries—so we decided
to focus on contributing tests to this module.

We noticed that many functions in that module require as a
first parameter an interpolation workspace of type gsl interp*.
This is quite common in many libraries, where such a context
object needs to be passed. Furthermore, after examining the
regression test suites of AMPLGSL/GSL we noticed that
such an object is already available there, initialised with mock
values and used across different tests. Therefore, we relaxed
our function selection strategy to also select client functions
with API calls that take such objects.

Using HSTAXE as a client, we used this strategy to produce
a test case that covers an API which was not tested by
the regression test suites of GSL and AMPLGSL, namely
gsl interp eval integ. We integrated this test into the library
test suite by following the way a similar API was tested.
Both AMPLGSL and GSL developers reacted positively
to our contribution. AMPLGSL is hosted on GitHub: we
contributed our tests as a pull request, which was accepted
by the developers [40]. GSL contributions are done by email,
so we contacted one of the GSL developers about the test
cases [41] and they asked us to contribute the test cases to the
mailing list, which we did. [42].

LIBXML2 contribution. For the LIBXML2 contribution, we
had a long discussion with the developers, who gave three
arguments against accepting our contribution [35]. One of them,
which we understand, concerns the quality of our oracles, which
could indeed be improved. The second one was summarised by

“I don’t really see the benefit over simply running the xmlsec
tests directly.” We strongly disagree with this, as running the
client test suites directly is more difficult (requiring library
developers to be familiar with many different codebases), more
time intensive (with many client tests potentially unrelated
to the library), and any failures would be very difficult to
debug (as it would require understanding the client code too).
The third argument was that “xmlsec is integrated with OSS-
Fuzz and is continuously fuzzed with the latest libxml2 code
from the master branch. So your tests offer very little on
top of that.” This is an interesting argument, pointing to a
bystander effect [43], [44] with respect to software fuzzing,
where developers rely on third-party fuzzing services to find
bugs in their code. Ironically, XMLSEC has not been fuzzed by
OSS-Fuzz for a long time now, due to an integration error [45].
There was also a discussion at the start concerning the extra
line coverage achieved by our tests; developers see value in
tests that increase line or branch coverage, but it seems more
difficult to convince them of the need for additional tests that
do not increase this coverage but nevertheless showcase how
the library is used in the field.

Overall, we were disappointed to observe that test contri-
butions receive significantly less attention than other types of

contributions, such as bug reports, with which the authors have
a lot of experience. This is in some way natural, although the
lack of thorough testing is the root cause of those bugs in the
first place!

V. LESSONS LEARNED

In this section we discuss the lessons learned designing and
applying APISLICER to seven libraries and twelve clients.

Test case generation. Our design decisions have enabled us to
automatically generate compilable test cases for each library-
client pair. The number of generated test cases that compile
was in most cases close to the total number of client functions
that fit our selection criteria: primitive-client and primitive-API.
This shows that our intra-procedural analysis approach works
for these types of functions.

However, for some libraries, the number of generated test
cases was significantly lower than the total number of client
functions that call library APIs. Such libraries heavily use
complex types in their parameters, which clients tend to
initialise once and pass to various functions as parameters.
To improve the number of generated test cases extracted from
the clients, one needs to perform an inter-procedural analysis
that is not limited to primitive types to follow the use of these
complex types across client functions.

Performing data and control-flow analysis on the source
code level, especially for a rich language like C is challenging.
Simplifying the analysis is possible by re-writing the source
to reduce the number of types of AST nodes to analyse. This
comes at the cost of the readability of the generated test cases,
which we fixed manually in our case study. Techniques based
on large language models (LLMs) might be able to help to
improve the readability of the generated test cases [46].

Test input generation. We managed to initialise test cases
for all six libraries, and increase test suite coverage for four
libraries. However, relying on client test suites for input
generation was an important limiting factor for our approach,
preventing it from initialising more test cases. Other studies, for
Java, have also shown that client test suites do not achieve high
coverage of the APIs they use from third-party libraries [1].
One could explore other ways of initialising test cases, such as
with default or random values, but there is the risk that those
values would not be realistic.

Test case integration. In our experience, integrating a test case
into a library’s test suite presented several challenges associated
with adapting the test case to follow the overall test suite design.
While this process is much easier for library developers familiar
with the test suite design, it is nevertheless time-consuming.
Some elements of this stage could be automated, such as
removing statements that do not lead to extra coverage, or
duplicate state initialisation APIs that could already be present
for a group of test cases in a test suite. While test generation
has been an active area of research, the challenges of adding the
generated test cases to existing test suites has been overlooked
and would benefit from future research.

Test case contribution. Three of the seven libraries accepted
our test cases. Despite our best efforts, we often found it
difficult to convince developers of the utility of the test cases.
While we were able to produce and integrate test cases that
represent real-world usage of library APIs, library developers
were primarily interested in test cases that increase coverage.
Finally, developers also raised queries about licensing, an aspect
which is also under active discussion in the context of LLM
code contributions [47]. However, unlike LLM code generation,
our approach can provide clear information about the origin of
the code and its license, which developers can use to decide
on license compatibility.

VI. RELATED WORK

We are not aware of prior work whose main goal is to
contribute test cases to library developers starting from client
code. Gross et al. [48] generate test cases to reproduce bugs in
Coq, an interactive theorem prover, based on breaking changes
identified from CI failures. APISLICER generates test cases for
APIs irrespective of whether they reproduce bugs, and focuses
on C libraries.

Our approach is closely related to prior work on fuzz driver
generation, API usage example generation, test case generation
and code contributions.

Fuzz driver generation. Approaches for fuzz driver genera-
tion [2]–[4], [49]–[52] and library test generation share many
similarities, due to the overlapping requirements for fuzz drivers
and library test cases. Despite this overlap, the end goals for
the two domains are significantly different. Generating and
contributing to developers self-contained, concrete test cases
has considerably more challenges than generating fuzz drivers
due to the fact that not only do these test cases have to capture
all necessary dependencies, but they also need to be human-
readable, realistic, and developer-friendly, as we have noted in
our various interactions with developers.

FUDGE [2] is a system that generates fuzz drivers for a
library starting from its clients. While both APISLICER and
FUDGE use slicing, our technique diverges from FUDGE in
significant ways. In particular, our slicing uses a reaching
definitions and use-def analysis and can collect client types,
while FUDGE uses a less precise usage-only analysis and is
limited to types defined in the target library.

FuzzGen [3] carries out the analyses at the LLVM IR level,
the results of which are then lifted to source level. This process
results in fuzz drivers that are significantly different from the
original source code that was analysed. Moreover, the generated
fuzz drivers are not easy to read and hence would be difficult
to maintain due to nature of the generated code.

AoT [4] tries to extract code from a software under test
in order to be able to test it independently. AoT does not
perform any slicing on the extracted code and employs symbolic
execution and fuzzing to generate the values to be used in the
code instead of extracting concrete realistic values from existing
test suites. Nevertheless, AoT could be used in conjunction
with APISLICER to first extract the desired client function

as a separate compilable program, which could simplify the
analyses performed by APISLICER.

API usage example generation. Work on extracting API
usage examples [53]–[58] aims to gain insights into how APIs
are used by extracting illustrative code snippets from client
codebases. However, a key difference is that these code snippets
do not need to be compilable in a standalone fashion, nor
contributed to a library test suite.

Test case generation. Instead of extracting test cases from
clients, one could generate them from scratch. For example,
Randoop [59] and EvoSuite [60] are popular feedback-directed
random test generators for JAVA. However, such randomly
constructed test cases lack the realism of those extracted from
clients, as they might not reflect how the library is used in
the field. Similarly, other approaches leverage the execution
of the software under test to generate unit tests [5]–[8]. These
approaches involve more heavyweight dynamic analysis (while
APISLICER only needs to execute the client test suite), and do
not use the source code of the client to generate the test cases.

JUnitTestGen [61] makes use of disassembled APKs as a
source for test cases for Android APIs. While there is some
overlap with the APISLICER methodology, this work makes
use of an inter-procedural analysis at the level of Java IR (called
Jimple). Since their aim is to test for compatibility issues by
running those test cases, there is no requirement for using
source code-level analysis, since those test cases are not going
to be contributed to library test suites. This further highlights
our previously mentioned point about the additional constraints
imposed by the requirement of generating developer-friendly
test cases.

MSeqGen [62] identifies classes and interfaces in an appli-
cation under test, and then analyses clients of those classes to
generate invocation sequences that can later be used to improve
random and symbolic execution testing of the application. The
objective and target language of MSeqGen are both different
from APISLICER.

Code Contributions. Previous work has looked at factors that
make code contributions effective [63]–[65]; our experience
confirms some of these findings, while others are unique to test
case contributions. Grano et al. [66] investigated the readability
of automatically vs manually generated test cases, but not in
the context of contributions to code repositories.

VII. CONCLUSION

We have proposed APISLICER, an approach for extracting
library test cases from client codebases. Such test cases provide
a key benefit: they represent real-world usage scenarios of the
APIs exported by the target library, which may not have been
envisioned by the library developers. We have reported on our
experience generating and contributing such test cases to seven
mature libraries, using a total of twelve clients. Our case study
has revealed important insights in terms of test case generation,
integration and contribution, and presented the challenges and
opportunities for future research in these areas.

VIII. DATA AVAILABILITY

We make APISLICER and the experimental infrastructure,
data, and results available as open source, at [67].

REFERENCES

[1] J. Hejderup and G. Gousios, “Can we trust tests to automate dependency
updates? a case study of java projects,” Journal of Systems and Software,
vol. 183, p. 111097, 2022.

[2] B. Domagoj, F. I. Stefan Bucur, Yaohui Chen, C. L. Tim King,
Markus Kusano, L. Szekeres, and W. Wang, “FUDGE: Fuzz driver
generation at scale,” in Proc. of the Joint Meeting of the European
Software Engineering Conference and the ACM Symposium on the
Foundations of Software Engineering (ESEC/FSE’19), Aug. 2019.

[3] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic
fuzzer generation,” in Proc. of the 29th USENIX Security Symposium
(USENIX Security’20), Aug. 2020.

[4] T. Kuchta and B. Zator, “Auto off-target: Enabling thorough and scalable
testing for complex software systems,” in Proc. of the 37th IEEE
International Conference on Automated Software Engineering, (ASE’22),
Oct. 2022.

[5] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving differential
unit test cases from system test cases,” in Proc. of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE’06), Mar.
2006.

[6] A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in
Proc. of the 41th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion’19), May 2019.

[7] S. Joshi and A. Orso, “Scarpe: A technique and tool for selective capture
and replay of program executions,” in Proc. of the IEEE International
Conference on Software Maintenance (ICSM’07), Oct. 2007.

[8] F. Křikava and J. Vitek, “Tests from traces: automated unit test extraction
for R,” in Proc. of the International Symposium on Software Testing and
Analysis (ISSTA’18), Jul. 2018.

[9] “Libiconv,” https://www.gnu.org/software/libiconv/, 2024.
[10] “The GNU Privacy Guard,” https://www.gnupg.org/, 2024.
[11] “Libtooling,” https://clang.llvm.org/docs/LibTooling.html, 2023.
[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence

graph and its use in optimization,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. Addison Wesley, 2006.

[14] “Bear-github,” https://github.com/rizsotto/Bear, 2023.
[15] “IWYU - include-what-you-use,” https://include-what-you-use.org/,

2023.
[16] “Awesome c - a curated list of awesome c frameworks,” https://github.

com/oz123/awesome-c, 2024.
[17] “AMPL Bindings for the GNU Scientific Library,” https://gsl.ampl.com/

index.html, 2024.
[18] “GNU Scientific Library,” https://www.gnu.org/software/gsl/, 2024.
[19] “Apophenia,” http://apophenia.info/, 2024.
[20] “Mutt website,” www.mutt.org, 2023.
[21] “GNU SASL Library,” https://www.gnu.org/software/gsasl/, 2024.
[22] “GNU gettext,” https://www.gnu.org/software/gettext/, 2024.
[23] “Libsodium,” https://doc.libsodium.org/, 2024.
[24] “Blobcrypt,” https://github.com/jedisct1/blobcrypt, 2024.
[25] “Dovecot The Secure IMAP server,” https://www.dovecot.org/, 2024.
[26] “libtasn1,” https://www.gnu.org/software/libtasn1/, 2023. [Online].

Available: https://www.gnu.org/software/libtasn1/
[27] “The GnuTLS Transport Layer Security Library,” https://www.gnutls.org/,

2024.
[28] “P11-kit,” https://p11-glue.github.io/p11-glue/p11-kit.html, 2024.
[29] “SWTPM - Software TPM Emulator,” https://github.com/stefanberger/

swtpm, 2024.
[30] “GNU Libunistring,” https://www.gnu.org/software/libunistring/, 2024.
[31] “Libxml2,” https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home,

2024.
[32] “XML Security Library,” https://www.aleksey.com/xmlsec/, 2024.
[33] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case

reduction for C compiler bugs,” in Proc. of the Conference on Programing
Language Design and Implementation (PLDI’12), Jun. 2012.

[34] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in Proc. of the 40th International Conference on
Software Engineering (ICSE’18), May 2018.

[35] “Pull request,” https://gitlab.gnome.org/GNOME/libxml2/-/merge
requests/211, 2023.

[36] “Mailing list,” https://lists.gnu.org/archive/html/bug-libunistring/2023-10/
msg00001.html, 2023.

[37] “Pull request,” https://github.com/jedisct1/libsodium/pull/1274, 2023.
[38] “Discussion,” https://github.com/jedisct1/libsodium/discussions/1337,

2023.
[39] “Pull request,” https://gitlab.com/gnutls/libtasn1/-/merge requests/89,

2023.
[40] “Pull request,” https://github.com/ampl/gsl/pull/70, 2023.
[41] “Email exchange with GSL developer.” Email exchange, 2023.
[42] “Mailing list message,” https://savannah.gnu.org/bugs/?64549, 2023.
[43] B. Latane and J. M. Darley, “Group inhibition of bystander intervention

in emergencies,” Journal of Personality and Social Psychology, vol. 10,
no. 3, pp. 215–212, 1968.

[44] W. E. Deming, Out of the Crisis. MIT Press, 2000.
[45] OSS-Fuzz: Fuzz-Introspector, https://introspector.oss-fuzz.com/

indexing-overview, 2023.
[46] N. Wadhwa, J. Pradhan, A. Sonwane, S. P. Sahu, N. Natarajan, A. Kanade,

S. Parthasarathy, and S. Rajamani, “Core: Resolving code quality issues
using LLMs,” in Proc. of the ACM Symposium on the Foundations of
Software Engineering (FSE’24), Jul. 2024.

[47] W. Xu, K. Gao, H. He, and M. Zhou, “A first look at license compliance
capability of LLMs in code generation,” arXiv preprint arXiv:2408.02487,
2024.

[48] J. Gross, T. Zimmermann, M. Poddar-Agrawal, and A. Chlipala, “Auto-
matic test-case reduction in proof assistants: A case study in coq,” in
13th International Conference on Interactive Theorem Proving, 2022.

[49] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim,
and Y. H. Hwang, “Utopia: Automatic generation of fuzz driver using
unit tests,” in Proc. of the IEEE Symposium on Security and Privacy
(IEEE S&P’22), May 2022.

[50] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang, “Intelligen: Automatic
driver synthesis for fuzz testing,” in Proc. of the 43rd International
Conference on Software Engineering (ICSE’21), May 2021.

[51] C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying, J. Wang, and
Y. Liu, “Apicraft: Fuzz driver generation for closed-source SDL libraries,”
in Proc. of the 30th USENIX Security Symposium (USENIX Security’21),
2021.

[52] H. Green and T. Avgerinos, “Graphfuzz: library API fuzzing with lifetime-
aware dataflow graph,” in Proc. of the 44th International Conference on
Software Engineering (ICSE’22), May 2022.

[53] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and recommending API usage patterns,” in Proc. of the 33rd European
Conference on Object-Oriented Programming (ECOOP’19), Jul. 2019.

[54] A. Hora, “Apisonar: Mining api usage examples,” Software: Practice
and Experience (SPE), vol. 51, no. 2, pp. 319–352, 2021.

[55] R. P. Buse and W. Weimer, “Synthesizing API usage examples,” in Proc.
of the 34th International Conference on Software Engineering (ICSE’12),
Jun. 2012.

[56] J. Kim, S. Lee, S.-w. Hwang, and S. Kim, “Adding examples into Java
documents,” in Proc. of the 24th IEEE International Conference on
Automated Software Engineering (ASE’09), Nov. 2009.

[57] Z. Zhu, Y. Zou, B. Xie, Y. Jin, Z. Lin, and L. Zhang, “Mining API usage
examples from test code,” in Proc. of the IEEE International Conference
on Software Maintenance and Evolution (ICSME’14), Sep. 2014.

[58] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “APISan: Sanitizing
API usages through semantic cross-checking.” in Proc. of the 25th
USENIX Security Symposium (USENIX Security’16), Aug. 2016.

[59] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. of the 29th International Conference
on Software Engineering (ICSE’07), May 2007.

[60] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proc. of the Joint Meeting of the European
Software Engineering Conference and the ACM Symposium on the
Foundations of Software Engineering (ESEC/FSE’11), Sep. 2011.

[61] X. Sun, X. Chen, Y. Zhao, P. Liu, J. Grundy, and L. Li, “Mining Android
API usage to generate unit test cases for pinpointing compatibility
issues,” in Proc. of the 37th IEEE International Conference on Automated
Software Engineering, (ASE’22), Oct. 2022.

https://www.gnu.org/software/libiconv/
https://www.gnupg.org/
https://clang.llvm.org/docs/LibTooling.html
https://github.com/rizsotto/Bear
https://include-what-you-use.org/
https://github.com/oz123/awesome-c
https://github.com/oz123/awesome-c
https://gsl.ampl.com/index.html
https://gsl.ampl.com/index.html
https://www.gnu.org/software/gsl/
http://apophenia.info/
www.mutt.org
https://www.gnu.org/software/gsasl/
https://www.gnu.org/software/gettext/
https://doc.libsodium.org/
https://github.com/jedisct1/blobcrypt
https://www.dovecot.org/
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/libtasn1/
https://www.gnutls.org/
https://p11-glue.github.io/p11-glue/p11-kit.html
https://github.com/stefanberger/swtpm
https://github.com/stefanberger/swtpm
https://www.gnu.org/software/libunistring/
https://gitlab.gnome.org/GNOME/libxml2/-/wikis/home
https://www.aleksey.com/xmlsec/
https://gitlab.gnome.org/GNOME/libxml2/-/merge_requests/211
https://gitlab.gnome.org/GNOME/libxml2/-/merge_requests/211
https://lists.gnu.org/archive/html/bug-libunistring/2023-10/msg00001.html
https://lists.gnu.org/archive/html/bug-libunistring/2023-10/msg00001.html
https://github.com/jedisct1/libsodium/pull/1274
https://github.com/jedisct1/libsodium/discussions/1337
https://gitlab.com/gnutls/libtasn1/-/merge_requests/89
https://github.com/ampl/gsl/pull/70
https://savannah.gnu.org/bugs/?64549
https://introspector.oss-fuzz.com/indexing-overview
https://introspector.oss-fuzz.com/indexing-overview

[62] S. Thummalapenta, T. Xie, N. Tillmann, J. D. Halleux, and W. Schulte,
“Mseqgen: Object-oriented unit-test generation via mining source code,”
in Proc. of the Joint Meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software
Engineering (ESEC/FSE’09), Aug. 2009.

[63] V. Lenarduzzi, V. Nikkola, N. Saarimäki, and D. Taibi, “Does code
quality affect pull request acceptance? an empirical study,” Journal of
Systems and Software, vol. 171, p. 110806, 2021.

[64] X. Zhang, Y. Yu, G. Gousios, and A. Rastogi, “Pull request decisions
explained: An empirical overview,” IEEE Transactions on Software
Engineering, vol. 49, no. 2, pp. 849–871, 2022.

[65] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino, “Accep-
tance factors of pull requests in open-source projects,” in Proceedings
of the 30th Annual ACM Symposium on Applied Computing, 2015, pp.
1541–1546.

[66] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,”
in Proceedings of the 26th Conference on IEEE/ACM International
Conference on Program Comprehension, 2018, pp. 348–351.

[67] “Artifact for this paper (currently anonymised),” https://doi.org/10.5281/
zenodo.13919240, 2024, zenodo.

https://doi.org/10.5281/zenodo.13919240
https://doi.org/10.5281/zenodo.13919240

	Introduction
	Overview
	APISlicer
	Test Case Generation
	Test Case Initialisation
	Test Case Integration
	Developer Feedback
	Design decisions

	Case Study
	Benchmarks
	Test Case Generation Results
	Test Case Initialisation
	Test Case Integration
	Developer Feedback

	Lessons Learned
	Related Work
	Conclusion
	Data Availability
	References

