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Abstract—Symbolic execution is a well-known program analy-
sis technique for testing software, which makes intensive use of
constraint solvers. Recent support for floating-point constraint
solving has made it feasible to support floating-point reasoning in
symbolic execution tools. In this paper, we present the experience
of two research teams that independently added floating-point
support to KLEE, a popular symbolic execution engine. Since the
two teams independently developed their extensions, this created
the rare opportunity to conduct a rigorous comparison between
the two implementations, essentially a modern case study on N-
version programming. As part of our comparison, we report on
the different design and implementation decisions taken by each
team, and show their impact on a rigorously assembled and tested
set of benchmarks, itself a contribution of the paper.

I. INTRODUCTION

Symbolic execution has become a popular program analysis

technique that can be used for test case generation and bug

detection in a wide variety of domains [18], [19], [33], [34],

[70], [75]. Underpinning any symbolic execution tool is a

constraint solver, often a satisfiability modulo theories (SMT)

solver, which does the heavy lifting associated with determining

whether execution paths are feasible at runtime, and whether

there exist values of the symbolic inputs that cause correctness

conditions to fail.

Due to the challenges associated with constraint solving for

floating-point arithmetic, most symbolic execution tools do

not directly support symbolic floating-point reasoning, instead

either using approximations [7], using structural equivalence of

expressions as a proxy for equality [24], or rejecting programs

that use floating point as out of scope [18].

A widely-used SMT-based symbolic execution tool is

KLEE [18], which reasons about symbolic constraints with

bit-level accuracy, and supports the entire C language, with a

few exceptions, the most notable of which is symbolic floating-

point computation. The original reason for the lack of floating-

point support was the absence of a suitable solver. In lieu of

this, KLEE handles floating-point programs by concretizing

symbolic floating-point expressions, essentially reasoning about

a single set of floating-point values on each explored path.

However, recent advances in solver technology have led to

several SMT solvers adding support for floating-point reasoning

along with an effort to provide a standardized theory of

floating-point arithmetic [68]. Thus, it is a natural idea to add

floating-point support to KLEE. Coincidentally, we—the two

research groups who co-authored this paper—undertook such

an extension of KLEE independently and at roughly the same

time. When we became aware of each other’s activities via

communication on the KLEE mailing list, we set up a meeting

to understand the status and maturity of each implementation,

aiming to avoid duplication of effort. It became clear that we

were too late: both teams had already invested significant effort

and created mostly complete implementations.

This coincidence gave us a rare and valuable opportunity to

empirically compare, in a very direct manner, two distinct and

independent implementations of the same functional specifi-

cation in the same framework, via a case study in N-version

programming [5], [21]. We describe in detail our methodology

for independently developing floating-point benchmarks, with-

out knowledge of each other’s implementations; exchanging

these benchmarks and using the combined benchmark suite to

independently improve our respective tools in isolation; and

finally exchanging tools and conducting a detailed head-to-head

comparison with respect to the benchmark suite.

Key contributions. Our major contribution is an experience

report on N-version programming (with N=2) in the context

of floating-point symbolic execution. This contributes (1) a

rigorous experimental methodology for controlled N-version

programming that can be followed or adapted for future studies;

(2) two complementary open-source extensions to KLEE that

support floating-point symbolic execution [51], [69]; and (3) a

discussion of lessons learned from this experience.

Summary of lessons learned, and supporting contributions.

Independent preparation of benchmarks pays dividends. In

a domain with such subtle semantic issues as floating-point

reasoning, having each team independently prepare a set

of benchmarks was useful in providing both a practical

specification for floating-point symbolic execution, and a

target for tool optimization. The benchmarks from each team

provide a relatively unbiased target for evaluating the other

team’s tool. The benchmark creation process has also led to a

supporting contribution: (4) an open-source set of floating-point

benchmarks tailored for symbolic execution tools [28]–[30].

Dual implementation leads to rich design space exploration.

While our tools feature several similar design decisions, their

independent development has led to notably different solutions

to various floating-point-related issues, e.g. in how the tools

support the long double data type. Having two complemen-

tary tools enables differential testing (cross-checking results

Accepted for publication in Proc. of ASE 2017. Copyright IEEE.

mailto:daniel.liew@imperial.ac.uk
mailto:c.cadar@imperial.ac.uk
mailto:alastair.donaldson@imperial.ac.uk
mailto:daniel.schemmel@comsys.rwth-aachen.de
mailto:klaus.wehrle@comsys.rwth-aachen.de


between tools) [56] to find tool bugs; portfolio analysis, where

both tools are applied to a program in parallel; and puts us

in a good position in the future to combine the strengths of

each to yield a high-quality implementation of floating-point

support in KLEE.

Floating-point constraint solving remains a challenge. Al-

though our tools complement each other, neither offers a silver

bullet for floating-point symbolic execution: surmounting the

inherent difficulty of reasoning about floating-point constraints

will require advances in constraint solving. To this end, as

a supporting contribution: (5) we have extracted a set of

35,189 floating-point SMT queries generated by our tools,

which have been accepted [3] as benchmarks for the annual

SMT competition [72], providing a rich source of challenging

examples for solver developers. In this set of benchmarks,

18,033 belong to a new logic added to competition that

combines the array, bitvector and floating-point theories.

Rigorous N-version programming can be limiting. The

rigor associated with the methodology that we have followed,

to enable a controlled study, created a somewhat artificial

development environment in which the teams did not ask one

another for advice on technical matters despite being ideally

placed to do so. We believe our methodology is mainly suitable

for future rigorous studies in N-version programming, to gain

insights into the software engineering process, rather than for

regular software development projects. However, for regular

development projects we strongly recommend the independent

preparation of benchmark suites by multiple teams.

Structure. After reviewing essential background (§II), we

describe the methodology for our experimental comparison

(§III). We then detail the benchmarks we developed (§IV),

remark on notable features of the independent designs of the

two floating-point extensions to KLEE (§V), and compare the

tools experimentally (§VI). We finally discuss related work in

this area (§VII), and conclude with by recapitulating the main

conclusions and lessons learned (§VIII).

II. BACKGROUND

We provide relevant background on symbolic execution

(§II-A) and floating-point arithmetic (§II-B).

A. Symbolic Execution

Symbolic execution is a program analysis technique that

provides the ability to automatically explore multiple paths

through a program. It has been implemented in many different

tools [17], [18], [33], [61], [70] and applied to many different

areas, such as software engineering, systems and security [20].

Instead of running the program on concrete input, where a

particular input component might e.g. take the value 3, symbolic

execution runs the program on symbolic input, where each input

component is represented by a placeholder for an initially

unconstrained value, e.g. x. As the program runs, symbolic

execution keeps track of how program variables depend on

the symbolic input. For instance, after executing the statement

y = x + 1, symbolic execution will remember that variable

y holds the symbolic value χ+1, where χ is whatever symbolic

TABLE I
X86 64 FLOATING-POINT TYPES.

Name Size p emax Leading bit m explicit?

fp32 32 bits 24 127 No
fp64 64 bits 53 1023 No
x86 fp80 80 bits 64 16383 Yes

value is being held by x at the point this instruction is executed.

If symbolic execution reaches a branch that depends directly

or indirectly on the symbolic input, it first uses a constraint

solver to check the feasibility of each branch side. If only one

side is feasible, it will follow only that side. If both sides are

feasible, it forks execution and follows each side separately,

adding appropriate constraints on each path. For instance, if

in our example the branch if(y > 0) is reached, symbolic

execution will add the constraint that χ+1 > 0 on the true side

and ¬ (χ+ 1 > 0) on the false side. When a path terminates,

the conjunction of all the constraints collected at branch points

(called the path condition) is sent to a constraint solver, which

can provide a concrete solution. This solution represents a

test input that follows the same path as the one on which the

path condition was collected. Using this mechanism, symbolic

execution can systematically explore paths through a program.

B. Floating-point Arithmetic

In general, floating-point number representations provide

finite approximations to the real numbers, trading range and

precision for storage space. They utilize scientific notation of

the form (−1)s ×m× be where s is either 1 or 0 and controls

the sign, m is a real number called the significand (typically

in the range [0, b)), b is an integer base (typically 10 or 2), and

e is an integer exponent. For example −0.75 can be written as

−1.5× 2−1. By using a fixed number of digits for exponent

and significand, floating-point number representations restrict

the range and precision, respectively, of representable numbers.

In this work we are interested in analysis of C programs

that operate on floating-point data. The IEEE-754 2008

standard [41] (also known as IEC 60559:2011 [43]) formalizes

a number of floating-point representations. If an implementation

of C respects Annex F of the C language specification [45], then

most of its floating-point types and operations are IEEE-754

compliant (some exceptions to this are detailed below).

IEEE floating point on x86 64. We provide details of IEEE

floating point representation implemented by the x86 64 family

of processors; both tools assume this target.

Three primitive floating-point types are available on this

target: 32-bit wide single precision (IEEE-754 binary32), 64-

bit wide double precision (IEEE-754 binary64), and 80-bit wide

double extended precision (not an IEEE-754 basic format). We

refer to these types as fp32, fp64, and x86 fp80 respectively.

Each type has a precision p (number of bits representing

the significand), and maximum exponent value emax . A full

list can be found in Table I. The last column (“Leading bit

m explicit?”) states whether the binary encoding of the type

contains the leading bit (i.e. the integer portion of) m, or if it

is inferred from the remaining bits.



In an Annex F-compliant implementation of C on x86 64,

fp32 and fp64 are the float and double types respectively.

The C standard with Annex F only weakly specifies how

the long double type should be implemented. All C

implementations that target x86 64 that we are aware of treat

long double as x86 fp80.

The IEEE-754 binary format contains several classes of data:

normal, denormal, zero, infinity and NaN. Most floating-point

numbers belong to the normal class, which provides a unique

encoding for representable numbers where the leading bit of

the significand is always 1 and the exponent is in the range

[−emax + 1, emax ]. The denormal class represents numbers

close to zero and exists to provide a smoother transition from

the smallest positive normal (largest negative normal) number

to positive (negative) zero. Denormal numbers always have the

exponent and leading bit of the significand set to −emax and

0 respectively. The zero and infinity classes each contain two

values: positive and negative zero and infinity, respectively.

The NaN class represents “not a number”. NaN values

arise from invalid computations, such as 0.0/0.0. There

are many different binary encodings for NaN but IEEE-754

only distinguishes between two types: quiet and signaling.

The x86 fp80 type is not an IEEE-754 binary format. It

consists of 1-bit sign, 15-bit exponent and 64-bit significand.

The binary encoding is similar to that of the IEEE-754 binary

format except that the integer portion of the significand is stored

explicitly. This additional bit permits extra classes known as

pseudo-NaN, pseudo-infinity, unnormal and pseudo-denormal.

Modern Intel processors consider all these classes apart from

pseudo-denormals as invalid operands [42].

Rounding modes and exceptions. IEEE-754 provides several

different rounding modes (e.g. round toward positive), a subset

of which can be used from within the C language. IEEE-754

also defines several different exceptions (e.g. division by zero)

that can be raised when operations are performed. The default

handling of these is to set one or more status flags and then

continue execution.

Reasoning about floating point. Given the complexity of

floating-point arithmetic—with the background information

above covering only a small fraction of the standard—reasoning

about floating-point code is difficult and error-prone. Common

programming errors are often caused by incorrectly assuming

that the arithmetic laws for real numbers hold—unfortunately,

certain basic laws such as associativity and distributivity do

not hold for floating point, resulting in subtle bugs that may

be triggered by a subset of input values.

III. METHODOLOGY

On first point of contact, both teams had relatively feature-

complete floating-point extensions to KLEE that had undergone

preliminary correctness testing and performance benchmarking.

We structured our controlled N-version programming exper-

iment around three phases: benchmark preparation (§III-A),

benchmark and tool improvement (§III-B), and in-depth com-

parison (§III-C).

A. Phase I: Benchmark Preparation

During a period of approximately one month, each team

devoted resources to independently preparing benchmark pro-

grams to be used for evaluation. Each team prepared 43

benchmarks, divided into 28 synthetic and 15 “real-world”

benchmarks. The real-world benchmarks were adapted from

existing open-source applications. The synthetic benchmarks

were written from scratch, with some designed to test particular

aspects of floating-point semantics, and others encoding simple

algorithms. The benchmarks are described in §IV.

Both sets of benchmarks were prepared with symbolic

analysis in mind: the teams ensured that most benchmarks

had at least some inputs marked as symbolic, though a few

fully concrete benchmarks were included to thoroughly test

concrete interpretation. Due to the known limited scalability of

solvers with respect to floating-point reasoning, symbolic data

was restricted to aim for a sweet spot where symbolic execution

would issue interesting, yet not intractably hard, floating-point

queries. Importantly, this fine-tuning was performed by each

team in isolation with respect to their own tool.

Each benchmark includes a specification stating how the

benchmark should be compiled and whether the benchmark is

expected to be correct. An incorrect benchmark’s specification

states a number of expected property violations, e.g. that an

assert should fail, or a division by zero or invalid memory

dereference should occur. In each case a set of allowed error

locations (source file and line number) are provided.

During this phase, the teams were free to improve their tool

with respect to their own benchmarks. At the end of phase I,

all benchmarks were pushed to a common repository.

Phase I resulted in a set of floating-point benchmarks suitable

for evaluation of symbolic execution tools, with one half known

to be somewhat tractable for Aachen’s tool, and the other half

for Imperial’s tool, but importantly with no single benchmark

having been prepared knowing the capabilities of both tools.

B. Phase II: Benchmark and Tool Improvement

The full set of benchmarks allowed each team to assess the

correctness and performance of their independently-developed

tool, through semantic problems and optimization opportunities

raised by the other team’s benchmarks. Each team spent

approximately one month fixing and optimizing their tools.

Notable tool changes arising from benchmark exchange are

discussed in §V. During this phase the teams communicated

any benchmark problems not already identified during phase

I, but did not exchange tool implementation details. These

benchmark problems are discussed in §VI-A.

At the end of phase II, the teams froze development of

their tools and exchanged source code, enabling each team

to subsequently (a) understand the design decisions of the

other team via source code inspection, and (b) compare

experimentally with the other team’s tool.

C. Phase III: In-depth Comparison

The teams now set about comparing the tools on the

finalized benchmarks. Since both teams’ tools leveraged Z3



and LLVM, it was agreed that both should share the same

Z3 version (4c664f1c) and LLVM version (3.4.2) so as to

restrict behavioral differences to design decisions in the KLEE

extensions themselves, rather than in their dependencies.

Tool changes based on preliminary experiments. Our intent

had been to conduct our in-depth comparison using exactly the

tool versions frozen at the end of phase II. However, preliminary

experiments revealed a number of remaining tool bugs that

were easy to fix, and whose fixes were not influenced by

implementation details of the opposite team’s tool. We also

realized that the tools were forked from different versions of

KLEE, leading to potential behavioral differences unrelated to

the innovations of each team. Finally, a dynamic solver timeout

feature (§V-B), implemented by Imperial and orthogonal to

floating-point support, allowed KLEE to terminate in a more

reliable manner that influenced tool comparison. Based on

this experience, we upgraded both tools by rebasing to use a

common KLEE revision (2852ef63), donating the dynamic

solver timeout feature to Aachen, and applying a number of

bug-fixes following an inter-team review to confirm that fixes

were not inspired by details of the opposite tool.

Running the tools. We ran the finalized versions of both teams’

tools on the finalized benchmark suite, on a machine with two

Intel R© Xeon R© E5-2643 v4 CPUs (6 physical cores each) with

256GiB of RAM running Arch Linux. Hyper-threading and

turbo boost were disabled. Each tool was run 20 times per

benchmark. Each tool was executed in parallel over the set

of benchmarks, running on at most 8 benchmarks in parallel.

Each KLEE process was pinned to a single CPU core and

the CPU’s nearest NUMA node. The CPU cores used for

pinning were isolated from the kernel scheduler using the

isolcpus kernel parameter. The pstate CPU governor was

set to “performance” requesting the same min/max frequency

(3.5GHz) and a 0 performance bias. We enforced a 100 GiB

memory limit per KLEE process. Each tool was executed in a

Docker [58] container to keep the processes isolated.

KLEE has distinct phases for path exploration and subsequent

test case generation. We enforce a time limit of 1 hour for each

phase. Each team’s tool was configured to use the same path

exploration strategy (non-uniform random search prioritizing

coverage, with a fixed random seed).

Comparing the tools. In order to compare the tools we

extracted the following information from each run.

The validity of a reported bug, i.e. whether it is a true or

false positive. A test case that detects a particular issue at

a certain benchmark source location is considered to detect

a true positive if and only if the benchmark’s specification

indicates that an issue of this type is expected at that location.

Checking validity was achieved by replaying KLEE-generated

cases natively for reported bugs and verifying that the bug

type, source file and line number match what KLEE reported.

To check for out-of-bounds memory accesses and division by

zero—undefined behaviors in C that are not guaranteed to raise

a runtime exception—we instrumented the benchmarks using

ASan [71] and UBSan [76] respectively.

Branch coverage achieved on each benchmark. This was

measured by replaying all KLEE-generated tests natively on a

coverage-instrumented (via gcov [32]) build of the benchmarks.

Coverage excludes the C library to avoid bias; e.g. a team’s

tool might interpret a C library function (may lead to additional

test cases) rather than modeling it in Z3 (no additional test

cases), possibly leading to greater coverage of the C library

which upon replay could inflate the team’s coverage artificially.

Execution time and crashes. We recorded execution time for

each run of a tool on a benchmark, and noted cases where a

tool crashed due to an internal error or running out of memory.

Memory and time limits of 10 GiB and 5 minutes were used

when replaying test cases.

We merged the repeated runs of the same tool configuration

as follows. The true and false positives for a tool with respect

to a benchmark were identified by replaying the test cases

generated across all runs, crediting a tool for finding a true

positive during any run, but similarly penalizing for any

instances of false positives. We computed branch coverage

and execution time for a tool with respect to a benchmark as

the arithmetic mean across all runs. We counted the number

of crashes for a tool with respect to a benchmark as the total

number of crashes observed across all runs.

We then ranked the tools on a per-benchmark basis using

the following rules, applied in order:

(A) A tool wins if it reports no false positives and the other

tool reports at least one false positive.

(B) Most true positives wins.

(C) Highest mean branch coverage wins.

(D) If at least one tool crashed, smallest crash count wins.

(E) Otherwise, smallest mean total execution time wins.

The tools draw if they are not distinguished by these rules.

The rationale for ranking is: a symbolic execution tool should

never exhibit false positives (A), because its primary goal is to

accurately find bugs (B), with a secondary goal of producing a

high-coverage test suite (C). Thereafter, we prefer a tool that

does not crash (D), and a fast tool when neither crashes (E). It

is hard to meaningfully compare false positives (two distinct

false positives might not be equally serious), so in (A) we do

not rank tools by number or nature of false positives.

When comparing mean branch coverage and execution time

we use 95% and 99.9% confidence intervals, respectively,

regarding results as indistinguishable if intervals overlap. Mean

execution time differences of less than one second are also

treated as indistinguishable.

IV. BENCHMARK SUITE

As mentioned in §III-A both teams independently contributed

43 benchmarks (86 in total), written in C99 [44] or C11 [45].

Each team aimed to choose examples that would be challenging

yet not intractable for symbolic execution, being free to choose

benchmarks that played to the strengths of their tool, with

benchmarks prepared by the other team posing an unknown

challenge. The suite contains 52 benchmarks expected to be

correct and 34 expected to be incorrect. The suite uses KLEE-

specific functions (e.g. to introduce symbolic data) for our



convenience, however it would be easy to port the benchmarks

to a different interface (e.g. SV-COMP’s [1]), so that they are

applicable to other analysis tools. Branch counts reported below

are the number of static branches in the compiled LLVM IR.

A. Aachen’s Benchmarks

Synthetic (17 correct, 11 incorrect): These focus on checking a

wide range of floating-point semantic features, split up so that

each benchmark tests as few individual features as possible,

allowing floating-point symbolic execution errors to be easily

pinned to underlying causes. Some check properties that are

uncommon in real-world programs, to ensure that unusual and

erroneous uses of floating-point numbers are handled accurately.

These benchmarks have between 1 and 56 (median 3) branches

and request between 0 and 32 (median 8) symbolic bytes.

Real world (13 correct, 2 incorrect): These were drawn from

multiple publicly available sources, with care taken to include

both large and well-tested software, reflected by benchmarks

built upon the GNU Multiple Precision Arithmetic Library [37],

and sample programs not intended for production use, e.g.

numerical code taken from [64]. These benchmarks have

between 6 and 2903 (median 220) branches and request

between 1 and 20 (median 8) symbolic bytes.

B. Imperial’s Benchmarks

Synthetic (15 correct, 13 incorrect): These comprise of simple

algorithms (e.g. binary search), and tests for fundamental

properties of floating point (e.g. commutativity and non-

associativity of addition). We include a port of William

Kahan’s paranoia benchmark [46], [47]. These benchmarks

have between 1 and 301 (median 8) branches and request

between 0 and 128 (median 8) symbolic bytes.

Real world (7 correct, 8 incorrect): These were written

against the GNU Scientific Library (libGSL) [38], adapted

from tutorial examples included with the library source code.

Creating these benchmarks involved iteratively increasing the

presence of symbolic input, stopping just before the tipping

point beyond which Imperial’s tool could not make reasonable

progress. Some of the libGSL benchmarks used long doubles,

a feature that Imperial’s early tool did not support; we modified

the associated benchmarks to avoid long doubles. These

benchmarks have between 6 and 254 (median 67) branches

and request between 4 and 48 (median 16) symbolic bytes.

V. DESIGN DETAILS

At the end of phase II (§III-B) we exchanged tool source

code, allowing comparison of tool designs that had previously

been unknown across teams. We discuss noteworthy similarities

and differences between the designs of both tools, as determined

by discussion and source-code examination. Both tools build

on top of KLEE so they share mostly the same architecture,

which is discussed in the original KLEE paper [18].

Exchanging benchmarks at the end of phase I clearly led to

improvements in the design of both tools. We consider this a

positive outcome, illustrating how a shared set of independently-

gathered benchmarks can drive tool development.

A. Notable Similar Design Decisions

Constraint solver. Both teams used Z3 [27] as the constraint

solver; this was a natural choice as Z3 supports floating point

and was already integrated into open-source KLEE.

Floating-point types, operations and functions. KLEE is

primarily designed to execute programs written in C, but

actually executes LLVM intermediate representation (IR). Both

teams assumed the x86 64 target and thus that the float,

double, and x86_fp80 LLVM types map to the IEEE-754

fp32, fp64, and x86 fp80 types. Assumption of IEEE-754

semantics was key, as they are used by the SMT-LIB floating-

point theory [15] that Z3 implements.

Both teams assumed that the primitive arithmetic LLVM

IR instructions (e.g. fadd) map to corresponding IEEE-754

operations, except for frem, whose semantics are not the

same as the IEEE-754 remainder function [57]. Both teams

assumed that operations on LLVM types consistently use the

same precision and range, so that excess precision/range are not

used during computation. This assumption holds if during native

code generation the compiler uses SSE instructions (rather than

the legacy x87 FPU) to do floating-point computations on fp32

and fp64 types [59].

Vector instruction support. LLVM IR provides vector types

derived from the basic floating-point types; enabling compiler

optimizations can cause vector instructions to be emitted. To

process these, both teams adapted LLVM’s Scalarizer pass

to scalarize as much as possible prior to symbolic execution, so

that KLEE can assume that most instructions (e.g. fadd) only

take scalar operands. A few instructions—InsertElement,

ExtractElement, and ShuffleVector—required spe-

cial handling; both teams added varying levels of support,

sufficient to run the benchmarks (§IV).

It is worth noting that at the end of phase I, Aachen

and Imperial’s support for vector instructions differed greatly.

Imperial compiled their benchmarks with optimizations en-

abled, necessitating vector support; Aachen compiled their

benchmarks without optimizations, thus did not need vector

support. During phase II it became necessary for Aachen to

add vector support in order to handle Imperial’s benchmarks.

IEEE-754 rounding modes. Both teams implemented support

for all IEEE-754 rounding modes available from the C standard

library interface, by having a per-execution state flag that

stores the current concrete rounding mode and ensuring that

this is used when constructing constraints (e.g. floating-point

addition is affected by the rounding mode, making it a ternary

operator). KLEE has the ability to call external functions—

functions missing from the program under analysis that can

nevertheless be executed by the running KLEE process on

behalf of the program under analysis. Both teams ensured

that when calling external functions the rounding mode of

the KLEE process is changed to that of the calling execution

state and reverted back on return. One slight difference in

Imperial’s implementation is that the rounding mode is allowed

to be symbolic, whereas Aachen’s implementation concretizes

a symbolic mode. Imperial’s implementation achieves this by



forking on symbolic rounding modes (i.e. one path per rounding

mode plus an extra path for an invalid rounding mode).

Standard math functions. The teams initially used different

approaches for handling C standard library math functions.

Aachen represented these functions as operations in KLEE’s

constraint language in several cases (e.g. fabs, sqrt), while

Imperial simply interpreted the implementation of each function

in KLEE’s C library. Imperial’s approach suffers from path

explosion when operands to the functions are symbolic. Upon

exchanging benchmarks at the end of phase I, Imperial

discovered their tool performed poorly on several of Aachen’s

benchmarks due to path explosion and so switched to handling

fabs and sqrt as operations in KLEE’s expression language.

IEEE-754 exceptions and flags. Neither team implemented

this portion of the IEEE-754 specification because it would

significantly complicate symbolic execution: one would need

to maintain the symbolic value of the flags and check if any

exceptions could be raised by every floating-point instruction

executed. A consequence of this (and of the SMT-LIB floating-

point theory) is that symbolically neither tool can distinguish

between quiet and signaling NaNs.

B. Notable Differences

Extending KLEE’s expression language. Both teams ex-

tended KLEE’s expression language to incorporate floating-

point expressions in similar ways, but with some notable

differences related to how comparison operations and constants

are handled. Aachen added operations that correspond directly

to the opcodes of the LLVM FCmp instruction. The instruction

has ordered and unordered variants, which return false and true,

respectively, if either argument is a NaN. Instead, Imperial only

added operations that correspond to the ordered comparison

opcodes because the unordered operations can be expressed in

terms of the ordered comparison operations and the IsNan

predicate. We consider Imperial’s approach to be a better

choice because it is a simpler extension to KLEE’s expression

language. Aachen represented floating-point constants as a

separate expression type whereas Imperial represented floating-

point constants as implicitly bitcasted integer constants.

Representation of types. KLEE’s expression language is based

solely on bitvectors, which was problematic when introducing

floating-point operations. Imperial handled this by making

conversion between floating-point and bitvector types implicit,

so that e.g. the bitvector operands to a floating-point add

instruction are first converted to floating-point types. Aachen

instead made this explicit by introducing type conversion

operations. We consider Aachen’s choice to be superior here

because implicit conversion has ambiguities. In particular if an

if-then-else expression has a mixture of bitvector and floating-

point types for its then and else expressions, the type of the

if-then-else is ambiguous.

Array ackermannization. KLEE represents all symbolic

data, including primitive symbolic variables, as arrays of

8-bit bitvectors. Imperial observed that in a floating-point

context, if all arrays of bitvectors are replaced with simple

bitvector variables and given to Z3 in such a way that the

new query is equisatisfiable with the original query, then

performance usually improves. We refer to this transformation

as array ackermannization. The Z3 developers confirmed this,

suggesting that Z3 is not currently well-optimized for queries

mixing the theory of quantifier-free bitvector arrays with the

theory of quantifier-free floating point [79].

Imperial’s tool performs array ackermannization in the case

where all array reads are at concrete indices and no writes

have been performed to the array. This is a fairly common case

because symbolic variables in the original C program being

analyzed are typically represented as a concatenation of byte

reads at successive concrete indices of a symbolic array.

x86 fp80 support. At the end of phase I, only Aachen added

support for x86 fp80 and benchmarks to exercise it. Thus

during phase II it became necessary for Imperial to implement

support for symbolic reasoning over this type too.

Our designs differed due to several characteristics of the

x86 fp80 type. First, it is a padded type: its 80 bits are padded

to 128 bits on x86 64, and KLEE does not handle such padding

properly. Both teams handled this issue in the same way, making

sure KLEE allocates the necessary padding during the allocation

of x86 fp80 stack and global variables.

Second, because x86 fp80 is not an IEEE-754 binary type,

constant folding expressions of this type required careful

consideration, and expressions of this type could not be directly

modeled in the SMT-LIB floating-point theory.

KLEE already had support for constant folding the x86 fp80

via LLVM’s APFloat, which performs arbitrary precision

floating-pointing arithmetic in a hardware independent manner.

However, one of Aachen’s benchmarks caused both teams

to discover that APFloat has a bug [54] where unnormal

operands are not handled correctly. Imperial solved this issue

by evaluating all x86 fp80 operations natively within KLEE

itself. Aachen solved this by storing a flag in every expression

which is set to true iff the expression represents a member

of one of the IEEE-754 classes. When the value is accessed

through a x86 fp80 operation, this flag is examined and if it is

false for any operands a NaN is returned, which mirrors how

unnormal operands are treated on x86 64. A fix for the bug

in APFloat would avoid the need for these workarounds.

To handle evaluating symbolic expressions over x86 fp80

with Z3, both teams used the (_ FloatingPoint 15 64)

type (abbrv. fp15 64) which has a 15-bit exponent, a 64-bit

significand, and an implicit integer significand bit. It has exactly

the same range and precision as x86 fp80, but a different 79-bit

binary encoding due to the SMT-LIB floating-point theory only

being able to represent IEEE-754 classes. The different binary

encoding requires special handling of conversions between a

bitvector that represents x86 fp80 data and fp15 64.

Imperial chose to only allow the IEEE-754 classes of the

x86 fp80 type. When converting to fp15 64 from a bitvector

the explicit leading significand bit is removed and an additional

constraint is added that asserts that the bit has the correct

value for the bitvector to represent an IEEE-754 value. When

converting a fp15 64 to a bitvector, the explicit leading



significand bit is added back and its value is inferred from the

other bits to be an IEEE-754 value.

Aachen chose to allow the non IEEE-754 classes of the

x86 fp80 type in addition to the IEEE-754 classes. This was

achieved by representing expressions of the x86 fp80 type as a

tuple. The first value in the tuple is of type fp15 64. The second

value is a boolean flag that is true iff the value represented by

the tuple belongs to one of the IEEE-754 classes. These tuples

are then handled by each floating-point operation. If one of

the tuple operands does not represent a value from one of the

IEEE-754 classes it returns the tuple (NaN, true).

Imperial’s implementation results in simpler constraints being

given to Z3 but is incomplete. Aachen’s implementation is

complete but the constraints are more complicated and also

contradict the goals of array ackermannization because the

tuple is represented as a two element array.

Dynamic solver timeout. Although KLEE can limit the time

allowed for path exploration before switching to test case

generation, KLEE does not try to interrupt the solver if

the path exploration timeout is reached. For long-running

solver queries—especially frequent when using floating-point

constraints—this can cause the path exploration timeout to fire

much later than intended. This leaves less time for test case

generation (see §III-C), and may cause test cases to be lost.

KLEE supports setting a fixed (i.e. static) solver timeout, but

this does not interact well with the path exploration timeout.

A small solver timeout may leave paths unexplored despite

there being available time for further path exploration, while

too large a timeout may cause the path exploration timeout to

be missed as discussed above.

Imperial implemented a dynamic approach to solve this

problem. Every time the solver is invoked, the per-query solver

timeout is set based on KLEE’s current state. If KLEE is

doing path exploration, the solver timeout is set to be the

remaining path exploration time. When KLEE switches to test

case generation, the solver timeout is set to the total allowed

time for test case generation divided by the number of test

cases to generate. This means that each test case is given an

equal share of solver time.

While Aachen did not originally implement such a feature,

as noted in §III-C, to ensure compatibility this feature was

donated to Aachen’s implementation.

NaN representation. Neither tool can distinguish between

quiet and signaling NaNs. IEEE-754 does not precisely specify

the binary encoding for either of these NaNs, which means

there are many different encodings that represent the same type

of NaN. Therefore, when converting a floating-point expression

to a bitvector expression, if it is feasible for the expression to

be NaN, it means the converted bitvector expression can take

on many values that all represent NaN. In practice this is rarely

a problem, however one of Imperial’s synthetic benchmarks

deliberately tries to branch on the value of the lower-order bits

of a NaN, whose value is not defined by IEEE-754.

During phase II, Imperial discovered that this would some-

times crash their implementation due to inconsistent constraints.

This was partly due to some bugs in Z3 [80] and LLVM’s

APFloat [52], which Imperial worked around by consistently

using the same bitvector constant to represent NaN. Aachen

did not handle this issue. However the under-specified nature

of IEEE-754 NaN bit patterns are a general problem. Even if

KLEE’s expression language was modified to have identical

semantics to Z3, they may still differ from those of the target

machine or other SMT solvers.

VI. EXPERIMENTAL COMPARISON

We now turn to the comparison of the tools. We discuss

problems with the benchmarks flagged by tool comparison

(§VI-A), and results comparing the finalized tool versions head-

to-head during phase III (§VI-B).

A. Benchmark Issues

Non-termination. When replaying tests generated by the

tools we found that two benchmarks did not terminate for

certain inputs. In one case this was unintentional, due to a

bug in the implementation of a binary sort algorithm used

by the benchmark. We handled these cases by setting a

timeout when replaying test cases (see §III-C). Due to gcov

implementation details [32], branch coverage is not recorded

for non-terminating tests. This affected only a few benchmarks

and gave neither tool an advantage in our ranking scheme.

Unnormal values. We found several problems with a bench-

mark that operated on the x86 fp80 type, involving unnormal

values (see §II-B). First, Clang would incorrectly optimize the

benchmark by performing erroneous constant folding [54]. We

thus disabled optimizations for this benchmark. We also discov-

ered it is possible to exploit this problem to crash Clang [53].

Second, we found that several operations on unnormal numbers

used in this benchmark behaved inconsistently across compilers

(e.g. isnan() and casting to integers). We concluded that

this was due to these operations exhibiting undefined behavior,

and removed them from the benchmark.

The remaining issues are cases where our tools found a

benchmark to be incorrect, contrary to its specification; for

each issue we applied a simple fix:

Failing to account for NaNs. A benchmark that sorted an

array of partially symbolic floating-point values was incorrect

when infinity values were added to yield NaN values, later

triggering an assertion failure when checking correctness of

sorting. A benchmark performing matrix multiplication on a

partially symbolic matrix was similarly incorrect.

Failing to account for scientific notation. A benchmark that

verifies the output of atof()1 intended to constrain the

characters of the symbolic input string to represent a small

decimal value, asserting that the result of atof() was in

the expected range. The input constraints accidentally allowed

scientific notation (e.g. 1e10), so that atof() could generate

a value outside the expected range.

Failing to take poor approximation into account. A bench-

mark that checks the result of
√
x2, where x is a symbolic

1Converts a string to a floating-point value.



TABLE II
RANKING OF THE TOOLS. EACH COUNT SHOWS THE NUMBER OF WINS FOR

A TOOL EXCEPT THE LAST ROW WHICH SHOWS THE NUMBER OF DRAWS.

Reason Aachen Imperial

Other tool has false positives 0 0
Finds more bugs 1 1
Highest branch coverage 1 4
Fewest crashes 0 3
Smallest execution time 5 22

Draws 49

floating-point value, did not account for denormal numbers. As

the computation may cause a gradual underflow to a denormal

number, its precision may be reduced to a single bit in the

worst case, causing a very high relative error.

B. Head-to-head Tool Comparison

Tool ranking. Table II summarizes the number of benchmarks

for which each team won, according to the procedure for

ranking tools described in §III-C.

Neither tool reported false positives. For one benchmark

Aachen found more bugs than Imperial and for another

benchmark Imperial found more bugs than Aachen. Both

benchmarks use the sqrt() function and come from Aachen’s

set of synthetic benchmarks and both tools exhibit poor

performance on them due to long query solving times.

In cases where the tools found the same number of bugs,

Imperial achieved higher branch coverage in four cases, and

Aachen in one. Imperial achieved higher coverage when

Aachen’s tool crashed while trying to generate test cases,

thus missing out on coverage that the generated tests would

have achieved. In all cases, the crashes were either due to an

internal Z3 error (1 case), or there being a semantic mismatch

between the expression languages of KLEE and Z3, causing

Z3-generated models to be unsatisfiable in KLEE’s expression

language (3 cases). For the single benchmark where Aachen’s

tool achieved higher coverage, Imperial’s tool reached a path

exploration timeout whereas Aachen’s tool explored all paths

in the benchmark.

For benchmarks where the tools were as-yet indistinguish-

able, there were three cases where Imperial’s tool did better due

to Aachen’s tool crashing, 27 cases where neither tool crashed

but where the tools were distinguished by execution time, with

Aachen and Imperial winning 5 and 22 times, respectively.

Of the 49 draws, two are due to the tools both crashing the

same number of times, and 47 are cases where neither tool

crashes, but where either the confidence intervals associated

with mean execution time overlap, or the difference in the

mean execution time is less than one second. The crashes here

are internal to Z3 which have been reported [78].

Aside from cases where the tools crashed, we attribute the

differences in effectiveness of the tools to the performance of

the constraint solver which is discussed later in this section.

Coverage. Figure 1 compares the branch coverage for Aachen’s

and Imperial’s tools on a per-benchmark basis. For each bench-

mark, there are two bars showing the percentage of branches

TABLE III
EVALUATION OF THE TOOLS IN TERMS OF BUG-FINDING, EXHAUSTIVE

EXPLORATION, NUMBER OF CRASHES AND NUMBER OF TIMEOUTS. THE T+

AND T− ROWS SHOW THE NUMBER OF TRUE POSITIVES AND TRUE

NEGATIVES RESPECTIVELY.

Aachen Imperial Both Neither

T+ 33 (67.35%) 33 (67.35%) 32 (65.31%) 15 (30.61%)

T− 35 (67.31%) 38 (73.08%) 34 (65.38%) 13 (25.00%)
Crashes 9 (10.47%) 2 ( 2.33%) 2 ( 2.33%) 77 (89.53%)

Timeouts 21 (24.42%) 24 (27.91%) 21 (24.42%) 62 (72.09%)

that have been covered, one striped yellow bar for Imperial

and one solid green for Aachen. Benchmarks are ordered along

the x-axis such that the ones where Imperial’s (Aachen’s) tool

achieved a higher coverage are on the left (right). Benchmarks

with identical coverage are sorted alphabetically. The figure

shows that for most benchmarks both tools achieve the same

coverage. While neither tool strictly dominates the other, it can

be seen that Imperial’s tool has a slight advantage in this area.

The results are mostly deterministic (have a 95% confidence

interval of below 10−15), except for the rightmost benchmark,

which has a 95% confidence interval (not shown in the figure for

clarity) of ±11.25 percentage points for the Aachen tool only.

We attribute this to Aachen’s tool crashing non-deterministically

on this benchmark.

Note that while 100% is the theoretical maximum branch

coverage, it is not reachable in every case, especially for the

real-world benchmarks, many of which use a library but only

exercise a small portion of it.

Tool complementarity and limitations. The results so far

show that the tools overlap somewhat in their capabilities.

We now examine the extent to which the tools are capable of

effective analysis of our benchmarks, whether they are hindered

by common problems, and cases where they are complementary.

Table III shows the extent to which each tool is capable

of correctly finding bugs in the benchmarks. The T+ row

shows, for each tool, the number of total bugs found, out of

the number of bugs expected to be present from the benchmark

specifications (in the 34 benchmarks with erroneous paths we

expect to find a total of 49 bugs). The T− row shows, for

each tool, the number of bug-free benchmarks (52 total) that

the tool is able to fully explore. That is, all feasible paths are

enumerated so that correctness is exhaustively verified. In each

row, tool complementarity is indicated by showing the extent

to which bugs can be found, or correctness proven, by both

tools or by neither tool.

Both tools found the same 32 bugs, with each tool finding

one one additional bug that the other did not. This shows that

both tools perform reasonably well at bug finding with neither

dominating the other. There were 15 bugs that neither tool

found indicating that the benchmark suite was challenging.

Both tools determined the same 34 benchmarks to be correct,

with Aachen showing one addition benchmark to be correct

that Imperial did not and Imperial showing four additional

benchmarks to be correct that Aachen did not. This shows that
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Fig. 1. Branch coverage achieved by the two tools. On the left, Imperial (yellow bars with black stripes) did better, while on the right, Aachen (solid green
bars) achieved higher coverage. The long middle section shows benchmarks for which both teams reached the same coverage.

both tools perform reasonably well at exhaustive exploration

with neither dominating the other. There were 13 benchmarks

expected to be correct that neither tool could show to be so,

indicating that benchmark suite was challenging enough that

exploration was not exhaustive. Non-exhaustive exploration

was due to timeouts, crashes, and memory exhaustion.

Table III also provides details of the number of benchmarks

on which each tool crashed (incorporating cases of memory

exhaustion) or timed out. Aachen’s tool crashed more than

Imperial’s due to the semantic inconsistencies discussed in

§VI-B. For two of the benchmarks both tools crashed due to

hitting an internal Z3 error [78]. Imperial’s tool timed out on

three benchmarks where Aachen’s did not. On those three

benchmarks Aachen’s tool fully verified one of them and

crashed on the other two.

Solver performance. We attribute the performance difference

in the tools to the performance of Z3, as constraint solving

accounts for the majority of execution time for both tools.

We observed that for some paths, the tools would send

equisatisfiable but different constraints to Z3—e.g. due to

Imperial’s array ackermannization optimization, as well as

differences in the tools’ extensions to KLEE’s expression

language—sometimes resulting in wildly different execution

times. SMT solvers rely heavily on heuristics to gain good

performance so it is not unexpected that slight differences

in constraints could result in different performance. However,

we discovered that in KLEE, Z3 was used in a sub-optimal

way. The Z3 API used by KLEE bypasses all of Z3’s logic-

specific strategies and uses the DPLL(T ) [60] method (lazy

translation to SAT) of solving constraints. This is frequently

slower than using Z3’s logic-specific strategies. On re-running

our experiments after modifying the tools to use the more

appropriate Z3 API, the performance of Aachen’s tool increased

slightly and that of Imperial’s dramatically. When ranking the

modified tools, Imperial ranked better on 51 benchmarks, with

Aachen ranking better on only one and tying on the remaining

34 benchmarks. The better performance of Imperial’s tool is due

to the array ackermannization optimization which causes Z3 to

use a logic-specific strategy—eager bit-blasting to SAT [48]—in

place of the frequently slower DPLL(T )-based approach [77].

To maintain the integrity of our study, the results we present

are of the tools using the sub-optimal Z3 API, but we shall

use this insight when fully integrating floating-point support

into upstream KLEE.

C. Threats to Validity

Our study has both internal and external threats to validity.

Both tools use KLEE and Z3, so errors in these components

may lead to bugs that go undetected when comparing the two

implementations. However, the manual effort we put in writing

specifications for the benchmarks renders this risk minimal.

Since both our tools were built on top of KLEE and

Z3, our respective design decisions might be more similar

than they would be had different frameworks been used.

However, we found that in spite of this common infrastructure,

building the extensions required important design decisions

that resulted in significant differences. Moreover, having a

common infrastructure made it possible to conduct a rigorous

comparison that would not have been possible otherwise.

Our benchmarks might not be representative of floating-

point code found in large deployed applications. However,

our synthetic benchmarks are meant to systematically test

challenging floating-point features that real applications would

exercise, while our real-world benchmarks are based on existing

applications or widely-used libraries.

Finally, due to the computational complexity of floating-

point constraint solving, all benchmarks contain comparatively

few floating-point operations and symbolic data. This is due to

the fact that constraint checking large numeric applications is

currently infeasible in the presence of floating-point numbers.

VII. RELATED WORK

Testing of floating-point programs has received significant

attention from the research community (e.g. [4], [8], [22], [23],

[39]), and various methods have been proposed for verifying

floating-point properties through abstract interpretation [35],

[36], [65], decision procedures [16], [40], [50], [81], [82],

theorem proving [9], [10], and combinations of techniques [13],

[14], [62], [63]. Recent work has also focused on estimating

bounds on round-off error in floating-point computation [26],

[55], [73].

Several works have investigated extending symbolic analysis

to floating-point programs [6], [11], [12], [66], [67]. Ours is

one of the few that integrates floating-point reasoning with

a mature symbolic execution tool, KLEE, and our study is

distinguished by our N-version programming approach. Thanks

to our combined suite, we believe this is one of the largest-

scale studies—in terms of number and diversity of benchmark

programs—of symbolic execution in the context of floating

point.



Reasoning about floating-point constraints in the context of

symbolic execution has often been conducted in a manner

that avoids the full complexity of floating-point, e.g. by

approximating floating-point numbers with mathematical reals

in Ariadne [7] and approximate solving of floating-point

constraints using search-based methods in CORAL [74] and

FloPSy [49]. KLEE-FP [24] and KLEE-CL [25] are two

extensions of KLEE which add support for floating point in

the limited context of reasoning about program equivalence.

That is, these extensions can only test whether two purportedly

equivalent floating-point implementations are indeed equivalent,

but cannot perform general symbolic execution of floating-point

code, nor can they perform test input generation.

A very recent study provides a large corpus of numerical

software bugs, categorized as accuracy bugs, special value

bugs, convergence bugs and correctness bugs [31]. The corpus

includes bugs originating from C source code, including GSL,

which could be adapted into a form suitable for analysis

using our KLEE-based tools. With further effort, example bugs

originating from software written in other languages could be

ported to be suitable for analysis using our tools.

VIII. CONCLUSION AND LESSONS LEARNED

We have presented a case study on N-version programming

for the independent, benchmark-driven development of two

extensions to KLEE to support symbolic reasoning over

floating-point arithmetic. We hope that our rigorous procedure

for independently developing benchmarks, improving tool

versions in response to the benchmarks, and then exchanging

tools to evaluate similarities and differences, will provide

a useful basis for future researchers in the position where

an analogous controlled study is feasible. We conclude by

recapitulating the main contributions and key lessons we have

learned from the experience.

Independently-developed benchmarks. Our independently-

developed benchmarks served both as a practical specification

and a target for tool optimization. Each team’s benchmarks

highlighted non-trivial correctness issues in the other team’s

tool, leading to a more reliable comparison overall. We strongly

recommend the preparation of multiple independent benchmark

suites when exploring other problem domains with equally rich

design spaces.

Benchmark suite for floating-point symbolic execution and

constraint solving. We regard the combined benchmark suite

itself as an important contribution of this case study: it provides

a source of benchmarks in a domain where existing suitable

benchmarks may be hard to find. In our case, where many

publicly available programs employ floating point, a set of

benchmarks that is interesting enough to warrant symbolic

analysis, yet not so large to be intractable, was not readily

available; our study has led to such a benchmark suite, which

is available publicly. Furthermore, our experiments generated

a large number of SMT queries that we have contributed to

the annual SMT competition [72]. Our queries helped start a

new competition division involving a logic that combines the

array, bitvector and floating-point theories; this should have a

direct impact on software engineering research.

Dual implementations of floating-point symbolic executors.

The very similar settings in which the two teams were

innovating enabled a close comparison of design choices.

Often this was interesting, allowing us to compare in detail

e.g. the manner in which the teams supported long doubles,

and approaches to handling floating-point types in KLEE’s

expression language. On the other hand, the similar setting

perhaps reduced the chances of the teams making radically

different design choices, which might have been harder to

compare, but might have yielded more fundamental insights

into how to approach floating-point symbolic execution. As

discussed in the introduction, having two complementary tools

enables differential testing to find tool bugs and portfolio

analysis to speed up and improve analysis results, both

advocated in the deployment stage of N-version programming.

A downside of having dual implementations is the rigor

associated with N-version programming, in which the two

teams have to work independently and to a strict schedule,

which often felt unnecessarily restrictive.

Combining design choices. Our case study places us in a

good position to combine the strengths of each tool to yield

a higher quality implementation of floating-point support in

KLEE than either would have achieved individually. We briefly

discuss four relevant aspects. (1) Support for vector instructions

was handled in a very similar way by both teams and has

already been incorporated upstream [2]. (2) KLEE’s expression

language is not typed, so a necessary first step is to make

it typed. Once that is complete, Imperial’s implementation

of floating-point expressions could be used as it has fewer

comparison operations, but then combined with Aachen’s more

robust explicit casting operations. (3) To support the long

double type, we lean toward Aachen’s approach as it is more

complete by supporting non-IEEE-754 classes of floating-point

numbers, but at the expense of more complicated constraints.

(4) Imperial’s array ackermannization optimization combined

with the appropriate Z3 API resulted in notable performance

gains, and should be incorporated.

Breakthroughs still needed. Our experience is that, despite

significant recent advances in the field, breakthroughs are still

required before floating-point constraint solving is efficient

enough for scalable analysis: on a number of benchmarks,

both tools missed bugs or achieved low coverage due to

the intractability of the constraints to be solved. As well as

innovating at the solver level, we envisage opportunities for

using higher-level program analyses to simplify constraints.
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[68] P. Rümmer and T. Wahl, “An SMT-LIB Theory of Binary
Floating-Point Arithmetic,” in International Workshop on Satisfiability

Modulo Theories (SMT), 2010, p. 151. [Online]. Available: http:
//www.cprover.org/SMT-LIB-Float/smt-fpa.pdf
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Solving Complex Constraints for Symbolic PathFinder. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 359–374. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-20398-5 26

[75] N. Tillmann and J. De Halleux, “Pex: white box test generation for
.NET,” in Proc. of the 2nd International Conference on Tests and Proofs

(TAP’08), Apr. 2008.

[76] “Undefined Behavior Sanitizer,” https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, 2017.

[77] “Z3 issue 1035: Unexpected huge performance difference between solver
using "default" tactic, Z3 mk solver() and Z3 mk simple solver(),”
https://github.com/Z3Prover/z3/issues/1035, 2017.

[78] “Z3 issue 1251: Overflow encountered when expanding vector,” https:
//github.com/Z3Prover/z3/issues/1251, 2017.

[79] “Z3 issue 577: No theory of floating point, bitvectors and arrays and
mixed performance?” https://github.com/Z3Prover/z3/issues/577.

[80] “Z3 issue 740: Invalid model generated without warning,” https://github.
com/Z3Prover/z3/issues/740.

[81] A. Zeljic, C. M. Wintersteiger, and P. Rümmer, “Approximations for
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