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Compiler Fuzzing: How Much Does It Matter?
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Despite much recent interest in randomised testing (fuzzing) of compilers, the practical impact of fuzzer-found

compiler bugs on real-world applications has barely been assessed. We present the first quantitative and

qualitative study of the tangible impact of miscompilation bugs in a mature compiler. We follow a rigorous

methodology where the bug impact over the compiled application is evaluated based on (1) whether the bug

appears to trigger during compilation; (2) the extent to which generated assembly code changes syntactically

due to triggering of the bug; and (3) whether such changes cause regression test suite failures, or whether

we can manually find application inputs that trigger execution divergence due to such changes. The study

is conducted with respect to the compilation of more than 10 million lines of C/C++ code from 309 Debian

packages, using 12% of the historical and now fixed miscompilation bugs found by four state-of-the-art fuzzers

in the Clang/LLVM compiler, as well as 18 bugs found by human users compiling real code or as a by-product

of formal verification efforts. The results show that almost half of the fuzzer-found bugs propagate to the

generated binaries for at least one package, in which case only a very small part of the binary is typically

affected, yet causing two failures when running the test suites of all the impacted packages. User-reported

and formal verification bugs do not exhibit a higher impact, with a lower rate of triggered bugs and one test

failure. The manual analysis of a selection of the syntactic changes caused by some of our bugs (fuzzer-found

and non fuzzer-found) in package assembly code, shows that either these changes have no semantic impact or

that they would require very specific runtime circumstances to trigger execution divergence.
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1 INTRODUCTION

Context.Compilers are among themost central components in the software development toolchain.
While software developers often rely on compilers with blind confidence, bugs in state-of-the-art
compilers are frequent [Sun et al. 2016b]; for example, hundreds of bugs in the Clang/LLVM and
GCC compilers are fixed each month. The consequence of a functional compiler bug may be a
compile-time crash or a miscompilation, where wrong target code is silently generated. While
compiler crashes are spotted as soon as they occur, miscompilations can go unnoticed until the
compiled application fails in production, with potentially serious consequences. Automated compiler
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test generation has been a topic of interest for many years (see e.g. [Boujarwah and Saleh 1997;
Hanford 1970; Kossatchev and Posypkin 2005; Purdom 1972; Sauder 1962; Wichmann 1998]), and
recent years have seen the development of several compiler fuzzing tools that employ randomised
testing to search for bugs in (primarily C) compilers [Le et al. 2014; Nakamura and Ishiura 2016;
Yang et al. 2011; Yarpgen 2018]. Such compiler fuzzers have practically demonstrated their ability to
find hundreds of bugs, and particularly many miscompilations, in widely-used compilers.

Problem. In our experience working in the area [Donaldson et al. 2017; Donaldson and Lascu 2016;
Lidbury et al. 2015], we have found compiler fuzzing to be a contentious topic. Research talks on
compiler fuzzing are often followed by questions about the importance of the discovered bugs,
and whether compiler fuzzers might be improved by taking inspiration from bugs encountered
by users of compilers łin the wildž. Some (including some reviewers of this paper) argue that any
miscompilation bug, whether fuzzer-found or not, is a ticking bomb that should be regarded as
severe, or avoided completely via formal verification (in the spirit of CompCert [Leroy 2009]).
Others (see e.g. [Jones 2015]) question whether the bugs found by compiler fuzzers are worth fixing.
In the context of fuzzing a mature compiler used for processing non-critical software, where a
level of unreliability can be tolerated in exchange for reduced development costs, it is reasonable
to question the importance of miscompilation bugs found by compiler fuzzers. First, there is an
argument that a combination of regular testing of the compiler by its developers and its intensive
operation by end-users is likely to flag up the serious bugs as they arise. It is thus unclear whether
this leaves enough space in practice for fuzzers to find bugs of more than mild importance. Second,
by their very nature, fuzzers detect miscompilations via artificial programs, obtained by random
generation of code from scratch or random modification of existing code. It is thus unclear whether
the code patterns that trigger these miscompilations are likely to be exhibited by applications in the
wild. The lack of a fine-grained and quantitative study of the practical impact of miscompilation
bugs in a mature compiler means that we have little but anecdotal evidence to support or rebut these
points.1 More practically, since the bug databases of popular mature compilers such as Clang/LLVM
have thousands of open bug reports, such a study could also provide insights into the risk associated
with leaving bugs unfixed for long periods of time, as well as establishing whether the way compiler
developers prioritise bugs for fixing appears to correlate with their impact.

Objectives and Challenges. Our main objectives are (a) to study how much the miscompilation
bugs found in a widely-used compiler affect the compilation of real-world applications, and (b) to
compare the impact of bugs found by fuzzers (using artificial programs) and by other means (notably
via compilation of real code). We have approached this study with an open mind, not wishing to
specifically show that fuzzer-found bugs do or do not matter, but rather (1) to take sensible steps
towards a methodology to assess and compare the impact of miscompilation bugs and (2) to apply
this methodology to a significant but tractable sample of bugs in a mature compiler, over a feasible
range of real-world applications.

Methodology. As a simplifying assumption, we choose to liken the impact of a miscompilation
bug on an application to its ability to change the semantics of the application.2 We take advantage
of the large number of miscompilation bugs in open-source compilers that have been publicly
reported and fixed. Given a fixed bug, we analyse the fix and devise a change to the compiler’s code
that emits a warning when the faulty code is reached and a local faulty behaviour is triggered. The
warnings issued when compiling the application with the modified compiler provide information on
whether the bug is reached and triggered at all. In cases where warnings are issued, we compare the

1A recent empirical study of GCC and LLVM compiler bugs [Sun et al. 2016b] provides numerous insights into bug

characteristics, but does not address the extent to which bugs found by fuzzers impact on code found in the wild.
2We do not consider here the impact over the non-functional properties of the application, such as security or performance.
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application binaries produced by the faulty and the fixed compiler versions (subject to appropriate
care to ensure reproducible builds), counting the number of functions that exhibit bug-induced
syntactic differences. If such differences are detected, we run the application’s standard test suite
and look for discrepancies caused by these syntactic differences at runtime. In cases where no such
discrepancies are detected, we may also inspect manually the application’s buggy and fixed binaries
and try to craft specific inputs to trigger a runtime divergence when executing the syntactically
different sections of these binaries. The frequency of the syntactic differences between the two
binaries and their ability to trigger test discrepancies or runtime divergences shed light on the
impact of the bug on the application’s correctness and reliability.

Experimental Study. We present a rigorous study of the real-world impact of miscompilation
bugs in a mature compiler over a large set of diverse applications. In particular, we sample a
set of 12% of the fixed miscompilation bugs detected by four state-of-the-art families of fuzzers
targeting the Clang/LLVM C/C++ compiler: Csmith [Chen et al. 2013; Regehr et al. 2012; Yang
et al. 2011], EMI [Le et al. 2014, 2015a,b], Orange3/4 [Nagai et al. 2014; Nakamura and Ishiura
2016] and Yarpgen [Yarpgen 2018]. We also select a set of 10 bugs detected directly by end users of
Clang/LLVM when compiling their applications, and consider the 8 bugs found as a by-product of
applying the Alive formal verification tool [Lopes et al. 2015]. Then, following our methodology,
we evaluate the impact of all these bugs when compiling 309 Debian packages, such as Apache,
Grep and Samba, not used by the Clang/LLVM developers to test regularly the compiler. Finally, we
compare the impact of the fuzzer-found bugs with the impact of the user-reported and Alive bugs.

Contributions. To sum up, our main contributions are:

(1) A three-stage methodology (detailed in ğ3) for assessing the impact of a miscompilation bug
on the correctness and reliability of a given application (a) during compilation (is the faulty
compiler code reached and triggered?), (b) by syntactically analysing the generated code
(how much does the fault impact the assembly syntax of the resulting binary?) and (c) by
dynamically probing the produced binary (can the fault lead to observable differences in the
runtime behaviour of the application?)

(2) The first systematic study on the real-world impact of miscompilation bugs in a mature
compiler (presented in ğ4, ğ5 and ğ6), which applies our methodology (a) to evaluate the
impact of a sample of 45 fixed miscompilation bugs in Clang/LLVM over 309 diverse Debian
packages totalling 10M lines of C/C++, and (b) to compare the impact of 27 of these bugs
that are fuzzer-found with the impact of 18 of these bugs found either by users compiling
real code or by the Alive tool, over the same Debian packages. The study required a huge
amount of manual effort and five months of machine time.

Summary of Main Findings. Our top-level findings include that the code associated with each
fuzzer-found bug is reached always at least once and typically quite frequently when compiling our
set of real-world applications, that our bug conditions trigger, and almost half of the bugs result
in binary-level differences for some packages. However, these differences affect a tiny fraction
of the functions defined in the application’s code and they cause a couple of test failures in total.
Regarding the user-reported and Alive bugs, there exist bugs for which the associated code is
never reached during the compilation of our set of packages. In addition, user-reported and Alive
bugs have their conditions triggered less frequently on average, and lead to a single test failure.
The manual analysis of a selection of the binary-level differences caused by some of our compiler
bugs, both fuzzer-found and non fuzzer-found, shows that either these binary differences have
no impact over the semantics of the application, or that they would require very specific runtime
circumstances in order to trigger execution divergence.
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Considering the two aforementioned objectives of this work, our results support the argument
that (a) miscompilation bugs in a generally high-quality, widely-used production compiler seldom
impact the correctness and reliability of deployed applications, as encoded by their test suites and
(in a few cases) based on our manual analysis, and that (b) bugs in a mature compiler discovered
using a fuzzer relying on artificial code appear to have at least as much impact as those found via
other sources, notably bugs reported by the compiler users because they were affecting real code.

Future Work.We discuss (ğ7) further directions to evaluate even better the impact of miscompila-
tion bugs, for example by considering their effect over the application’s non-functional properties
(e.g. security or performance) or by using symbolic execution [Cadar and Sen 2013] to trigger
miscompilation-caused runtime failures.

Artifact. Our experimental data and infrastructure are available as a part of an associated artifact.3

2 BACKGROUND

We make precise relevant details of compilation faults and miscompilation failures (ğ2.1), provide
an overview of the compiler validation tools considered in the study (ğ2.2), provide relevant
background on Clang/LLVM, including details of the bug tracker from which we have extracted
compiler bug reports (ğ2.3), and describe the standard framework used to build and test Debian
packages (ğ2.4), which is at the core of the experimental infrastructure deployed for the study.

2.1 Compilation Faults and Miscompilation Failures

We describe the notion of a miscompilation bug using a simple but pragmatic model of how a
compiler works. A modern compiler typically converts a source program into an intermediate
representation (IR), runs a series of passes that transform this IR, and finally emits target code for a
specific architecture. For source program P and input x , let P(x) denote the set of results that P may
produce, according to the semantics of the programming language in question. This set may have
multiple values, for example if P can exhibit nondeterminism. Similarly, let T (x) denote the set of
results that target program T may produce, according to the semantics of the target architecture.
For ease of presentation we assume that source and target programs always terminate, so that
P(x) and T (x) cannot be empty. A compilation P → T is correct with respect to an input x if T is a
refinement of P , i.e. if T (x) ⊆ P(x). That is, the target program respects the semantics of the source
program: any result that the target program may produce is a result that the source program may
also produce. Otherwise the compilation exhibits a miscompilation failure with respect to input x .
We call a compilation fault any internal compiler operation which is incorrect during a compilation.
A miscompilation failure is always caused by a compilation fault, but a compilation can exhibit
a fault and no miscompilation failure if, for example, the fault makes the compiler crash or only
impacts IR code that will be detected as dead and removed by a later pass. In such a case, the fault
is said not to propagate to a miscompilation failure.

2.2 Fuzzers and Compiler Verification Tools Studied

Our study focuses on four compiler fuzzing tools (in two cases the łtoolž is actually a collection
of closely-related tools), chosen because they target C/C++ compilers and have found bugs in
recent versions of the Clang/LLVM compiler framework. We also consider some bugs found via
application of the Alive tool for verification of LLVM peephole optimisations. We briefly summarise
each tool, discussing related work on compiler validation more broadly in ğ8.

Csmith. The Csmith tool [Yang et al. 2011] randomly generates C programs that are guaranteed to
be free from undefined and unspecified behaviour. These programs can then be used for differential

3https://srg.doc.ic.ac.uk/projects/compiler-bugs/

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 155. Publication date: October 2019.



Compiler Fuzzing: How Much Does It Matter? 155:5

testing [McKeeman 1998] of multiple compilers that agree on implementation-defined behaviour:
discrepancies between compilers indicate that miscompilations have occurred. By November 2013
Csmith had been used to find and report 481 bugs in compilers including LLVM, GCC, CompCert
and suncc, out of which about 120 were miscompilations.4 Many bugs subsequently discovered
using Csmith are available from the bug trackers of the targeted compilers.

EMI. The Orion tool [Le et al. 2014] introduced the idea of equivalence modulo inputs (EMI) testing.
Given a deterministic C program P (e.g. an existing application or a program generated by Csmith)
together with an input x that does not lead to undefined/unspecified behaviour, Orion profiles the
program to find those statements that are not covered when the program is executed on input x .
A set of programs are then generated from P by randomly deleting such statements. While very
different from P in general, each such program should behave functionally identically to P when
executed on input x ; discrepancies indicate miscompilations. Follow-on tools, Athena [Le et al.
2015a] and Hermes [Sun et al. 2016a], extend the EMI idea using more advanced profiling and
mutation techniques; we refer to the three tools collectively as EMI. To date, the project has enabled
the discovery of more than 1,600 bugs in LLVM and GCC, of which about 550 are miscompilations.5

Orange3/4. The Orange3 [Nagai et al. 2014] and Orange4 [Nakamura and Ishiura 2016] tools can be
used to fuzz C compilers via a subset of the C language, focussing primarily on testing compilation
of arithmetic expressions. Orange3 generates a program randomly, keeping track during generation
of the precise result that the program should compute. Orange4 instead is based on transforming a
test program into equivalent forms that are all guaranteed to generate the same output if compiled
correctly. Transformations include adding statements to the program or expanding constants into
expressions. The tools have led to the reporting of 60 bugs in LLVM and GCC, out of which about
25 are miscompilations.6

Yarpgen. The Intel-developed łYet Another Random Program Generatorž (Yarpgen) tool [Yarpgen
2018] takes a Csmith-like approach to generating random programs. It accurately detects and avoids
undefined behaviour by tracking variable types, alignments and value ranges during program
generation. It also incorporates policies that guide random generation so that optimisations are
more likely to be applied to the generated programs. It has been used to report more than 150 bugs
in LLVM and GCC, out of which 38 are miscompilations.7

Alive. The Alive project [Lopes et al. 2015] provides a language to encode formal specifications of
LLVM peephole optimisations, together with an SMT-based verifier to either prove them correct
or provide counterexamples to correctness. Once an optimisation specification has been proven
correct, Alive can generate LLVM-compatible C++ code that implements the optimisation. More
than 300 optimisations were verified in this way, leading to the discovery of 8 miscompilation bugs
in LLVM as a by-product.

2.3 Clang/LLVM Framework

The Clang/LLVM framework [Lattner and Adve 2004] is one of the most popular compiler frame-
works, used by a large number of research and commercial projects. Written in C++, it supports
several source languages (e.g. C, C++, Objective-C and Fortran) and many target architectures (e.g.
x86, x86-64, ARM, PowerPC).

4https://github.com/csmith-project/csmith/blob/master/BUGS_REPORTED.TXT
5http://web.cs.ucdavis.edu/~su/emi-project
6https://ist.ksc.kwansei.ac.jp/~ishiura/pub/randomtest/index.html
7https://github.com/intel/yarpgen/blob/master/bugs.rst
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The bugs discussed in this paper are analysed in the context of compiling C/C++ code to x86
machine code. They were all reported on the Clang/LLVM online bug tracker.8 A typical bug report
includes a fragment of code that demonstrates the miscompilation, together with the affected
Clang/LLVM versions and configurations (target architectures, optimisation levels, etc.). The bug
is given a unique ID and classified by severity, being either ranked as an enhancement request,
a normal bug or a release blocker. A public discussion usually follows, involving the compiler
developers who may end up writing a fix for the bug, if judged necessary. The fix is applied (with
attached explanatory comments) directly within the public Clang/LLVM SVN repository.9 The
revision number(s) where the fix was applied is typically provided to close the bug report.

2.4 Build and Test Framework for Debian Packages

Debian is a well-known open-source operating system and software environment. It provides a
popular repository for compatible packaged applications,10 together with a standard framework to
facilitate compiling these packages from source and testing them. The components of the Debian
framework that we use in this study are Simple Build,11 Reproducible Builds12 and Autopkgtest.13

Simple Build provides a standard way to build any package from source in a customised and
isolated build environment. The infrastructure provides simple primitives (1) to set up this environ-
ment as a tailored Debian installation within a chroot jail,14 (2) to gather packaged sources for any
package and compile them within the environment, and (3) to revert the environment to its initial
state after building a package.

Reproducible Builds is an initiative to drive package developers towards ensuring that identical
binaries are always generated from a given source. This makes it possible to check that no vulner-
abilities or backdoors have been introduced during package compilation, by cross-checking the
binaries produced for a single source by multiple third parties. The initiative notably provides a list
of the packages for which the build process is (or can easily be made) reproducible.

Autopkgtest is the standard interface for Debian developers to embed tests suites in their packages.
As soon as the developers provide a test suite in the requested format, Autopkgtest enables running
these tests over the package in a Debian environment using a single command. This environment
can be the local machine, a distant machine, or a local installation within a chroot jail or emulator.

3 METHODOLOGY

Our methodology focuses solely on miscompilation bugs reported in open-source compilers, and
for which an associated patch that fixes the bug has been made available. We refer to this patch as
the fixing patch for the bug, the version of the compiler just before the patch was applied as the
buggy compiler, and the version just after the patch was applied as the fixed compiler.

Given a miscompilation bug and fixing patch, together with a set of applications to compile, we
evaluate the practical impact of the bug on each application in three successive stages:

(1) Compile-time analysis. We check whether the compiler code affected by the fixing patch
is reached when the application is compiled with the fixed compiler. If so, we check whether
the conditions necessary for the bug to trigger in the buggy compiler hold, indicating that a
compilation fault occurred.

8https://bugs.llvm.org/
9http://llvm.org/viewvc
10https://www.debian.org/distrib/packages
11https://wiki.debian.org/sbuild
12https://wiki.debian.org/ReproducibleBuilds
13https://manpages.debian.org/testing/autopkgtest
14http://man7.org/linux/man-pages/man2/chroot.2.html
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(2) Syntactic binary analysis. We statically check howmuch the application binaries generated
by the buggy and fixed compiler are different. More precisely, we count how many of the
functions defined in the produced assembly code have bug-induced syntactic differences,
hypothesising that the larger the number of these differently-compiled functions the higher
the chance that the compilation fault might impact the application’s execution.

(3) Dynamic binary analysis. We probe dynamically whether the syntactic differences spot-
ted at Stage 2 can make the binaries generated by the buggy and fixed compiler diverge
semantically at runtime. To do so, we run the application’s test suite twice, once against each
binary. If no differences in the test results are detected, we also manually inspect a sample
of the spotted syntactic differences for some applications, with the aim of crafting, if they
exist, inputs that would trigger a runtime divergence. Based on this manual inspection, we
infer a more general qualitative estimation of the likelihood with which syntactic differences
induced by the bug might impact the application’s semantics.

We now discuss each of the three stages of our approach in detail, in the process describing the
steps we followed to curate a set of bugs with associated compiler versions and fixing patches.

3.1 Stage 1: Compile-time Analysis

For each bug, the first stage of our approach relies on isolating a fixing patch and preparing
appropriate compile-time checks for the conditions under which the compilation fault would occur.
We accomplished this by careful manual review of the bug tracker report associated with each
miscompilation bug. We limited our attention to bugs where it was clear from discussion between
developers in the bug tracker that the fixing patch was incorporated in a single revision (or several
contiguous revisions) of the compiler sources and in isolation from any other code modifications.

As a simple running example, the fixing patch for Clang/LLVM bug #26323 (found by one of the
EMI fuzzers) is Clang/LLVM revision 258904,15 which makes the following change:

- if (Not.isPowerOf2 ()) {

+ if (Not.isPowerOf2 ()

+ && C->getValue (). isPowerOf2 ()

+ && Not != C->getValue ()) {

/* CODE TRANSFORMATION */ }

It is clear from the fixing patch and its explanatory comments on SVN that the bug is fairly simple
and localised, fitting a common bug pattern identified by the Csmith authors [Yang et al. 2011, ğ3.7]
where the precondition associated with a code transformation is incorrect. As a consequence, the
transformation can be mistakenly applied, possibly resulting in a miscompilation. The fix simply
strengthens the precondition.
We found and discarded a small number of bugs whose fixes were applied together with other

code modifications and/or via a series of non-contiguous compiler revisions, except in one case
(Clang/LLVM bug #27903, reported by an end-user) where we found it straightforward to determine
an independent fixing patch for the bug from the two non-contiguous patches that were used
in practice. The first patch, meant as temporary, deactivated the faulty feature triggering the
miscompilation, while the second patch permanently fixed this feature and reactivated it. Our
independent patch leaves the feature activated and applies the permanent fix of the second patch.

Having identified a fixing patch and understood the conditions under which the compilation fault
would possibly trigger, we modify the fixed compiler to print warnings (1) when at least one of the
basic blocks affected by the fixing patch is reached during compilation, and (2) when upon reaching
the fixing patch, the conditions under which a compilation fault would possibly have occurred had

15http://llvm.org/viewvc/llvm-project?view=revision&revision=258904
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the patch not been applied are triggered. In our running example this involves detecting when
Not.isPowerOf2() holds but C->getValue().isPowerOf2() && Not != C->getValue() does not. The
fixing patch augmented with warning generation is as follows:

warn(" Fixing patch reached ");

if (Not.isPowerOf2 ()) {

if (!(C->getValue (). isPowerOf2 ()

&& Not != C->getValue ())) {

warn("Fault possibly triggered ");

} else { /* CODE TRANSFORMATION */ } }

We sanity-check the correctness of the so crafted warning-laden compiler by making sure that
the warnings are actually fired when compiling the miscompilation sample provided as a part
of the bug tracker report. It is of course possible that the łfixingž patch does not entirely fix the
miscompilation, and/or introduces new bugs in the compiler; sometimes bug reports are reopened
for just this reason (see Clang/LLVM bug #2190316 for an example). We are reasonably confident
that the bugs used in our study do not fall into this category: their fixes, accepted by the open-source
community, have stood the test of time.

For some patches it was tractable to determine precise conditions under which a compilation fault
would have occurred in the buggy compiler. However, in other cases it was difficult or impossible to
determine such precise conditions, either because the code associated with the patch was complex
enough that determining the exact conditions under which the patch exhibits erroneous behaviour
would require highly-specialized knowledge, or because the occurrence of a fault could not be
verified for sure based on available compile-time information only. In these cases we instead settled
for over-approximating conditions, designed to certainly issue warnings when the fault is triggered,
but possibly issuing false positives, i.e. warning that the fault is triggered when it is not. In such cases
we worked hard to make the over-approximating conditions precise to the best of our abilities. As
an example, Clang/LLVM bug #21242 (reported by the Alive tool) affects an IR code transformation:
a multiplication operation between a variable and a power of two, x ∗ 2n , is transformed into the
shift left operation x << n. When n = 31, the transformation is faulty for 32-bit signed integers in
case when x = 1, because the overflow semantics of the first operation is not correctly preserved
within the second one. As the value x will hold at runtime is unknown at compile time (and may be
different each time the compiled code is executed), we must conservatively issue a fault warning
regardless of the value of x .

3.2 Stage 2: Syntactic Binary Analysis

The first stage of our approach provides us with better insight into how the application’s compilation
process is affected by the bug, including information on certain (in the case of precise conditions)
and potential (in the case of over-approximating conditions) compilation faults. The second stage
is focused on the result of a possible faulty compilation: it performs a syntactic comparison of
the application binaries produced by the buggy and fixed compilers, to understand how much the
possible compilation fault made them differ syntactically.

As a preliminary check, we perform a bitwise comparison of the monolithic application binaries
generated by the buggy and fixed compilers. If these monolithic binaries are different, we disassem-
ble them and textually compare the two versions of the assembly code, in order to estimate how
many of the defined assembly functions exhibit significant syntactic differences induced by the
compilation fault. In particular, our function-by-function comparison includes heuristics (see ğ4.3)
designed to ignore irrelevant differences, such as specific addresses.

16https://bugs.llvm.org/show_bug.cgi?id=21903
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Observe that for Stage 2 to be meaningful, we need to make sure that the detected differences are
only caused by the code differences in the two compilers (i.e. by the fixing patch). In practice, this
may not always be the case, as the compilation process of some application may not be reproducible.
In such cases, we could mistakenly infer that the differences in the two binaries are caused by
a compilation fault. We discuss in ğ4.2 how we have practically ensured that the applications
compiled in our study follow a reproducible build process.
If Stage 1 determines that no fault was triggered during application compilation, the binaries

produced by the buggy and fixed compilers are expected to be identical. In such cases, we still
perform Stage 2 to sanity-check our approach: if Stage 1 reports no triggered faults but Stage 2
reports differences in generated binaries, it might indicate that something is wrong either with
the way the warning-laden compiler has been hand-crafted or with the reproducibility of the
application build process. In practice, this careful approach led to us to detect that the binaries
produced for some applications made use of the revision number of the compiler used to build
them. As the buggy and fixed compilers correspond to different revisions, the binaries that they
produced for these applications were always different, even when no compilation fault occurred.
We solved this problem by removing any mention of the revision number within the compilers
that we used.
Finally, observe that when Stage 1 of our approach detects that a fault was triggered during

application compilation, the binaries produced by the buggy and fixed compilers might yet be
identical. This can be due to a false alarm at Stage 1 resulting from over-approximating conditions,
but also to cases where an actual fault is masked at a later stage of compilation.

3.3 Stage 3: Dynamic Binary Analysis

Even if Stage 2 discovers that the binaries produced by the buggy and fixed compilers differ,
this does not guarantee that the possible compilation fault detected at Stage 1 propagates to a
miscompilation failure. Indeed, Stage 2 only evaluates how much the binaries produced by the
buggy and fixed compilers are syntactically different, which does not prevent them from being
semantically equivalent. In this case, the differences observed in the binary compiled by the buggy
compiler are not the witnesses of a miscompilation, as they cannot trigger any incorrect application
behaviour.
The purpose of the third stage of our approach is to understand whether the compilation fault

propagates to a miscompilation failure. To study this, we run the default regression test suite of
the application once with the binary produced by the buggy compiler, and once with the binary
produced by the fixed compiler. If the first binary fails on some tests while the second one does
not, it meansÐmodulo some possibly flaky tests [Luo et al. 2014; Marinescu et al. 2014] or some
undesirable non-determinism in the applicationÐthat the fault can make the application misbehave
at runtime and thus propagates to a failure. If the test results are the same for the two binaries, it is
unknown whether this is because they are semantically equivalent or because the test suite is not
comprehensive enough to expose the miscompilation failure.

We note that the effectiveness of Stage 3 is notably impacted by the quality of the application’s
test suite, and in particular whether the test suite is deemed thorough enough to act as a proxy for
typical real-world usage. Another important point is that if the test suite of a particular application
is regularly used to exercise a compiler, leading to miscompilations being detected and fixed as
they arise, the application’s test suite might subsequently be considered as immune to all the bugs
affecting the versions of the compiler that it has exercised. We discuss in ğ6 this risk and how we
have selected applications in a manner that minimises it.

To mitigate the limitations associated with using test suites only, if no differences are observed
when running the test suites for a compiler bug, we may sample a set of the syntactic differences
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Table 1. Tool-reported Clang/LLVM bugs that we study.

Tool family Tool type
Number of Clang/LLVM bugs

Bugs Fixed Final
reported miscompilations sample

Csmith

fuzzer

164 52 10
EMI 783 163 10

Orange 12 7 5
yarpgen 66 4 2
Alive formal verifier 8 8 8

TOTAL 1033 234 35

spotted at Stage 2 in the assembly code of the applications impacted by the bug. Each syntactic
difference in the sample is then manually inspected with an eye to crafting inputs that would make
the two binaries diverge at runtime because of this difference. Depending on the complexity of the
application, these inputs can either be global inputs to the application leading to a divergence in
the application’s behaviour, or inputs local to the function affected by the syntactic difference that
trigger a semantic divergence at this local level (such that we do not knowÐdue to the application’s
complexityÐwhether there is an input to the application that would lead to invocation of the
function with the local input). Once all the sampled syntactic differences have been investigated,
we try to generalise the gained knowledge, complemented by our understanding of the bug and
fixing patch’s details on the bug tracker, into a rule of thumb assessing the impact that binary
differences induced by the compiler bug can have over the semantics of an application.

4 EXPERIMENTAL SETUP

We now describe how we chose the bugs (ğ4.1) and applications (ğ4.2) considered in the study, and
discuss the technical aspects of the chosen experimental process (ğ4.3) .

4.1 Sampling Compiler Bugs to Investigate

Due to the steep learning curve associated with gaining expertise in a production compiler frame-
work, and the intensive manual effort required to prepare warning-laden compilers for each bug
we consider, we decided to restrict attention to bugs reported in a single compiler framework. Most
publicly-reported compiler fuzzing efforts have been applied to Clang/LLVM and GCC. Either would
have been suitable; we chose to focus on Clang/LLVM as this enabled an interesting comparison
between bugs found by fuzzers and bugs found as a by-product of formal verification (the Alive
tool is not compatible with GCC).
A total of 1,033 Clang/LLVM bugs are listed within the scoreboards of the four C fuzzers and

Alive at time of writing. Relevant properties of these bugs are summarised in Table 1.
Our study requires a fixing patch for each bug, and our aim is to study miscompilations. We thus

discarded the 799 bugs that remain unfixed or are not miscompilation bugs.
We then removed any of the remaining bugs for which the affected Clang/LLVM versions are too

old to be built from source and to compile packages within a Debian 9 installation (with reasonable
effort). In practice, this means that we exclude all the bugs affecting Clang/LLVM versions older
than 3.1 (which was released more than seven years ago).
Because the aim of our study is to assess the extent to which miscompilation bugs have high

practical impact, we pruned those bugs that only trigger when non-standard compilation settings
are used, e.g. to target old or uncommon architectures or to enable optimisation levels higher than
default for Debian packages (-O2).
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Finally, we randomly selected 10 bugs (if available17) to study per tool, among those bugs for
which we were able to isolate an independent fixing patch and write a corresponding warning-laden
compiler. This led to a final sample of 35 bugs to analyse, as shown in Table 1. We completed this
sample by adding a set of 10 miscompilation bugs reported directly by end user of Clang/LLVM.
These bugs were selected by searching the Clang/LLVM bug tracker for a set of 20 suitable miscom-
pilation bugs not reported by the fuzzers or Alive authors. Then, we picked the first 10 of these bugs
for which we could isolate an independent fixing patch and write a corresponding warning-laden
compiler.
Overall, the studied sample of bugs covers 12% of the fixed miscompilation bugs found in

Clang/LLVM by the four considered fuzzers, all the bugs found by the Alive tool and 10 bugs
reported by end-users, which we regard as a significant but tractable subset. While studying more
bugs would have made this study even stronger, we were limited principally by the human effort
required per bug (and to some degree also by machine time).

4.2 Sampling Applications to Compile

As the set of applications to be compiled, we consider the source packages developed for Debian
(version 9), the most stable release at the time when we conducted our study. More than 30,000
packages are available. Experimenting with all packages was infeasible in terms of the machine
resources available to us. We now describe the process that we followed to select a feasible number
of packages.
To apply the methodology of ğ3 to C/C++ compiler bugs in an automated fashion, we required

packages that: build in a reproducible fashion (a requirement of Stage 2, see ğ3.2); are not used
for exercising Clang/LLVM on a regular basis and come with sufficiently thorough test suites
(both requirements of Stage 3, see ğ3.3) which can be executed in a standard fashion (required for
automation); and contain more than 1K lines of C/C++ code (a limit that we imposed to filter out
uninteresting applications).

For build reproducibility, the Debian Reproducible Builds initiative lists the approximately 23,000
packages for which builds are believed to be deterministic. Regarding availability of test suites,
about 5,000 packages support the Debian Autopkgtest command as a unified interface for running
tests. We thus restricted attention to the approximately 4,000 packages with reproducible builds
and Debian Autopkgtest-compatible test suites.

We then filtered out all the packages that contain fewer than 1K lines of C/C++ code, using the
cloc18 tool to count lines of code. This was important in order to filter out trivial applications or
applications that are mostly written in another programming language but that include a small
C/C++ component.
To sanity-check reproducibility of package builds, we built each selected package twice with

the same compiler (an instance of version 3.6 of Clang/LLVM) and verified that bitwise identical
binaries are indeed produced.

To make the running time of our analyses more acceptable (it could take more than one week per
compiler bug considering all the remaining packages), we sampled half of these packages to end up
with a set of 309 source packages, consisting of a total of 8,283,744 lines in C source files, 782,703
lines in C++ source files and 1,250,948 lines in C/C++ header files. In more detail, 179 packages
consist of between 1K to 10K lines of code in C/C++ source or header files, 108 packages between
10K to 100K, 21 packages between 100K to 1M and one package more than 1M. The sampling was

17e.g. there are only 7 fixed miscompilation bugs in Clang/LLVM that were found by the Orange tools, out of which two

were excluded because they could not be triggered with standard compilation settings.
18http://cloc.sourceforge.net
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performed first by identifying a set of about 50 popular and 50 limited-audience representatives19 of
a wide variety of application types, such as system utilities (Grep), web servers (Apache), scientific
software (Symmetrica), network protocols (Samba) and printer drivers (Epson-inkjet-printer-escpr).
We randomly selected other packages to complete the sampling.

During package sampling, we also checked that none of the selected packages are part of the
extended test suite used by the Clang/LLVM developers to exercise regularly the compiler. We
discuss our rationale for doing this in ğ6.
In order to evaluate test suite thoroughness for the packages to be chosen, we use the gcov20

tool to gather statement coverage information for the package test suites. However, integrating
gcov within the package build infrastructure presented issues, e.g. gcov notes files were not always
generated during compilation, sometimes coverage data were not generated during test suite runs,
and sometimes both were generated but were deemed not to match. Because of these issues, gcov
was able to produce reliable coverage data only for a sample of 39 packages. Across these packages,
we found their test suites to achieve a median of 47% and a mean of 46% statement coverage, with
lowest and highest coverage rates of 2% and 95%, respectively. About half of the packagesÐ18/39Ð
had test suites achieving at least 50% statement coverage. While statement coverage is a limited
metric, these coverage rates were somewhat higher than our team had predicted.

4.3 Experimental Process

We now describe the technical aspects of the process that we followed to measure the impact
of the 45 sampled compiler bugs over the 309 sampled Debian packages, using the three-stage
methodology described in ğ3.

Experiments were performed over six local servers and ten private cloud instances, except for the
test suite runs, which were conducted within instances set up using Amazon Web Services (AWS).21

Each bug was analysed in one Debian 9 virtual machine installed either on the local servers or
on the remote private cloud instances, while test suite runs necessary for such an analysis were
performed over two Debian 9 AWS machines, specifically created for each bug.
As a preliminary step, we prepared the list of the 309 packages to analyse, together with exact

package names and versions, in a JSON format that allows Simple Build to automatically download
the corresponding source packages from the Debian website.

For each bug, the analysis starts by instructing Simple Build to install a fresh local Debian 9 build
environment in a chroot jail. The sources of the warning-laden, buggy and fixed compilers are then
compiled and installed in this build environment. Finally, we iterate over the packages defined in
the JSON file and perform the three stages detailed in our methodology for each of them.

Stage 1 (ğ3.1) is performed by setting the warning-laden compiler as the default compiler in the
build environment and asking Simple Build to build the package. The resulting build logs are then
searched (using grep) for the warning messages. In some cases, Simple Build may fail because the
package build process is not compatible with the Clang/LLVM versions affected by the bug. These
cases are simply logged and Stages 2 and 3 are not carried out.
Stage 2 (ğ3.2) is performed by setting successively the buggy and fixed compiler as the default

compiler in the build environment and asking Simple Build to build each time the package. The two
resulting binaries are then compared bitwise using diff. If the two resulting binaries are different,
we disassemble their code sections (using objdump). The functions defined in the two disassembled
binaries are then textually compared opcode-by-opcode and we count the ones that differ. By

19We used https://popcon.debian.org to estimate popularity.
20https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
21https://aws.amazon.com
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comparing only the opcodes we aim to achieve a good trade-off between false positives and false
negatives. To avoid false positives, we do not consider the differences in the operands, since these
differences, namely addresses, registers and immediate values, may not affect the semantics of
the functions. However, aggressively leaving out all the operands may also lead us to overlook
the compiler bugs that only affect the operands in the binaries produced by the buggy compiler,
potentially leading to false negatives. Yet, none of the bugs considered in this study is likely to
produce such false negatives (see ğ6 for a more detailed discussion).

Stage 3 (ğ3.3) is performed by asking Autopkgtest to execute the package test suite over the two
binaries produced at Stage 2, if they were different. The two test runs are carried out within the two
isolated AWS test environments. The two resulting test logs are then hand-checked and compared.
When a difference is spotted, the test runs are repeated several times in fresh test environments to
make sure that the results are reproducible and not polluted by flaky tests or non-determinism.
For some packages, the testing infrastructure may not be reliableÐwe log the cases where the
infrastructure crashes, making it impossible to run the tests. In case no divergences are spotted
in the test results, a sample of the differently-compiled functions are randomly selected for some
bugs and manually inspected. For each function, we use gdbgui22 to recover the part of the source
code that is compiled differently. If this code can be easily reached from the executable’s main
function and if the program has simple inputs and outputs, we manually try to construct inputs to
the program that result in runtime divergences. If the code cannot be easily reached from the main
function or if testing the executable as a whole is too complex, we isolate and compile a driver for
the C/C++ function that contains the identified code and try to trigger a divergence similarly.
We estimate the total machine time spent to run all the experiments to be around 5 months.

5 RESULTS

We now analyse the results obtained for every bug and package pair considered in our study. We
discuss the results for the fuzzer-found bugs in detail, covering the three stages of our approach in
ğ5.1Ðğ5.3, and turn to a comparison with bugs found from other sourcesÐuser-reported bugs and
Alive bugsÐin ğ5.4. We also investigate whether there is a correlation between bug severity and
impact in ğ5.5. We wrap up with a discussion of our overall experimental findings in ğ5.6.

5.1 Stage 1: Compile-time Analysis

Experimental results for the fuzzer-found bugs are presented in Table 2, with Table 3 providing a
more condensed view with results aggregated by fuzzer and by compiler bug.

Package Build Failures. Fewer than 1% of all package builds failed. All but one of the analysed
compiler versions failed to build at least one package; the maximum number of packages that a
specific compiler version failed to build was five. Across all compiler versions, build failures were
associated with 17 particular packages. The package with the highest failure rate is the Velvet

bioinformatics tool, for which 52% of the builds failed. Manual inspection of build failure logs shows
front-end compilation errors, e.g. relating to duplicate declarations and missing header files.

Reachability of Fixing Patch. For each bug, at least one package caused the associated fixing
patch to be reached during compilation; i.e. all the fuzzer-found bugs we studied were related to
code that could be reached during compilation of standard packages. Note also that for each of our
309 packages, the compilation process reached the fixing patch of at least one of the bugs that we
study.
For 19/27 bugs, the proportion of packages for which the patch was reached is above 50% and

it remains high for most of the other bugs. The highest proportion is attained with Yarpgen bug

22https://gdbgui.com/docs.html

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 155. Publication date: October 2019.



155:14 Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar

Table 2. Impact analysis for 27 Clang/LLVM bugs found by the 4 fuzzers families over 309 Debian packages.

BUG PACKAGES 1) BUGGY LLVM CODE 2) BINARY DIFFS 3) RUNTIME DIFFS
id severity successful builds reached triggered (precise) packages functions test diffs manual

Csmith (10)
11964 enhancement 307 306 2 (no) 2 < 0.1% [52] 0 low
11977 normal 307 301 118 (no) 20 < 0.1% [35] 0 -
12189 enhancement 307 297 291 (no) 46 < 0.1% [177] 0 -
12885 enhancement 304 284 1 (no) 0 - - -
12899 enhancement 306 143 6 (no) 0 - - -
12901 enhancement 306 291 286 (no) 36 < 0.1% [50] 0 -
13326 enhancement 304 125 125 (no) 0 - - -
17179 normal 305 245 3 (no) 2 < 0.1% [7] 0 -
17473 release blocker 308 285 16 (no) 10 < 0.1% [16] 0 -
27392 normal 308 205 205 (yes) 202 2.5% [4997] 0 very low

TOTAL
3062 2482 1043 318 0.4% [5334] 0
100% 81% 34% 10% 0%

EMI (10)
24516 normal 307 130 0 (yes) 0 - - -
25900 normal 307 221 5 (no) 0 - - -
26266 normal 308 302 195 (no) 0 - - -
26323 normal 305 281 32 (no) 12 < 0.1% [18] 0 very low
26734 normal 308 175 5 (no) 0 - - -
27968 normal 308 122 0 (yes) 0 - - -
28610 normal 306 300 295 (no) 9 < 0.1% [15] 0 -
29031 normal 307 297 215 (no) 127 0.3% [639] 1 low
30841 normal 308 306 191 (no) 0 - - -
30935 normal 308 287 10 (no) 3 < 0.1% [3] 0 low

TOTAL
3076 2424 948 151 < 0.1% [675] 1
100% 79% 31% 5% < 0.1%

Orange (5)
15940 normal 307 158 19 (no) 0 - - -
15959 normal 307 108 9 (no) 8 0% [14] 0 -
19636 normal 307 7 7 (no) 0 - - -
26407 normal 308 4 0 (yes) 0 - - -
28504 normal 306 16 0 (no) 0 - - -

TOTAL
1535 293 35 8 < 0.1% [14] 0
100% 19% 2% 1% 0%

yarpgen (2)
32830 enhancement 308 301 0 (yes) 0 - - -
34381 enhancement 307 307 257 (no) 0 - - -

TOTAL
615 608 257 0
100% 99% 42% 0%

ALL
8284 5804 2283 477 0.2% [6023] 1
100% 70% 28% 6% < 0.1%

Table 3. Data of Table 2, aggregated by fuzzer and by compiler bug.

TOOL BUGS
1) BUGGY LLVM CODE 2) BINARY DIFFS 3) RUNTIME DIFFS

reached triggered (precise) packages test diffs

Csmith 10 10 10 (1) 7 0
EMI 10 10 8 (0) 4 1

Orange 5 5 3 (0) 1 0
yarpgen 2 2 1 (0) 0 -
TOTAL 27 27 22 (1) 12 1

#34381, whose patch is reached for all 307 packages that built successfully. This bug affects the
generation of x86 binary code for additions. The minimal proportion is attained with Orange bug
#26407, whose patch is reached for fewer than 2% of the packages. This bug affects the remainder
operation for unsigned numbers when it involves a power of two. In general, the proportion of
packages where the patch is reached appears to be much lower for the bugs discovered by Orange
than by the other tools. A likely explanation is that Orange focuses on bugs affecting potentially
complex arithmetic, which does not appear so commonly in real-world code.
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Fault Triggering.We were able to come up with precise fault-triggering conditions for only 19%
of the investigated bugs. The main difficulty in writing such conditions was that the fixing patch
for many bugs makes it difficult to identify the precise situations where the buggy version of the
code would fail. Indeed, for many patches, it is highly complex to determine how the local changes
made by the patch precisely impact the global behaviour of the compiler.
Due to our best efforts to make the imprecise patches as precise as possible, only 39% of the

builds where a fixing patch is reached lead to the fault conditions triggering. In total, 22/27 compiler
bugs and 28% of the package builds generated potential faults. This last number falls to 13% when
restricted to the cases where the patch is precise and thus the fault is certain.

5.2 Stage 2: Syntactic Binary Analysis

While Stage 1 returned a 28% possible fault rate, only 6% of the package builds actually led to
different binaries being generated by the buggy and fixed compiler. This difference is mainly due to
false alarms issued by our fault detectors in the case of imprecise conditions. However, manual
inspection revealed that in some cases this can also be caused by the particularities of the package
build process. For example, in the context of Csmith bug #27392, there are three packages, namely
libffi-platypus-perl, snowball and viennacl where a fault is found to be triggered at Stage 1, but
identical binaries are produced at Stage 2. This is due to the fact that the binary for which the fault
was triggered is not included as a part of the final packaged binary returned by the build process.

Regarding the aggregated numbers obtained for the Csmith bugs (see Table 2), the buggy compiler
code is reached for 81% of the builds and the fault conditions are triggered during 34% of the builds.
Similar numbers are obtained for the EMI bugs: 79% and 31% respectively. However, the possible
fault rate in terms of packages at Stage 2 decreases almost twice as fast for EMI (5%) as for Csmith
(10%), resulting in 4 out of 10 EMI bugs causing binary differences against 7 out of 10 for Csmith.
While this trend should be confirmed using a larger number of bugs, a possible explanation is
that Csmith was the first tool used to fuzz Clang/LLVM, so it had the privilege to collect some
łlow-hanging fruitž, i.e. those compiler bugs that impact binaries more often.

In total, 12/27 fuzzer-found bugs (44%) lead to differences in the generated monolithic binaries
for at least one package. The compilers affected by bugs Csmith #27392 and EMI #29031 caused 53%
of the package builds leading to such differences. These two bugs both affect an optimisation pass,
respectively loop unrolling and hoisting of load/store instructions to a dominating code block.

Among the 12 bugs that lead to different binaries, 10 affect only very few (at most 177) of all the
assembly functions generated when compiling our list of packages, accounting for less than 1‰
of them. Note that three packages, mod-gearman, phyml and Samba, are not taken into account
because the build process removes some information, e.g. debug symbols, required by our analysis.
Bug Csmith #27392 hits a record of 2.5%, while EMI #29031 affects 0.3% of the generated assembly
functions. Notice that the total number of assembly functions in the binaries of our list of packages
may vary with the version of Clang/LLVM used to compile them. Indeed, as each version may
come with a different implementation of the optimisation passes, the compiler may decide on
a different set of function calls to inline. We counted the total number of assembly functions in
the binaries produced by the buggy compilers for bugs Csmith #11977, Alive #20189 and Csmith
#27392, representing respectively an early, medium and late point in the timeline of the compiler
versions used in our study. The average, around 202K, with a standard deviation of 5%, provides an
approximate value that we used to compute the aforementioned percentages.

Finally, for one package and bug pair, it happened that the build process failed using the buggy
compiler, while it was successful using the fixed compiler. A manual inspection revealed that the
build process included running the package test suite after compilation, and that a test case was
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failing when the package had been compiled by the buggy compiler. This test failure was caused
by a miscompilation induced by the investigated compiler bug, as detailed in the next section.

5.3 Stage 3: Dynamic Binary Analysis

Failed Test Suite Runs. About 13% of the test suite runs could not be carried out because the
underlying testing infrastructure was not reliable and crashed. The most common reasons for
crashes were missing files or dependencies and failures to compile the testing infrastructure itself.
This does not necessarily indicate that those test suites do not work, but rather that they did not
work seamlessly with our automated approach, and that it was not feasible, time-wise, to look at
them manually.

Differences in Test Results. Across all bugs and packages, we have only observed a single test
failure: when compiling the zsh package with the buggy compiler affected by bug EMI #29031 (the
technical details of this miscompilation are available in the appendix ğA.1); i.e. it would appear that
the impact of these compiler bugs is not severe enough to cause frequent failures in the current
regression test suites of these packages.

Additional Experiments. Given the rather unexpected result that only one compiler bug was
able to trigger a single test failure within our 309 packages, we repeated our analysis over SQLite,23

a large, complex and widely-used application reputed for the thoroughness of its testing process
(its free default test suite achieves more than 98% coverage of the application’s 151K statements).

This additional analysis did not reveal any difference in the test results, except for CSmith bug
#13326,24 where the binary produced by the buggy compiler fails on test case incrblob-2.0.4, while
the binary generated by the fixed compiler does not. Interestingly, the miscompilation responsible
for this failure does not affect the SQLite code itself, but the code of the test bed responsible for
conducting test incrblob-2.0.4. Again, the interested readers can find a technical description of this
miscompilation in the appendix ğA.1.

It is interesting to remark that while SQLite is part of the Clang/LLVM test suite (so that it was
excluded from our selected list of packages), this has not enabled detecting and fixing bug #13326
before a fuzzer did. This is likely due to the fact that once the Clang/LLVM test suite has compiled
SQLite, it only runs it over two small tests that barely exercise its features. In contrast, the SQLite
test suite that we have used to expose the miscompilation in this experiment contains more than
one thousand high-coverage tests. Finally, notice that test incrblob-2.0.4 is also miscompiled and
fails for the binaries produced by both the buggy and fixed compilers of Clang/LLVM bugs #11964,
#11977, #12189 and #12885, as these compiler versions are all within the lifespan of bug #13326.

Manual Inspection.Given the near-absence of any differences in the test results obtained for all the
investigated compiler bugs, we have manually inspected a sample of the syntactic binary differences
detected at Stage 2. This inspection reveals that a significant number of the studied binary differences
have no impact over the semantics of the application, because compiler developers tend to be
rather conservative when fixing bugs, e.g. deactivating many legitimate code transformations as a
side-effect of the fix. In case the binary-level difference is seen to possibly impact the application’s
semantics, the manual inspection suggests that very specific circumstances are typically required
to happen at runtime for the miscompilation to trigger a corruption of the program’s internal
state and for this corruption to propagate to the program’s visible outputs. In many cases, these
circumstances are very unlikely or simply impossible. For example, bug #11964 affects only 52
functions and after manually analysing all of them, we think none can trigger a runtime failure.

23https://www.sqlite.org
24https://bugs.llvm.org/show_bug.cgi?id=13326
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For interested readers, we provide a detailed discussion of the most salient technical results of our
manual inspection in the appendix ğA.2.

5.4 Comparison with Other Bug Sources

Table 4. Impact analysis for the 18 Clang-LLVM bugs found by Alive or end users over 309 Debian packages.

BUG PACKAGES 1) BUGGY LLVM CODE 2) BINARY DIFFS 3) RUNTIME DIFFS
id severity successful builds reached triggered (precise) packages functions test diffs manual

Alive (8)
20186 normal 309 34 0 (yes) 0 - -
20189 normal 309 266 176 (no) 122 1% [2094] 0
21242 normal 309 253 151 (no) 50 0% [130] 0
21243 normal 309 56 0 (yes) 0 - -
21245 normal 309 274 0 (yes) 0 - -
21255 normal 309 9 0 (yes) 0 - -
21256 normal 309 167 0 (yes) 0 - -
21274 normal 309 0 0 (yes) 0 - -

TOTAL
2472 1059 327 172 0.6% [2224] 0
100% 43% 13% 7% 0%

User-reported (10)
13547 release blocker 306 300 278 (no) 0 - -
15674 release blocker 307 301 0 (yes) 0 - -
17103 release blocker 305 305 0 (no) 0 - -
24187 normal 309 0 0 (yes) 0 - -
26711 normal 308 0 0 (yes) 0 - -
27575 normal 308 133 44 (no) 0 - -
27903 normal 308 286 231 (no) 52 < 0.1% [169] 1 low
31808 normal 308 229 0 (yes) 0 - -
33706 normal 308 259 40 (no) 4 < 0.1% [9] 0 low
37119 normal 303 177 0 (no) 0 - -

TOTAL
3070 1990 593 56 < 0.1% [178] 1
100% 65% 19% 2% < 0.1%

Table 5. Data of Table 4, aggregated by tool and by compiler bug.

TOOL BUGS
1) BUGGY LLVM CODE 2) BINARY DIFFS 3) RUNTIME DIFFS

reached triggered (precise) packages test diffs

Alive 8 7 2 (0) 2 0
User-reported 10 8 4 (0) 2 1

The impact data for the 8 bugs discovered by Alive and our sample of 10 user-reported bugs is
reported in Tables 4 and 5.

Alive Bugs. The average impact of the Alive bugs appears much more limited than the one of the
Csmith and EMI bugs. The buggy compiler code is reached twice less often for the Alive bugs, and
6/8 Alive bugs never trigger, compared to only 2/20 for Csmith and EMI. The bug impact profile
for Alive is actually closer to the one for Orange: Alive bugs trigger in the context of corner cases
(typically overflows) of possibly complex arithmetic, which do not appear so often in real-world
code. However, two Alive bugs led to binary differences affecting 172 packages and a higher total
proportion of functions than the bugs reported by any fuzzer.

User-reported Bugs. Contrary to fuzzer-found bugs, user-reported ones were discovered by
spotting miscompilations in the code of a real application. Our results tend to show that this does
not make user-reported bugs likelier to trigger when compiling other applications. On the contrary,
different binaries are only spotted for 2/10 bugs and 2% of the package builds, far below the values
of 11/20 and 8% reached by Csmith and EMI. Similar to fuzzer-found bugs, we have observed a
single test failure for package leveldb with bug 27903 (the technical details of this miscompilation
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Table 6. Results for our 45 LLVM bugs over our 309 Debian packages, aggregated by bug severity.

BUG AGGREGATE PACKAGES 1) BUGGY LLVM CODE 2) BINARY DIFFS 3) RUNTIME DIFFS
severity #bugs successful builds reached triggered packages functions test diffs

enhancement 8
2449 2054 968 84 < 0.1% [279] 0
100% 84% 40% 3% 0%

normal 33
10151 5608 1941 611 0.3% [8130] 2
100% 55% 19% 6% < 0.1%

release blocker 4
1226 1191 294 10 < 0.1% [16] 0
100% 97% 24% 0.8% 0%

are also available in the appendix ğA.1), but however no test failure when compiling SQLite. Manual
inspection also suggests a low bug impact as both bugs #27903 and #33706 require a very specific
interaction between some compiler optimisations to happen for possibly impacting the generated
code.

5.5 Correlation between Bug Severity and Impact

Table 6 aggregates the impact data by the severity level that bugs were assigned to on the Clang/L-
LVM bug tracker. We expected a higher impact to be associated with bugs with higher severity,
but no clear trend emerged in practice and some numbers are even counter-intuitive: the buggy
compiler code is reached almost twice as often at the enhancement level than at the more severe
normal level, while different binaries are produced three to six times less often at the release blocker
level than at the two lower levels. While the confidence in these results would be increased by
bigger samples at the enhancement and release blocker levels, the bug severity appears to be a bad
predictor of the practical bug impact.

5.6 Discussion

We now discuss the main results of our study. As with any experimental study, these results are
subject to several threats to both internal and external validity, which we detail in ğ6.
Our top-level findings include that the code associated with each fuzzer-found bug is reached

always at least once and typically quite frequently when compiling our set of real-world applications,
that our bug conditions trigger, and almost half of the bugs result in binary-level differences for
some packages. However, these differences affect a tiny fraction of the functions defined in the
application’s code and they cause a couple of test failures in total, one in SQLite (due to the
miscompilation of its test bed) and one in the zsh shell. Regarding the user-reported and Alive
bugs, there exist bugs for which the associated code is never reached during the compilation of our
set of packages. In addition, these bugs have their conditions triggered less frequently on average,
and lead to a single test failure in the leveldb database system. The manual analysis of a selection
of the binary-level differences caused by some of our compiler bugs, both fuzzer-found and non
fuzzer-found, shows that either these binary differences have no impact over the semantics of the
application, or that they would require very specific runtime circumstances in order to corrupt the
internal state of the application and propagate to its visible outputs.

To sum up, considering the two objectives of this study defined in the introduction (ğ1), our major
take-aways are that (a) miscompilation bugs (whether fuzzer-found or not) in a mature compiler
infrequently impact the correctness and reliability of real-world applications, as encoded by their
test suites and (in a few cases) based on our manual analysis, and (b) fuzzer-found miscompilation
bugs appear to have at least as much impact as bugs found via other sources, particularly bugs
reported by the compiler users because they were affecting real code.

In safety-critical software, where avoiding the triggering of any single bug canmake the difference
between life and death, using a compiler that has been intensively tested with a dedicated fuzzer
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appears to be a fundamental requirement. Of course, one could argue that in such a case, using a
formally verified compiler would be even better. However, such compilers still do not offer the same
language features and performance as traditional compilers, and they are typically not verified
end-to-end, enabling fuzzers to find bugs in their non-verified parts [Yang et al. 2011]. In non
safety-critical software, where one can tolerate a certain level of unreliability in the application, in
exchange for a reduced software development cost, our study supports the claim that miscompilation
bugs in the compiler seem unlikely to cause a dramatic decrease of the application’s reliability level,
at least when using a sufficiently mature compiler platform.

It might appear counter-intuitive that our study does not reveal any clear difference with respect
to the practical impact of the bugs, depending onwhether theywere discovered by a fuzzer compiling
artificial code or a human user compiling real code. Indeed, our initial intuition, highlighted in the
introduction (ğ1), was on the contrary that bugs found while compiling real code might trigger
more often over applications in the wild than bugs discovered while compiling artificial code. Given
the rather limited impact of all the bugs considered in this study, one hypothesis to explain this
unexpected result could be that, in a mature compiler like Clang/LLVM, all the bugs affecting code
patterns that are frequent in real code have already been fixed, so that the remaining bugs are
corner cases that do not appear more frequently in real code than in artificial code.
Finally, as demonstrated by the huge list of unfixed compiler bugs in the Clang/LLVM bug

repository,25 developers simply do not have time to resolve all the issues. While these issues seem
to be prioritised based solely on information provided by the bug reporters and the intuition of
the developers, our study suggests that this might not to be a good indicator of the actual impact
that the bugs have over the correctness and reliability of a wide and various sample of applications.
This supports the idea that alarmist bug reports or bad intuitions from the developers can end up
delaying the fixing of high impact bugs, calling for further research on how to better prioritise
compiler bug reports.

6 THREATS TO VALIDITY

Threats to Internal Validity. A first class of threats to the validity of our experimental results
arise because the software artifacts that we used, including the shell scripts, warning-laden fixing
patch, compilers, package development framework and system tools, could be defective. However,
we have crosschecked our results in several ways. The data computed by the shell scripts were
verified by hand for a small number of packages and bugs. A sample set of the warning-laden fixing
patches were randomly selected and reviewed by a member of the team who had not been involved
in producing them. Each warning-laden compiler was tested over the miscompilation samples
provided on the bug tracker. Any possible contradiction between the results of Stages 1 and 2, where
no potential fault would trigger but the produced binaries would be different, was investigated.
A sample of the occurring suspicious behaviours like build failures or triggered bugs leading to
similar binaries were investigated for a satisfiable explanation. The test logs were hand-checked
and the test runs were repeated several times in clean environments for a dozen bug and package
pairs, picked at random, and also in all the situations where the binaries produced divergent test
results or where the test beds crashed. All these sanity checks succeeded.
Another threat is that some of the fixing patches from the Clang/LLVM repository could be

incorrect. However, this seems improbable given that all the associated bug reports have been
closed, without being reopened, for at least several months and typically for years.
Our results might also have been affected by the unreproducible build process of some Debian

packages. However, this is very unlikely as all the used packages were selected among the list of

25More than 10,000 bug reports remain open as of August 2019.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 155. Publication date: October 2019.



155:20 Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar

reproducible packages provided by Debian. Moreover, each of the selected packages was built twice
and checked for any unreproducible behaviour. Analysing unreproducible packages should also
have led to contradictions between Stage 1 and Stage 2, i.e. binary differences would have been
spotted without any bug warning being issued first during compilation, but none were detected.
Aggressively leaving out all the assembly operands during binary comparison may have led to

undercounting the number of different assembly functions at Stage 2. However, the insight that we
gained along all our experiments about the studied bugs suggests that none of them would only
affect the operands in the binaries produced by the buggy compiler.
The effectiveness of a part of our dynamic binary analysis is impacted by the thoroughness of

the test suites, and in particular whether these test suites are deemed thorough enough to act as a
proxy for typical real-world usage. A study of test coverage for a sample of our packages revealed
that their test suites achieve a median 47% statement coverage, peaking at 95%, which appears high
enough for not attributing the absence of test suite failures to very poor test coverage. Moreover, we
repeated our dynamic binary analysis with the SQLite application, relying on its highly thorough
free test suite (more than 98% coverage of SQLite’s 151K statements), which detected a single failure,
related to the miscompilation of part of its test suite rather than the application code itself. This
being said, test suites are clearly a weak proxy for all possible behaviours of an application.

Finally, if the test suites of some of our packages were used to regularly exercise Clang/LLVM, it
might potentially have skewed results in two ways. First, if compiling a package and running its test
suite were part of the regression testing process for Clang/LLVM, the test suite might have detected
miscompilation bugs that were fixed without any trace. In other words, some miscompilation bugs
might have affected application correctness, but fuzzers would not have had a chance to detect them,
as the bugs were fixed during the compiler development process. To avoid this, we have selected
packages that are not part of the extended Clang/LLVM test suite.26 Second, if the developers of a
package regularly compile it using Clang/LLVM,27 they might work around miscompilation bugs
by changing the package code and/or its test suite, and thus our approach would miss that the
compiler bug affected that package at some point in time.28 However, it is unlikely that more than
a fraction of packages are subject to such an approach to avoid miscompilation bugs. Furthermore,
some of our bugs did not make it into released versions of the compiler, and it is unlikely that
too many developers use non-released versions to compile their packages. Also, the development
of some of our packages is still active now, in 2019. All the package code that was developed a
reasonable time after each of our bugs was fixed has a small chance to have ever been compiled
with a build of Clang/LLVM affected by the bug. Conversely, some of our packages are old and their
development had already been discontinued years before our compiler bugs were introduced or
reported. For example, the last version of libg3d was released in 2009, while the bulk of our compiler
bugs have lifespans corresponding to short periods between 2012 and 2016. Finally, regression test
suites usually get stronger as time goes by, so that the test suites of the current versions of the
packages, used in our experiments, might still find miscompilations that were not found if some
older test suites were run over packages compiled using Clang/LLVM in the past.

Threats to External Validity. Common to all empirical studies, this one may be of limited
generalisability. To reduce this threat, we performed our experiments over 309 diverse applications
from the well-known Debian repository, including some very popular ones like Apache and Grep,
totalling more than 10 millions lines of code. We have also investigated 45 historical Clang/LLVM

26https://llvm.org/docs/TestSuiteGuide.html
27While GCC is default in Debian, Clang/LLVM might notably be used for packages deployed on other platforms.
28As an example, see this Mozilla Firefox work-around (https://bugzilla.mozilla.org/show_bug.cgi?id=1481373) for an LLVM

miscompilation bug (https://bugs.llvm.org/show_bug.cgi?id=38466).
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bugs. They include a sample of about 12% of all the fixed miscompilation bugs reported by the
studied fuzzers in Clang/LLVM. Moreover, our sampling strategy excluded many bugs that are
likely to have lower practical impact due to their reliance on specific and uncommon compiler flags.

Our study was performed on Clang/LLVM, which is a mature and widely used compiler platform.
Experimenting with other and notably less mature compilers, e.g. for emerging languages like Rust,
might produce different results, as higher impact bugs may be more likely in such compilers.

7 FUTURE WORK

We discuss now what we believe to be the three main future research directions to evaluate even
better the impact of compiler bugs over applications in the wild.
First, this study introduces both a conceptual methodology and an experimental framework

(available as a part of the paper’s associated artifact), which pave the way for others to perform
similar evaluations of the impact of miscompilation bugs, possibly replicating our results, studying
additional bugs or targeting other compilers, notably compilers less mature than Clang/LLVM.
Second, as a simplifying hypothesis, we have limited our analysis of compiler bugs to their

impact over the correctness and reliability of the compiled application. In practice, these bugs
could also impact non-functional properties, such as efficiency or security. Developing effective
operational metrics to measure this additional impact is a challenging task that could improve even
more our understanding of the risks induced by compiler bugs. In particular, it would be interesting
to estimate the attack surface area provided by miscompilation bugs, as it has been shown that any
such bug could potentially be used by attackers to introduce backdoors in an application [Bauer
et al. 2015; Cadar et al. 2015].

Third, Stage 3 of our study looks for runtime divergences caused by miscompilation bugs, using
either the application regression test suite or inputs that we have crafted manually. Proving that no
behavioral differences could ever happen between the binaries produced by the buggy and fixed
compilers is nothing else than establishing that two pieces of code are semantically equivalent,
which is undecidable. However, with a significant engineering and computation effort, one could
probe these binaries more thoroughly, by using an automated test generation approach (such as
symbolic execution [Cadar and Sen 2013]) to produce inputs reaching the miscompiled sections in
the application code, and by leveraging efficient oracles (such as multi-version execution [Hosek
and Cadar 2015]) to detect runtime failures induced by the miscompilation.

8 RELATED WORK

Understanding Compiler Bugs. A recent empirical study provides an in-depth analysis of bugs
in the GCC and LLVM compilers [Sun et al. 2016b], focusing on aspects such as the distribution of
bugs across compiler components, the sizes of triggering test cases associated with bug reports, the
lifetime of bug reports from filing to closing, and the developer-assigned priority levels for bugs
and how these correlate to compiler components. The study is complementary to ours: beyond a
discussion of bug priorities, it is not concerned with the extent to which compiler bugs affect real-
world applications, and it does not focus on whether the bugs under analysis are miscompilations,
nor whether the bugs were found in the wild or via automated tools such as fuzzers.

Another empirical study [Chen et al. 2016] compares the equivalence modulo inputs and differen-
tial testing approaches to compiler testing (see below). A łcorrecting commitsž metric is proposed
that helps to identify distinct compiler bugs from failing tests. Otherwise the focus of the study
is on understanding the testing techniques themselves, rather than understanding the real-world
impact of the bugs they find.
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The paper associated with the Csmith tool [Yang et al. 2011] focuses to some degree on under-
standing compiler bugs, e.g. identifying the most buggy files (according to Csmith-found bugs) in
versions of GCC and LLVM at the time. This analysis does distinguish between wrong code bugs
and crash bugs, but is simply concerned with whether bugs exist, rather than (as in our study)
whether they affect real-world applications. Two projects associated with Csmith, on automatically
reducing test cases that trigger fuzzer-found bugs [Regehr et al. 2012], and on ranking reduced
test cases in a manner that aims to prioritise distinct bugs [Chen et al. 2013], are important for
understanding the root causes of fuzzer-found bugs, but do not directly shed light on how likely
such bugs are to be triggered by real applications.

Bauer et al. [Bauer et al. 2015] discuss exploiting compiler bugs to create software backdoors, and
show a proof-of-concept backdoor based on the Clang/LLVM miscompilation bug #15940 found by
the Orange3 tool. The possibility of code written to maliciously exploit a knownmiscompilation bug
presents a compelling argument that miscompilations matter even though they may not otherwise
affect real-world code. An informal online collection of anecdotes about compiler bugs found in
the wild also makes for interesting reading.29

Automated Compiler Testing. The idea of randomly generating or mutating programs to induce
errors in production compilers and interpreters has a long history, with grammar- or mutation-
based fuzzers having been designed to test implementations of languages such as COBOL [Sauder
1962], PL/I [Hanford 1970], FORTRAN [Burgess and Saidi 1996], Ada and Pascal [Wichmann 1998],
and more recently C [Le et al. 2014, 2015a; Nagai et al. 2014; Nakamura and Ishiura 2016; Sun et al.
2016a; Yang et al. 2011; Yarpgen 2018], JavaScript and PHP [Holler et al. 2012], Java byte-code [Chen
et al. 2016], OpenCL [Lidbury et al. 2015], GLSL [Donaldson et al. 2017; Donaldson and Lascu 2016]
and C++ [Sun et al. 2016b] (see also two surveys on the topic [Boujarwah and Saleh 1997; Kossatchev
and Posypkin 2005]). Related approaches have been used to test other programming language
processors, such as static analysers [Cuoq et al. 2012], refactoring engines [Daniel et al. 2007], and
symbolic executors [Kapus and Cadar 2017]. Many of these approaches are either geared towards
inducing crashes, for which the test oracle problem is easy. Those that can find miscompilation bugs
do so typically via differential testing [McKeeman 1998], whereby multiple equivalent compilers,
interpreters or analysers are compared on random programs, or via metamorphic testing [Chen
et al. 1998; Segura et al. 2016], whereby a single tool is compared across equivalent programs, or
generating programs with known expected results.
Regarding the fuzzers of our study, Orange3 takes the approach of generating programs with

known results [Nagai et al. 2014]; Csmith [Yang et al. 2011] and Yarpgen [Yarpgen 2018] are intended
to be applied for differential testing; while the equivalence modulo inputs family of tools [Le et al.
2014, 2015a; Sun et al. 2016a] as well as Orange4 [Nakamura and Ishiura 2016] represent a successful
application of metamorphic testing (earlier explored with only limited success [Tao et al. 2010]).
A recent non-fuzzing compiler testing technique involves skeletal program enumeration: ex-

haustively enumerating all programs (up to α-renaming) that have a particular control-flow skele-
ton [Zhang et al. 2017]. This technique is geared towards finding compiler crashes rather than
miscompilations, so the bugs that it finds are not relevant for a study such as ours.

Compiler Verification. A full discussion of compiler verification is out of scope for this paper,
but we mention CompCert [Leroy 2009] as the most notable example of a formally verified compiler.
CompCert provides an incomparable level of reliability: intensive fuzzing via Csmith and EMI
techniques have not discovered any bugs in the verified parts of the code base [Le et al. 2014;
Yang et al. 2011] (as should be expected for a formally verified piece of software). One might think
that a verified compiler should make the question of whether compiler bugs matter irrelevant

29http://wiki.c2.com/?CompilerBug
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by eliminating bugs completely. However, CompCert still faces some major limitations, such as
incomplete language support (including no support for C++) and a less mature set of optimisations
compared with e.g. GCC or LLVM. A compromise is to verify certain parts of a compiler, an
approach taken by Alive [Lopes et al. 2015], whose bugs we have included in this study.

9 CONCLUSION

Compiler fuzzing tools have proven capable of finding hundreds of errors in widely-used compilers
such as GCC and LLVM, but very little attention has been paid to the extent to which they affect
real-world applications. In this first empirical study investigating these questions, we have shown
that almost half of the fuzzer-found bugs in our sample propagate to the compiled binaries of
real-world applications, but affect a very small number of functions and lead to a small number of
test suite failures. At the same time, our study suggests that fuzzer-found compiler bugs appear to
have at least as much impact as bugs found via other sources, particularly bugs reported by the
compiler users because they were affecting real code. The manual analysis of a selection of the
syntactic changes caused by some of our bugs (fuzzer-found and non fuzzer-found) in package
assembly code, shows that either these changes have no semantic impact or that they would require
very specific runtime circumstances to trigger an execution divergence.

A APPENDICES

A.1 Three Miscompilation-induced Test Failures

Test Failure in Z Shell (caused by EMI bug #29031). Z shell (zsh) is a popular Unix command-
line interpreter, whose default test suite covers 54% of the its 54K statements. The buggy compiler
miscompiles the following section of code in the function ‘paramsubst’ of the ‘subst.c’ file, by
wrongly hoisting the statement ∗ t = sav ; on line 16 outside of the while loop:

1 sav = *t; // s and t respectively point to the 1st and 2nd `:' of "${(g:o:)foo}"

2 *t = 0;

3 while (*++s) {

4 switch (*s) {

5 case 'e':

6 getkeys |= GETKEY_EMACS;

7 break;

8 case 'o':

9 getkeys |= GETKEY_OCTAL_ESC;

10 break;

11 case 'c':

12 getkeys |= GETKEY_CTRL;

13 break;

14 default:

15

16 *t = sav; // wrongly hoisted outside the while loop on line #3

17 goto flagerr;

18 }

19 }

This miscompilation makes the test case named ‘${(g)...}’ in the test script file ‘D04Parameter04.ztst’
fail. When this test is executed with correctly compiled code, the code section above is processed,
starting with variables s and t pointing to the first and the second ‘:’ in a string object "${(g:o:)foo}".
On line 1, the character ‘:’ pointed by t is saved for future restoration. Line 2 replaces the second ‘:’
of "${(g:o:)foo}" by a NUL character in the string object. The loop condition then makes s move one
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character forward in the string object. As the new character pointed by s is an ‘o’, it is not NUL, so
that the loop is entered and the ‘o’ case of the switch statement is executed. The loop condition
then makes s move again one character forward in the string object. The new character pointed by
s is now NUL and the loop is exited. However, this last operation is not executed in this way when
the code is miscompiled. Indeed, by hoisting the statement which restores the character pointed by
t in the string object to a ‘:’ (line 16) outside the while loop, the miscompilation will cause the new
character pointed by s not to be NUL anymore, but ‘:’, so that the loop is not exited and the default
case of the switch statement is executed, leading to an error being reported.

Test Failure in SQLite (caused by CSmith bug #13326). The buggy compiler miscompiles the
following line of code in the test bed of test incrblob-2.0.4, by generating erroneous binary code to
compute an 8-bit unsigned integer division, part of the remainder evaluation:

zBuf[i] = zSrc[zBuf[i]%( sizeof(zSrc )-1)]; // RUNTIME: sizeof(zSrc )=79, zBuf[i]=232

When test incrblob-2.0.4 is then run, the previous code mistakenly returns 254 when computing
the remainder of 232 by 78, causing zBuf[i] to take a garbage value zSrc[254]. As the test uses zBuf

to exercise a database handled by SQLite, it ends up reporting an error when it detects a value
different from the one it expected.

Test Failure in LevelDB (caused by user-reported bug #27903). LevelDB is an open source
database management system currently being developed by Google. The buggy compiler may
miscompile the function ‘MakeFileName’ from the ‘filename.cc’ file by generating wrong code for
the string concatenation operation name + buf on line 7:

1 static std:: string MakeFileName(const std:: string& name , uint64_t number ,

2 const char* suffix) {

3 char buf [100];

4 snprintf(buf , sizeof(buf), "/%06 llu.%s",

5 static_cast <unsigned long long >( number),

6 suffix );

7 return name + buf; // problem when compiling the '+' operator function

8 }

This miscompilation may make one or several default tests fail. The bug affects the enhancement of
stack coloring data flow analysis, which is designed to reduce the runtime memory consumption of
the compiled executable code. The function above takes the path to a directory (name) as a parameter
and is supposed to return the full path of a file under that directory. On line 7, the string name

and the string buf are concatenated to form the full path of the file. However, the buggy compiler
miscalculates the lifetime of the buf variable, so that the compiled binary will mistakenly use the
memory zone pointed by buf to store its memory address, overwriting thus the content of the
variable by its address. If the first byte of that address is all zero, the function ‘MakeFileName’ will
then return a string whose value is the same as name, the directory path. When LevelDB then tries
to write to the file returned by ‘MakeFileName’, it ends up reporting an error when it detects that
the expected file is actually a directory.

A.2 Salient Observations made by Manually Inspecting Syntactic Binary Differences

CSmith Bug #11964.

• Bug description: During the transformation of LLVM IR into x86 assembly code (represented
within the compiler’s data structures by directed acyclic graphs (DAG)), the bug causes an IR
node representing a decrementation by one for a long integer value to be miscompiled, in case

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 155. Publication date: October 2019.



Compiler Fuzzing: How Much Does It Matter? 155:25

the node has more than one other node using it in the DAG. This miscompilation makes the
operation to be possibly performed twice in the x86 code.

• Manual inspection: We have reviewed all the syntactically affected functions in the two impacted
packages, namely s3ql and simplejson. All the syntactic differences in the functions seem to be
related to a memory management macro Py_DECREF(PyObject * o), which is used to keep track
of the reference count of a Python object and deallocate the object once the reference count
decreases to zero. While we did see internal states corrupted, these corruptions do not impact
the global semantics of the packages. For example, the values stored in the x86 RAX register may
differ by one at the end of the function join_list_unicode of package simplejson, but these values
are not used again until the function returns.

• Generalised impact estimation: While posing a clear threat of a miscompilation failure, this bug
requires specific conditions to be met to trigger, so that it affects a highly limited amount of
functions in our packages. For this reason, we rate its impact as low.

CSmith Bug #27392.

• Bug description: The bug affects the loop unrolling optimisation in the case where the loop is
unrolled by a given factor at compile-time, but it is not possible to evaluate before runtime
whether the total number of times the loop must be executed is a multiple of the loop unrolling
factor. To deal with this case, the compiler produces extra target code to find out at runtime
how many iterations were possibly left over and execute them. This extra target code evaluates
at runtime the number of times the non-unrolled loop must be executed and stores it into an
unsigned integer counter variable. However, the case where this number overflows the counter
variable is not properly handled, making the loop to be executed a wrong number of times when
this case occurs.

• Manual inspection: We inspected manually a dozen of the many syntactic binary differences
induced by this bug, without being able to trigger any runtime divergence. The main obstacle
for such a divergence to occur is that the binary difference should affect the loop unrolling
management code of a loop able to iterate more times than the largest representable unsigned
integer value, which was not the case for any of the affected loops we investigated. For example,
the while loop in the main function of the boxes package (boxes.c, line 1661) can be run at most
twice, while the for loop in the hash table API of the conntrack-tools package (hash.c, line 45) can
be run at most a number of times equal to the largest representable signed integer value:

struct hashtable *hashtable_create(int hashsize , ...

for (i=0; i<hashsize; i++) INIT_LIST_HEAD (&h->members[i]);

• Generalised impact estimation: This bug causes syntactic binary differences in many packages,
because its fixing patch systematically affects the syntax of the loop unrolling management
code produced by the compiler, and because such management code will often be generated
by the compiler in the expected presence of loops in the package. However, such syntactic
differences are typically not the witnesses of miscompilation failures, because it is very unlikely
that the application contains loops whose intended behaviour is to iterate more times than largest
representable unsigned integer value. As a consequence, we rate the bug impact as very low.

EMI Bug #26323.

• Bug description: During one optimisation pass, the compiler may merge a disjunction between
two simple integer comparisons into a single comparison. For example, (n==2 || n==3) would
be merged into (n & ~1)==2. During a later optimisation pass, the compiler may analyse the IR
to detect if such a merger has occurred before, in order to undo it and apply another code
transformation instead. However, the analysis to locate merger occurrences in the IR is flawed,
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leading the compiler to trigger the merger undoing process over code where no merger was
actually performed, possibly corrupting the code’s semantics.

• Manual inspection: Despite the exhaustive manual inspection of several syntactic binary differ-
ences induced by the bug, we were not able to trigger any runtime divergence. The syntactic
differences are caused by the fact that the buggy compiler applies the merger undoing process
to some code, while the fixed compiler does not. However, manual inspection revealed that
applying the merger undoing process to the code that we inspected was actually legitimate
and would preserve the semantics of the package. For example, the differences spotted in the
libraw (dcraw_common.cpp, line 6308) and art-nextgen-simulation-tools (art_SOLiD.cpp, line 144)
packages are caused by the legitimate undoing by the buggy compiler of the two following
mergers:

!(id==308 || id ==309) → !((id & ~1)==308)

!(k==6 || k==7) → !((k & ~1)==6)

• Generalised impact estimation: While the bug is caused by a flawed merger locator, the fixing patch
replaces this locator by a correct but also overly strict one. As a consequence, the fixed compiler
will not apply merger undoing mistakenly any more, but it will also miss many legitimate
opportunities to do so which were correctly seized by the buggy compiler. A detailed analysis
shows that the fixed compiler applies the following code transformation (where c1 and c2 are
positive integer constants):

(x & ~2c1 )==2c2 → (x==2c2 || x==(2c2 |2c1 )) where c1 , c2

while the buggy compiler has notably the ability to apply the following (more general but still
correct) transformation:

(x & ~2c1 )==c2 → (x==c2 || x==(c2|2
c1 )) where the bit position c1 of c2 is 0

This situation prevents many syntactic binary differences from affecting the application’s seman-
tics. Considering also the tiny frequency of the syntactic binary differences induced by this bug,
we rate the bug impact as very low.

EMI Bug #29031.

• Bug description: During one optimisation pass, some operations that use or assign a variable
might be hoisted to an earlier point in the code of the current function (referred to as the hoisting
point), provided that the candidate operation for hoisting is executed on all execution paths from
the hoisting point to a function exit point. The bug is that checking for this last condition to
hold may wrongly allow hoisting when the hoisting point is within a loop which contains a
path where the candidate operation is not executed before exiting the loop. When this arises, the
compiler will produce code that mistakenly execute the candidate operation when this path is
executed.

• Manual inspection: We were unable to trigger a runtime divergence for this for this bug, despite
notably testing different loop execution scenarios in the aragorn package (aragorn1.2.38.c, line
11503). A deeper analysis of the fixing path reveals that it deactivates hoisting as soon as the
hoisting point is within a loop and does not live in the same basic block as the candidate operation,
even if the candidate operation is always executed within the loop and even if executing this
operation during a path where it should have not been executed will not affect the code semantics.

• Generalised impact estimation: Given the careful approach taken in the fixing patch, a number of
the binary syntactic differences that it triggers will not impact the application’s semantics and
thus not be the witnesses of a miscompilation failure. For the binary syntactic differences which
cause actual failures, the failure will only impact executions that follow one or some specific
paths within the loop. For these reasons, we rate the impact of the bug as low.
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EMI Bug #30935.

• Bug description: During one optimisation pass, the compiler can hoist instructions out of a
loop if these instructions are invariant from one loop iteration to another. In case the hoisted
instruction is a division, it may occur that the loop entry condition, which was guarding the
division execution before hoisting, was preventing the division to be performed with a zero
divisor. After hoisting the division out the loop, this division is performed even when the loop
entry condition is false, possibly making the program mistakenly crash with a zero divisor error.

• Manual inspection: We reviewed each of the three syntactic binary differences induced by this
bug. The differences in the nauty (genrang.c) and pixbuf (pixops.c, line 316) packages revealed
to be particularly hard to analyse: either there were no clear tracks of a division hoisting in the
assembly code, or such tracks were present, but it was totally unclear which statement in the
C/C++ source could have been compiled into assembly code involving this division. The hoisting
was much more obvious to understand in the infernal package (esl_histogram.c, line 957), but it
was also clear that the affected code (detailed below) prevented any division by zero:

if (maxbar > 0) units = ((maxbar -1)/ 58) + 1;

else units = 1;

// The previous definition of "units" prevents it to be 0 at hoisting point

...

// Hoisting point

for (i = h->imin; i <= h->imax; i++)

{ ...

num = 1+( lowcount -1) / units; // Hoisted division

• Generalised impact estimation: The fixing patch for this bug takes a conservative approach and
disables hoisting of expressions containing divisions by anything other than non-zero constants.
Because of this, some of the syntactic binary differences may be false alarms similar to the one
above. However, it appears not unlikely that, in other situations, the affected code would allow
the divisor to be zero at loop entrance, while the loop condition would be false, leading to a real
miscompilation failure. Nevertheless, considering the tiny frequency of the binary differences
induced by this bug, we rate its impact as low.
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