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Abstract

Analysing and comprehending C programs that use strings
is hard: using standard library functions for manipulating
strings is not enforced and programs often use complex loops
for the same purpose.We introduce the notion ofmemoryless
loops that capture some of these string loops and present a
counterexample-guided synthesis approach to summarise
memoryless loops using C standard library functions, which
has applications to testing, optimisation and refactoring.

We prove our summarisation is correct for arbitrary input
strings and evaluate it on a database of loops we gathered
from thirteen open-source programs. Our approach can sum-
marise over two thirds of memoryless loops in less than
five minutes of computation time per loop. We then show
that these summaries can be used to (1) improve symbolic
execution (2) optimise native code, and (3) refactor code.
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1 Introduction

Strings are perhaps the most widely-used datatype, at the
core of the interaction between humans and computers, via
command-line utilities, text editors, web forms, and many
more. Therefore, most programming languages have strings
as a primitive datatype, and many program analysis tech-
niques need to be able to reason about strings to be effective.
Recently, the rise of string solvers [5, 24, 28, 50, 53, 54]

has enabled more effective program analysis techniques
for string-intensive code, e.g. Kuduzu [37] for JavaScript
or Haderach [40] and JST [15] for Java. However, these tech-
niques operate on domains where strings are well-defined
objects (i.e. the String class in Java). Unlike Java or similar
languages, strings in C are just arbitrary portions of memory
terminated by a null character. That means interacting with
strings does not have to go through a well-defined API as in
other programming languages. While there are string func-
tions in the C standard library (e.g. strchr, strspn, etc. defined
in string.h), programmers canÐand as we will show often
doÐwrite their own equivalent loops for the functionality
provided by the standard library.
In this paper, we focus on a particular set of these loops,

which we call memoryless loops. Essentially, these are loops
that do not carry information from one iteration to another.
To illustrate, consider the loop shown in Figure 1 (taken from
bash v4.4). This loop only looks at the current pointer and
skips the initial whitespace in the string line. The loop could
have been replaced by a call to a C standard library function,
by rewriting it into line += strspn(line, "␣\t"). 1

Replacing loops such as those of Figure 1 with calls to
standard string functions has several advantages. From a
software development perspective, such code is often easier
to understand, as the functionality of standard string func-
tions is well-documented. Furthermore, such code is less
error-prone, especially since loops involving pointer arith-
metic are notoriously hard to get right. Our technique is thus
useful for refactoring such loops into code that calls into the
C standard library. As detailed in §4, we submitted several

1We remind the reader that strspn(char *s, char *charset) com-

putes the length of the prefix of s consisting only of characters in charset.
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1 #define whitespace(c) (((c) == '␣') || ((c) == '\t'))

2 char* loopFunction(char* line) {

3 char *p;

4 for (p = line; p && *p && whitespace (*p); p++)

5 ;

6 return p;

7 }

Figure 1. String loop from the bash v4.4 codebase, extracted
into a function.

such refactorings to popular open-source codebases, with
some of them now accepted by developers.
From a program analysis perspective, reasoning about

calls that use standard library functions is easier because
the semantics is well-understood; conversely, understand-
ing custom loops involving pointers is difficult. Moreover,
code that uses standard string functions can benefit from
recent support for string constraint solving. Solvers such
as HAMPI [24] and Z3str [5, 53, 54] can effectively solve
constraints involving strings, but constraints have to be ex-
pressed in terms of a finite vocabulary that they support.
Standard string functions can be easily mapped to this vo-
cabulary, but custom loops cannot. In this paper, we show
that program analysis via dynamic symbolic execution [8]
can have significant scalability benefits by using a string
solver, with a median speedup of 79x for the loops we con-
sidered.
Finally, translating custom loops to use string functions

can also impact native execution, as such functions can
be implemented more efficiently, e.g. to take advantage of
architecture-specific hardware features.
In §2 we first define a vocabulary that can express mem-

oryless string loops similar to the one in Figure 1. We then
present an algorithm for counterexample-guided synthesis
within a single (standard) symbolic execution run, which we
use to synthesise memoryless string loops in our vocabulary
and show they are equivalent up to a small bound. In §3
we formally prove that showing equivalence up to a small
bound extends to strings of arbitrary length for memoryless
loops, thus showing our summarisation is sound. Finally, we
build a database of suitable loops in §4.1 based on popular
open-source programs, which we use to comprehensively
analyse the impact of time, program size and vocabulary on
summarising loops in §4.2.

2 Technique

The goal of our technique is to translate2 loops such as the
one in Figure 1 into calls to standard string functions. Our
technique uses a counterexample-guided inductive synthesis

2In this paper, we use the terms translate, summarise and synthesise

interchangeably to refer to the process of translating the loop into an

equivalent sequence of primitive and string operations.

(CEGIS) algorithm [44] inspired by Sharma et al.’s work on
synthesising adaptors between C functions with overlapping
functionality but different interfaces [42]. This CEGIS ap-
proach is based on dynamic symbolic execution, a program
analysis technique that can automatically explore multiple
paths through a program by using a constraint solver [8]. In
this section, we first discuss the types of loops targeted by our
approach (§2.1), then present the vocabulary of operations
to which loops are translated (§2.2), and finally introduce
our CEGIS algorithm (§2.3).

2.1 Loops Targeted

Our approach targets relatively simple string loops which
could be summarised by a sequence of standard string li-
brary calls (such as strchr) and primitive operations (such
as incrementing a pointer). More specifically, our approach
targets loops that take as input a pointer to a C string (so a
char * pointer), return as output a pointer into that same
string, and have no side effects (e.g., no modifications to the
string contents are permitted). Such loops are frequently
coded in real applications, and implement common tasks
such as skipping a prefix or a suffix from a string or finding
the occurrence of a character or a sequence of characters
in a larger string. Such loops can be easily synthesised by
a short sequence of calls to standard string functions and
primitive operations (see §4 which shows that most loops
in our benchmarks can be synthesised with sequences of
at most 5 such operations). While our technique could be
extended to other types of loops, we found our choice to
provide a good performance/expressiveness trade-off.

More formally, we refer to the two types of loops that we
can synthesise as memoryless forward loops and memoryless

backward loops, as defined below.

Definition 1 (Memoryless Forward Loop). Given a string
of length len, and a pointer p into this buffer, a loop is called
a forward memoryless loop with cursor p iff:

1. The only string location being read inside the loop body is
p0+i , where p0 is the initial value of p and i is the iteration
index, with the first iteration being 0

2. Values involved in comparisons can only be one of the
following: 0, i , len for integer comparisons; p0, p0 + i ,
p0 + len for pointer comparisons; and ∗p (i.e. p0[i]) and
constant characters for character comparisons;

3. The conceptual return value (i.e. what the loop computes)
is p0 + c , where c is the number of completed iterations.3

Definition 2 (Memoryless Backward Loop). Such loops are
defined similarly to forward memory loops, except that the
only string location being read inside the loop body is p0 +
(len − 1) − i and the return value is p0 + (len − 1) − c .

3I.e., the number of times execution reached the end of the loop body

and jumped back to the loop header [2].
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Table 1. The vocabulary employed by our technique.

Gadget Regexp Effect

rawmemchr M(.) result = rawmemchr(result, $1)

strchr C(.) result = strchr(result, $1)

strrchr R(.) result = strrchr(result, $1)

strpbrk B(.+)\0 result = strpbrk(result, $1)

strspn P(.+)\0 result += strspn(result, $1)

strcspn N(.+)\0 result += strcspn(result, $1)

is nullptr Z skipInstruction = z != NULL

is start X skipInstruction = result != s

increment I result++

set to end E result = s + strlen(s )

set to start S result = s

reverse ^V reverses the string (see §2.2)

return F return result and terminate

2.2 Vocabulary

Given a string loop, our technique aims to translate it into
an equivalent program consisting solely of primitive opera-
tions (such as incrementing a pointer) and standard string
operations (such as strchr). For convenience, we represent
the synthesised program as a sequence of characters, each
character representing a primitive or string operation. To
make things concrete, we show the elements (called gadgets)
of our working vocabulary in Table 1.

To summarise the loop in Figure 1, we need to first repre-
sent the call to strspn. We choose the character P to be the
opcode for calls to strspn. We do not have to represent the
first argument in strspn as it is implicitly the string the loop
is operating on. The second argument is a string containing
all the characters strspn counts in its span. We represent
this using the actual list of characters passed as the second
argument, followed by the \0 terminator character. Thus, the
call strspn(line, "␣\t") would be encoded by P␣\t\0.
Extended regular expressions provide a concise way of

presenting the vocabulary. A string matching the regular
expression P(.+)\0 represents a call to strspn, where the
second argument consists of the characters in the capture
group (.+) of the regular expression. In Table 1, we refer to
the first capture group as $1.
To formally define the meaning of a program in our lan-

guage (e.g. of a sequence like P␣\t\0), we define an inter-
preter that operates on such sequences of instructions (char-
acters) and returns an offset in the original string. The execu-
tion of the interpreter represents the synthesised program.
A partial interpreter that can handle three of our vocab-

ulary gadgets (strspn, is nullptr and return) is shown in Al-
gorithm 1. The interpreter has an immutable input pointer
register (s , the original string pointer on which the loop oper-
ates), a return pointer register (result ) and a skip instruction
flag (skipInstruction).
The interpreter loops through all the instructions in the

proдram (lines 4ś20). If the skip instruction flag is set, the
interpreter skips the next instruction and resets the flag

Algorithm 1 Program interpreter for a vocabulary of three
gadgets: strspn, is nullptr and return

1: function Interpreter(s , proдram)

2: result ← s

3: skipInstruction ← false

4: foreach instruction ∈ proдram do

5: if skipInstruction then

6: skipInstruction ← false

7: continue

8: end if

9: arдuments ← InstructionArgs(instruction)

10: switch OpCode(instruction) do

11: case ’P’ // strspn

12: result ← result+ strspn(result , arдuments)

13: case ’Z’ // is nullptr

14: skipInstruction ← result ! = NULL

15: case ’F’ // return

16: return result

17: default

18: return invalidPointer

19: end switch

20: end foreach

21: return invalidPointer

22: end function

(lines 5ś8). Otherwise, it reads the next instruction and inter-
prets each gadget type accordingly, by either updating the
result register or the skipInstruction flag (lines 9ś16). If the
loop runs out of instructions or the opcode is unknown, we
return an invalid pointer (lines 17ś18). This ensures that mal-
formed programs never have the same output as the original
loop and are therefore not synthesised.

Consider running the interpreter on the program P␣\t\0F.
The interpreter initialises result to the string pointer s and
skipInstruction to false. It then reads the next instruc-
tion, P, and thus updates result to result + strspn(result,

"␣\t"). Finally, it reads the next instruction, F, and returns
the result. Therefore, the synthesised program is:

result = s;

skipInstruction = false;

if (!skipInstruction)

result = result + strspn(result, "␣\t");

else skipInstruction = false;

if (!skipInstruction)

return result;

else skipInstruction = false;

which is equivalent to return = s + strspn(result, "␣\t").
To also illustrate the use of the is nullptr gadget covered

by Algorithm 1, consider the slightly enhanced program
ZFP␣\t\0F. In this case, the interpreter will synthesise the
following code for the added ZF prefix, which returns NULL
if the string is NULL:

result = s;

if (!skipInstruction)
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skipInstruction = result != NULL;

else skipInstruction = false;

if (!skipInstruction)

return result;

else skipInstruction = false;

Table 1 summarises the full set of vocabulary we devised
to express the loops we wanted to target. The first column
in the table gives the name of the gadget, while the second
shows the extended regular expression that describes the
gadget. The third column shows the effect this gadget has
on the Interpreter. Note that $1 gets replaced with the
characters from the regex capture group.

Meta-characters. To more easily synthesise gadgets that
take sets of characters as arguments, such as strspn, we
introduce the notion of meta-characters. These are single
symbols in our synthesised programs that expand into sets
of characters. By reducing the program size, this helps us
synthesise loops that contain calls to macros/functions such
as isdigit in a more scalable way. For example, instead of
having to synthesise 10 characters ("0123456789"), we can
synthesise just a single meta-character (which we chose to
be ’\a’). Similarly, we also use a whitespace meta-character
which represents "␣\t\n"). These are the only two meta-
characters that we found beneficial in our experiments, but
more could be added if needed. At the same time, we note that
meta-characters are not strictly necessary, i.e. the synthesis
algorithm would work without them, but would take longer.

Reverse instruction. The reverse instruction can only occur
as the first instruction of a synthesised program. Its purpose
is to facilitate the summarisation of backward loops. For ex-
ample, reverse and strchr should be equal to strrchr . However,
not all functions have a reverse version, so the purpose of
the reverse instruction is to enable similar functionality for
other functions such as strspn. For instance, such function
can be easily expressed in terms of the vocabulary offered
by string constraint solvers.
The reverse instruction takes the string s and copies it

into a new buffer in reverse order. It then sets result to this
new buffer. It also enhances the behaviour of the return

instruction: instead of simply returning result , which now
points to a completely different buffer, it maps the offset in
the new buffer back into the original buffer.

2.3 Counterexample-Guided Synthesis

Our synthesis approach is inspired by Sharma et al.’s work on
synthesising adapters between different C library implemen-
tations [42]. Their vocabulary gadgets are able to translate
the interface of one library into that of another. Examples of
gadgets include swapping arguments or introducing a new
constant argument to a function.
Their approach uses counterexample-guided inductive

synthesis (CEGIS) based on symbolic execution to synthesise
the adapters in that vocabulary. In brief, this means they

first take a symbolic adapter, constrain it so that it correctly
translates all the currently known examples, then concretize
the adapter and try to prove the two implementations are
the same up to a bound. If that is successful, the synthesis
terminates, otherwise they obtain a counterexample, add it
to the list of known examples and repeat.

We took their approach further to synthesise whole func-
tions instead of just adapters between function interfaces.

Before describing the algorithm in detail, we give a short
introduction to symbolic execution (in its modern dynamic

symbolic execution or concolic execution variant). Symbolic
execution [7, 8, 16, 25] is a program analysis technique that
systematically explores paths in a program using a constraint
solver. Symbolic execution executes the program on sym-

bolic input, which initially is allowed to take any value. Then,
statements depending on the symbolic input (directly or in-
directly) add constraints on the input. In particular, branches
depending on the symbolic input lead symbolic execution to
check the feasibility of each side of the branch using a con-
straint solver. If both sides are feasible, execution is forked to
follow each side separately, adding appropriate constraints
on each side. For instance, if the symbolic input is x and
the branch if x > 0 is the first statement of the program,
then both sides are feasible so execution is forked into two
paths: one path adds the constraint that x > 0 and follows
the then side of the branch, while the other path adds the
constraint that x ≤ 0 and follows the else side of the branch.
Once a path terminates, a constraint solver can be used to
generate concrete solutions to the set of constraints added
on that path. For instance, if the path constraints are x > 0

and x < 100, the constraint solver might return solution
x = 30, which represents a concrete input that is guaranteed
to execute the path on which the constraints were gathered.
In some contexts, including CEGIS, such inputs are referred
to as counterexamples.
Our approach focuses on the types of loops described

in §2.1, which can be extracted into functions with a char*

loopFunction(char* s) signature. However, the technique
should be easy to adapt to loops with different signatures.
Our vocabulary of gadgets is the one described in §2.2.
Algorithm 2 presents our approach in detail. The algo-

rithm is a program that when executed under symbolic exe-
cution performs CEGIS and returns the synthesised program
representing the loop. This program is just a sequence of
characters which can be interpreted as discussed in §2.2.
The algorithm makes use of the following symbolic exe-

cution operations:

• SymbolicMemObj(N) creates a symbolic memory object
of size N bytes.
• Assume(cond) adds the condition cond to the current
path constraints.
• Concretize(x) makes symbolic input x concrete, by ask-
ing the constraint solver for a possible solution.
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Algorithm 2 Synthesis algorithm, which is run under sym-
bolic execution.

1: counterexamples ← ∅

2: while Timeout not exceeded do

3: proд ←SymbolicMemObj(MAX_PROG_SIZE)

4: foreach cex ∈ counterexamples do

5: Assume(Original(cex ) = Interpreter(cex , proд))

6: end foreach

7: KillAllOthers( ) ▷ Only need a single path

8: proд ← Concretize(proд)

9:

10: example ←SymbolicMemObj(MAX_EX_SIZE)

11: example[MAX_EX_SIZE − 1]← ’\0’

12: StartMerge( )

13: oriдinalOutput ← Original(example)

14: synthesizedOutput ← Interpreter(example , proд)

15: isEq ← oriдinalOutput = synthesizedOutput

16: EndMerge( )

17:

18: if IsAlwaysTrue(isEq) then

19: return proд ▷We are done

20: end if

21:

22: Assume(!isEq)

23: cex ← Concretize(example)

24: counterexamples ← counterexamples ∪ {cex }

25: end while

• KillAllOthers() prunes all the paths, except the path
first reaching this call.
• IsAlwaysTrue(cond) returns true iff the condition cond

can only be true.
• StartMerge() and EndMerge() merge all the paths be-
tween these two calls into a single path, by creating a big
disjunction of all the path constraints of the merged paths.

The target loop we are trying to synthesise is represented
by the Original(s) function, with s the input string. Inter-
preter(s, program) executes the program on string s as
discussed in Algorithm 1. Our aim is to synthesise a program
such that: ∀s.Interpreter(s, program) = Original(s).
Algorithm 2 starts by initialising the set of all counterex-

amples encountered so far to the empty set (line 1). Coun-
terexamples in this context are strings C on which the origi-
nal loop and the synthesised program were found to behave
differently, i.e. Interpreter(C, program) , Original(C).
The algorithm is centered around a main loop (lines 2ś

25), which ends either when a synthesised program is found
or a timeout is exceeded. On each loop iteration, we create
a new symbolic sequence of characters representing our
program (line 3) and constrain it such that its output on
all current counterexamples matches that of the original
function (lines 4-6).

When the program is run through the Interpreter func-
tion, there might be multiple paths on which the program

is equivalent to the Original function for the current coun-
terexamples. However, we are only interested in one of them.
The computation spent on exploring other paths at this
point is better used in the next iteration of the main loop,
which will have more counterexamples to guide the synthe-
sis. Therefore we only keep a single path by calling KillAl-

lOthers (line 7). We also concretize the program (line 8) to
make the next step computationally easier.

The remainder of the loop body then focuses on finding a
new counterexample, if one exists. Lines 10ś15 attempt to
prove the Original function and program have the same
effect on a fresh symbolic string of up to length max_ex_size
on all possible paths. To be able to reason about all these
paths at once, we merge them using StartMerge() and End-
Merge() (lines 12ś16).

Variable isEq on line 15 is a boolean variable that encodes
whether the original loop and the synthesised program are
equivalent on strings up to length max_ex_size. Line 18
checks whether isEq can only take value true. If so, we know
that the synthesised program behaves the same as the orig-
inal loop on all strings of up to length max_ex_size (and
based on the proof in §3 on strings of arbitrary length) and
we can successfully return the program.

Otherwise, we need to get a new counterexample and re-
peat the process in a next iteration of the main loop. For this,
we first prune the paths where isEq is true by assuming it is
false (line 22). Then, we obtain a counterexample by asking
for a concrete solution for the example string that meets the
current path constraints (where isEq is false) (line 23) and
add it to the set of counterexamples (line 24).

3 Equivalence of Memoryless Programs

In §2, we presented a CEGIS-based approach for translating
a class of string-manipulating loops into programs consist-
ing solely of primitive operations (such as incrementing a
pointer) and string operations (such as strchr). However, the
synthesised programs were only symbolically tested to have
the same effect as the original loop for all strings up to a
given bound. In this section, we show how we can lift these
bounded checks into a proof of equivalence.
Intuitively, we show that the loops we target cannot dis-

tinguish between executing on a łlongž string and executing
on its suffix. In both executions, the value returned by the
loop is uniquely determined by the number of iterations
it completed, and every time the loop body operates on a
character c , it follows the same path, except, possibly, when
scanning the first or last character.

Technically, we define a syntactic class ofmemoryless spec-

ification (Definition 3), which scans the input string either
forwards or backwards, and terminates when it reaches a
character which belongs to a given set X . The choice of this
class of specification is a pragmatic one: We observed that all
the programs we synthesise can be specified in this manner.
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We then prove that if an arbitrary loop respects a memory-
less specification on all strings up to length 3 and the original
loop also adheres to certain easy-to-verify mostly-syntactic
restrictions, the loop respects the specification on arbitrary
strings. Essentially, we prove a small-model theorem: We
show that any divergence from the specification on a string
of length k + 1, for 3 ≤ k , can be obtained on a string of
length k .
The proof goes in two stages. First, we prove a small-

model theorem (Theorem 3.4) for a class of programs (mem-
oryless loops) which is defined semantically. For example,
the definition restricts the values the loop may use in com-
parisons. Second, §3.3 shows most of our programs respect
certain easy-to-check properties. The combination of the
aforementioned techniques allows us to provide a conserva-
tive technique for verifying that the synthesised program is
equivalent to the original loop.

Notations. We denote the domain of characters by C and
use C0 = C ∪ {null} for the same domain extended with a
special null character. We denote (possibly empty) sequences
of non-null characters by C∗. We refer to a null-terminated
array of characters as a string buffer (string for short). We
denote the set of strings by s ∈ S. We write constant strings
inside quotation marks. For example, the string s = "abc"

is an array containing four characters: ‘a’, ‘b’, ‘c’, and null.
Note that if ω = abc then s = "ω".4 We use "" to denote
an empty string, i.e., one which contains only the null char-
acter. The length of a string s , denoted by strlen(s), is the
number of characters it contains excluding the terminating
null character. For example, strlen("abc") = |abc| = 3

and strlen("") = 0. We denote the ith character of a string
s by s[i]. Indexing into a string is zero-based: s[0] is the first
character of s and s[strlen(s)] is its last. Note that the latter
is always null. We write "cω" resp. "ωc" to denote a string
whose first resp. penultimate character is c . We denote the

complement of a set of characters X by X = C0 \ X .

3.1 Memoryless Specifications

Definition 3 (Memoryless Specification). A memoryless

specification of a string operation is a function whose def-
inition can be instantiated from the following schema by
specifying the missing code parts (start, end, R, and X ):

char* func(char *input) {

int i, len = strlen(input);

for (i = start to end)

if (input[i] ∈ X)

return input + i;

return R;

}

The schema may be instantiated to a function that traverses
the input buffer either forwards or backwards: In a forward
traversal, start = 0, end = len - 1, and R = input + len. In a

4ω is a mathematical sequence of characters, s is a string buffer.

backward traversal, start = len - 1, end = 0, and R = input.
X is a set of characters.

Example 3.1. It is easy to see that many standard string
operations respect a memoryless specification. For exam-
ple, the loop inside strchr(p,c) resp. strrchr(p,c) can
be specified using a forward resp. backward memoryless
specification with X set to {c}. The loop inside strspn(p,s)
has a memoryless forward specification in which X contains
all the characters except the ones in s.

In this section we focus exclusively on memoryless for-
ward loops. The definitions and proofs for memory backward
loops are analogous, and are omitted for space reasons.
We use JPK for the semantic function of P , that is, JPK is

the value returned by P when its string buffer is initialised to
s ∈ S. We refer to the character that a memoryless forward
loop may observe in the ith iteration as the current character
of iteration i , and omit the iteration index i when clear from
context.

Definition 4 (Iteration Counter). Let P be a memoryless
forward loop, as per Definition 1. We define ∆P (s ) as the
number of iterations that P completes when its input is a
string s . If P does not terminate on s , then ∆P (s ) = ∞.

Note that the semantic restrictions imposed on memory-
less loops ensures that JPK and ∆P have a one-to-one map-
ping. Thus, in the rest of the paper, we use these notations
interchangeably.

3.2 Bounded Verification of Memoryless

Equivalence

Theorem3.2 (Memoryless Truncate). Let P be amemoryless

forward loop, and let ω,ω ′ ∈ C∗.

1. If ∆P ("ωω
′") < |ω |, then ∆P ("ωω

′") = ∆P ("ω").

2. If ∆P ("ωω
′") ≥ |ω |, then ∆P ("ω") ≥ |ω |.

Proof. 1. Since P performs fewer than |ω | complete itera-
tions, Definition 1 ensures that P can only observe the prefix
0..( |ω | − 1) of its input buffer "ωω ′",5 which are all charac-
ters ofω. Moreover, all comparisons between integers 0, i, len
or pointers p0,p0 + i,p0 + len must return identical values
whether len = |ω | or len = |ωω ′ |, since i < |ω | (and thus
i < |ωω ′ |) in all of these iterations. Therefore P behaves the
same when executing on ω and on ωω ′, and thus it must be
that JPK("ω") = JPK("ωω ′").

2. Similarly, the first |ω | iterations are identical between
JPK("ωω ′") and JPK("ω"). Since the former carried these
|ω | iterations to completion, so must the latter perform at
least as many iterations. □

5When P performs k complete iterations, then it can read at most k + 1

(rather than k ) characters from the input string. The last one occurs in the

(incomplete) iteration that exits the loop.
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Note that if P is safe, that is, never reads past the end
of the string buffer, then ∆P ("ω") ≥ |ω | in fact implies
∆P ("ω") = |ω |. At this point we make no such assumptions;
later we will see that if P is tested against a specification
which is itself safe, then indeed it is guaranteed that P is also
safe.

LetQ0 (c ) denote whether P completes (at least) the first it-
eration of the loop when it executes on some single-character

string "c", i.e., Q0 (c ) ≜ (∆P ("c") > 0) .

If Q0 = false, i.e., ∀c ∈ C.¬Q0 (c ), then obviously P never
gets to the second iteration of the loop. Otherwise, let a ∈ C
be a character such that Q0 (a) is true. We can continue to
define Q1 as:

Q1 (c ) ≜ (∆P ("ac") > 1) (1)

It is important to note that the choice of a does not affect
the decisions made at the second iteration: again, based on
the restrictions imposed by Definition 1, the program cannot
record the current character in the first iteration and transfer
this information to the second iteration; hence (1) is well
defined. When there is no corresponding a, let Q1 (c ) = false.

We now define a family of predicates Qi over the domain
of characters C0 (including null) that describe the decision
made at iteration i of the loop based on the current character,
c ∈ C0. We use these predicates to show that the decisions
taken at iteration i are always the same as those taken at
iteration 1 (which is the second iteration), and depend solely
on the current character. The definition is done by induction
on i:

Qi+1 (c ) ≜ (∆P ("ωc") > i + 1)

for some ω = a0 · · ·ai such that
∧

j=0..i Q j (aj )
(2)

As before, the choice of ω is insignificant, and if no such
ω exists, let Qi+1 (c ) = false.

Claim 1. Qi (c ) = Q1 (c ) for any i ∈ N
+ and c ∈ C0.

Proof. The definition of Qi is based on the choice of P at
iteration i when running on a string of length i + 1. At that
point, the situation is that 0 < i < len. Therefore, again,
the observations of P at iteration i are no different from
its observations at iteration 1, assuming the same current
character c; therefore Qi (c ) = Q1 (c ). □

The reason Claim 1 states that Qi (c ) = Q1 (c ) instead of
Qi (c ) = Q0 (c ) is that according to our restrictions, the be-
haviour of P when operating on the first character of the
string might differ from its behaviour on all other characters
(this is because P can compare the iteration index to zero).
Note that a similar issue does not occur concerning the last
character of the string as the latter is always null.

Theorem 3.3 (Memoryless Squeeze). Let P be a memoryless

forward loop. We construct a buffer "aωb" where a,b ∈ C and

ω ∈ C∗.

1. If ∆P ("aωb") = 1 + |ω |, then ∆P ("ab") = 1.

2. If ∆P ("aωb") > 1 + |ω |, then ∆P ("ab") > 1.

Proof of Theorem 3.3. Let aωb = a0a1 · · ·a |ω |+1 be the char-
acters of aωb (in particular, a0 = a, a |ω |+1 = b).
1. Assume ∆P ("aωb") = 1 + |ω |, then Qi (ai ) for all 0 ≤

i ≤ |ω |, and ¬Q |ω |+1. Therefore, Q0 (a) (since a0 = a), and
¬Q |ω |+1 (b). From Claim 1, also ¬Q1 (b). Hence JPK("ab")
completes the first iteration and exits the second iteration;
so ∆P ("ab") = 1.
2. Assume ∆P ("aωb") > 1 + |ω |, then Qi (ai ) for all 0 ≤

i ≤ |ω | + 1. In this case we get Q0 (a) and Q |ω |+1 (b). Again
from Claim 1,Q1 (b). Hence JPK("ab") completes at least two
iterations, and ∆P ("ab") > 1. □

Theorem 3.4 (Memoryless Equivalence). Let F be a memo-

ryless specification with forward traversal and character set

X , and P a memoryless forward loop. If for every character

sequence ω ∈ C∗ of length |ω | ≤ 2 it holds that JPK("ω") =
F ("ω"), then for any string buffer s ∈ S (of any length),

JPK(s ) = F (s ).

Proof. Assume by contradiction that there exists a string
s ∈ S on which P and F disagree, i.e., JPK(s ) , F (s ). We show
that we can construct a string s ′ such that JPK(s ′) , F (s ′)

and |s ′ | ≤ 2, which contradict our hypothesis.
We define ∆F (s ) as the number of iterations the specifica-

tion F performs before returning. Definition 1 ensures that
0 ≤ ∆F (s ) and ∆F (s ) ≤ strlen(s). By assumption, F is a
forward loop, i.e., start = 0 and end = len. Thus, ∆F (s ) is the

length of the longest prefix τ of s such that τ ∈ X
∗
.

Since JPK(s ) , F (s ), we know that ∆P (s ) , ∆F (s ). If
strlen(s) ≤ 2, we already have our small counterexam-
ple. Otherwise, we consider two cases.
Case 1: ∆P (s ) < ∆F (s ). If ∆P (s ) = 0, let s ′ = "a" where a is

the first character of s . According to Theorem 3.2, ∆P (s
′) = 0.

However, a < X (otherwise ∆F (s ) = 0 = ∆P (s ), which we
assumed is false), therefore ∆F (s

′) = 1. ◦

If ∆P (s ) > 0, we decompose s into "aωbω ′", such that
∆P (s ) = |ω | + 1. We have |aωb | > |ω | + 1, hence by The-
orem 3.2, ∆P ("aωb") = ∆P ("aωbω

′") = |ω | + 1. Let s ′ =
"ab"; by Theorem 3.3, we obtain ∆P (s

′) = 1. We know that
∆F ("aωbω

′") ≥ |ω | + 2, so aωb ∈ X ∗, in particular a,b ∈ X .
Therefore ∆F (s

′) = 2. ◦

Case 2: ∆P (s ) > ∆F (s ). If ∆F (s ) = 0, let s ′ = "a" where a is

the first character of s . Since ∆P (s ) ≥ |s
′ | = 1, and according

to Theorem 3.2, we get ∆P (s
′) ≥ 1. ◦

If ∆F (s ) > 0, we again decompose s into "aωbω ′", this
time such that ∆F (s ) = |ω | + 1. From this construction
we get aω ∈ X ∗ (in particular a ∈ X ) and b < X . Since
∆P (s ) ≥ |ω | + 2 = |aωb |, and according to Theorem 3.2, we
get ∆P ("aωb") ≥ |ω | + 2 > |ω | + 1. Let s

′
= "ab", and we

know from Theorem 3.3 that ∆P (s
′) > 1. In contrast, from

a ∈ X ,b < X established earlier, ∆F (s
′) = 1. ◦
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In both cases (each with its two sub-cases, tagged with ◦),
the end result is some |s ′ | = {1, 2} for which ∆P (s

′) , ∆F (s
′).

This necessitates that JPK(s ′) , F (s ′). □

We note that it is easy to see that we can allow simple
loops to start scanning the string from the nth character of
the string instead of the first one provided we test that the
program is memoryless for strings up to length of n + 3.

Unterminated Loops. Some library functions (e.g. rawmemchr)
do not terminate on a null character, and even potentially
perform unsafe reads. Still, we want to be able to replace
loops in the program with such implementations as long
as they agree on all safe executions and do not introduce
new unsafe executions. This is done with a small adjustment
to Definition 3 which allows for unsafe specifications. The
details are mostly mundane and are described in the online
appendix.6

3.3 Bounded Verification of Memorylessness

We implemented the bounded verification as an LLVM pass.
The input LLVM bitcode was instrumented with assert com-
mands that check the memorylessness conditions. The in-
strumented bitcode was then fed to KLEE, which verified
no assertion violations occur on strings of length three and
under. For example, whenever two integer values are com-
pared, an instrumentation is inserted before the comparison
to check that the values compared are either i and len or i
and zero.
We provide in the online appendix a detailed proof that

this bounded verification is sufficient to show a loop is mem-
oryless for all lengths provided that the program respects
certain easily-check-able syntactic properties. These condi-
tion pertains to the way live variables are used as well as,
effectively, that in every iteration a variable either increases
its value by one or that its value is not changed in any itera-
tion. We show that if the program presents such a uniform
behaviour in its first three iterations, it is bound to do so in
any iteration. Thus, it suffices to check these properties on
strings of length up to three.

Using our technique, we could prove that 85 loops out of
the 115 meet the necessary conditions, spending on average
less than three seconds per loop. Invalid loops typically con-
tain constants other than zero, or change the read value by
some constant offset (e.g., in tolower and isdigit).

4 Evaluation

We implemented our synthesis algorithm on top of the popu-
lar KLEE symbolic execution engine [6]. We built on top
of commit 4432580, where KLEE already supports creat-
ing symbolic memory objects, adding path constraints, con-
cretizing symbolic objects and merging of paths. Thus, we
only needed to add support for KillAllOthers and IsAl-

waysTrue, which required under 20 LOC.

6Available at https://srg.doc.ic.ac.uk/projects/loop-summaries/

Table 2. Loops remaining after each additional filter.

Initial

loops

Inner

loops

Pointer

calls

Array

writes

Multiple

ptr reads

bash 1085 944 438 264 45

diff 186 140 60 40 14

awk 608 502 210 105 17

git 2904 2598 725 495 108

grep 222 172 72 42 9

m4 328 286 126 78 12

make 334 262 129 102 13

patch 207 172 88 67 20

sed 125 104 35 19 1

ssh 604 544 227 84 12

tar 492 432 155 106 33

libosip 100 95 39 30 25

wget 228 197 115 83 14

Total 7423 6448 2419 1515 323

We split our evaluation into three parts. First we describe
how we gathered a large set of loops from real programs
(§4.1). We then explore how many programs we can synthe-
sise from this database with respect to time, vocabulary and
maximum synthesised program size (§4.2). Finally, we evalu-
ate the applications of loop synthesis in scaling up symbolic
execution (§4.3), speeding up native execution (§4.4), and
refactoring code (§4.5). All the experiments were run on a
modern desktop PC with Intel i7-6700 CPU on Ubuntu 16.04
with 16GB of RAM.

4.1 Loop Database

We perform our evaluation on loops from 13 open-source
programs: bash, diff , awk, git, grep,m4,make, patch, sed, ssh,
tar , libosip and wget. These programs were chosen because
they are widely-used and operate mostly on strings.

The process for extracting loops from these programs was
semi-automatic. First, we used LLVM passes to find 7,423
loops in these programs and filter them down to 323 candi-
date memoryless loops. Then we manually inspected each
of these 323 loops and excluded the ones still not meeting all
the criteria for memoryless loops. The next sections describe
in detail these two steps.

4.1.1 Automatic Filtering

After compiling each of the programs to LLVM IR, we apply
LLVM’s mem2reg pass. This pass removes load and store
instructions operating on local variables, and is needed in
our next step. LLVM’s LoopAnalysis was then used to iterate
through all the loops in the program, and filter out loops
which are not memoryless. We automatically prune loops
that have inner loops and then loops with calls to functions
that take pointers as arguments or return a pointer.
Then, we filter out loops containing writes into arrays.

We assume that due to mem2reg pass, any remaining store
instructions write into arrays and not into local variables.
Therefore we miss loops where this assumption fails, as they

881

https://srg.doc.ic.ac.uk/projects/loop-summaries/


Computing Summaries of String Loops in C PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

get excluded based on containing a store instruction. Finally,
we remove loops with reads from multiple pointer values.
This ensures that we only keep loops with reads of the form
p0 + i as per Definitions 1 and 2 of memoryless loops.

Table 2 shows, for each application considered, how many
loops are initially selected (column Initial loops) and how
many are left after each of the four filtering steps described
above (e.g., column Pointer calls shows how many loops are
left after both loops with inner loops and loops with calls
taking or returning pointers are filtered out). In the end, we
were left with between 9 and 108 loops per application, for a
total of 323 loops.

4.1.2 Manual Filtering

We manually inspected the remaining 323 loops and manu-
ally excluded any loops that still did notmeet thememoryless
loops criteria from §2.1.

Two loops had goto in them, which meant they jumped to
some other part of the function unrelated to the loops. Three
loops had I/O side effects, such as outputting characters with
putc (note that the automatic pointer calls filter removed
most of the other I/O related loops).
A total of 74 loops did not return a pointer, and an ad-

ditional 70 loops had a return statement in their body. 28
loops had too many arguments. For example, incrementing a
pointer while it is smaller than another pointer would belong
into this category, as the other pointer is an łargumentž to
the loop. Finally, 31 loops had more than one output, e.g.
both a pointer and a length.

Note that some of these loops could belong into multiple
categories, we just record the reason for which they were
excluded during ourmanual inspection. In total, wemanually
excluded 208 loops, so we were left with 323 - 208 = 115
memoryless loops on which to apply our synthesis approach.
As part of this manual step, we also extracted each loop

into a function with a char* loopFunction(char*) signature.
While this could be automated at the LLVM level, we felt
it is important to be able to see the extracted loops at the
source level.

4.2 Synthesis Evaluation

We evaluate our synthesis algorithm in several ways. First,
we report its effectiveness using a generous timeout (§4.2.1),
then we analyse how results vary with the size of the syn-
thesised program and the timeout (§4.2.2), and finally how
they vary with the size and shape of the vocabulary (§4.2.3).

4.2.1 Results with a Large Timeout

We first aim to understand how well our synthesis approach
performs within a fixed and generous budget. We choose
to run the synthesis with a 2-hour timeout, which is a rea-
sonably long timeout for symbolic execution. We use the
full vocabulary, as we want to capture as many loops as

Table 3. Successfully synthesised loops in each program and
the time taken by the synthesis process (with all gadgets,
max_prog_size=9, max_ex_size=3 and timeout=2h).

% synthesised Average (min) Median (min)

bash 12/14 5.7 5.3

diff 3/5 5.1 5.3

awk 3/3 2.1 0.2

git 18/33 3.1 2.6

grep 1/3 4.4 4.4

m4 1/5 4.4 4.4

make 0/3 n/a n/a

patch 9/13 1.8 0.2

sed 0/0 n/a n/a

ssh 2/2 2.7 2.7

tar 10/15 10.2 4.5

libosip 12/13 12.6 5.3

wget 6/6 6.3 1.5

Total 77/115 6.1 4.5

possible. Finally, we choose a maximum synthesised pro-
gram size (max_prog_size in Alg. 2) of 9 characters based
on some exploratory runs, where going above this number
made synthesis very slow. The bound for checking program
equivalence (max_ex_size in Alg. 2) was set to length 3,
which was sufficient for our proof that shows equivalence
for all string lengths.

Table 3 summarises the time it took to synthesise loops in
each program. In total, we successfully synthesised 77 out of
115 loops, most under 10 minutes, well below our 2h timeout.
Note that the median is sometimes significantly smaller that
the average, indicating that a few loops were particularly
difficult to synthesise. For example, in libosip 10 loops are
synthesised within 10 minutes, while another 2 take well
over an hour to complete. These 2 loops are summarised by a
strspn with a four character argument, whereas most other
loops have just 1 or 2 characters as arguments. strpbrk, is
start and reverse gadgets were not synthesised during this
experiment.

4.2.2 Influence of Program Size and Timeout

We next investigate how our synthesis approach performs
with respect to the synthesised program size and the chosen
timeout value. To do so, we use an iterative deepening ap-
proach where we gradually increase the program size from 1
to 9 and plot the number of programs we can synthesise. We
run each experiment with timeouts of 30 seconds, 3 minutes,
10 minutes and 1 hour.

More generally, we advocate using such an iterative deep-
ening approach when summarising loops, as this strategy
gives the smallest program we can synthesise for each loop,
with reasonable additional overhead.

Figure 2 shows the results. Unsurprisingly, we cannot syn-
thesise any programs with program size 1 as such a program
cannot express anything but identity in our vocabulary. How-
ever, evenwith size 2 we can synthesise one program, namely
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Figure 2. Number of programs synthesised as we increase
program size, with different timeouts.

EF, which iterates until the null character is encountered and
then returns the pointer.
Figure 2 also shows that we can synthesise most loops

with program size 5 and a timeout of only 3 minutes, which
is encouraging for using this technique in practice. Increas-
ing the program size or the timeout further provides only
marginal benefits.
Another interesting observation is that there are some

dips in the graph, e.g. when we increase the program size
from 5 to 6 while keeping a 3-minute timeout. This is of
course because increasing the program size has an impact on
performance, as the search space of our synthesis algorithm
increases with each additional character in the synthesised
program.

4.2.3 Optimising the Vocabulary

We next explore how the performance of the synthesis ap-
proach depends on the gadgets included in the vocabulary,
and propose a method for optimising the vocabulary used.
Before we go into discussing results, let us first formalise
our investigation.
Let N be the number of gadgets in our universe, and

G1,G2, . . .GN be the actual gadgets. In our concrete instan-
tiation presented in Table 1, N = 13 and the gadgets are
rawmemchr , strchr , etc.
We represent the vocabulary employed by the synthesis

algorithm using a bitvector v ∈ {0, 1}N , where bit vi of the
vector is set if and only if the gadgetGi is used. For instance, a
vocabulary allowing only the rawmemchr instruction would
be represented as 1000000000000, a full vocabulary would be
1111111111111, and the vocabulary with three gadgets whose
interpreter is shown in Algorithm 1 would be represented
as 0000101000001.
The number of programs we can synthesise in a given

time can be seen as a function of the vocabulary used, let us
call it the success function s : {0, 1}N → N.

Understanding the influence of the vocabulary and choos-
ing the best possible vocabulary is then equivalent to ex-
ploring the behaviour of s . While we could exhaustively
evaluate s , it would take a long time, as we would need to

Table 4. The 7 vocabularies that perform better than the
2-hour experiment of §4.2.1.

Vocabularies Synthesised programs

MPNIFV 81

MPNBIFV 80

PNIFV, MPNIFVS, MPNBXIFV 78

213 = 8192 experiments. Therefore, we use instead Gaussian
Processes [29] to effectively explore s .
While describing Gaussian Processes (GPs) in detail is

beyond the scope of this paper, we will give an intuition as
to why they are useful in this case. GPs can be thought of as
a probability distribution over functions. Initially, when we
know nothing, they can represent any function (including s)
albeit with small probability. The main idea is to get a real
evaluation of s and refine the GP to better approximate s .
Let’s say we evaluate s (v ) = n. We can now refine the GP to
have the value n at v with 0 variance. The variances around
v also decrease, while variances far away from v do not.

We can repeat this refinement for other values of v to get
an increasingly more precise model of s with the GP. The
GP also tells us where to evaluate next. We can use GPs to
optimise sÐi.e. to optimise the vocabulary with respect to
the number of programs we can synthesiseÐby looking at
points where s is likely to have a large value [46].
We used GPyOpt [4] for an implementation of GPs. We

use an expected improvement acquisition function, which is
well suited for optimisation.

In our experiments, we chose to optimise the vocabulary
by using a maximum program size of 7 and a timeout of 5
minutes per loop. As we will show, this is enough to beat the
results of §4.2.1 that used a maximum program size of 9 and
a much larger 2-hour timeout per loop. Our optimised vocab-
ulary is obviously optimised for our benchmarks and might
not generalise to a different set of benchmarks, however the
optimisation technique should generalise.

The optimisation process evaluated s 40 times, and to our
surprise, found 5 vocabularies that achieve better results in
5 minutes/loop than those achieved in 2 hours/loop in §4.2.1.
These vocabularies are shown in Table 4. The largest number
of loops synthesised was 81, for a vocabulary containing
rawmemchr , strspn, strcspn, increment, return and reverse.
The smallest vocabulary which still beats the results of §4.2.1
(in just 5 minutes) consists of only 5 gadgets: strspn, strcspn,
increment, return and reverse. We note that the reverse gadget
is never synthesised in the 2-hour experiment, because it
is too expensive in the context of a full vocabulary. But as
the GP discovered significantly smaller vocabularies, reverse
was now used several times.

We also note that the programs synthesised by the best
GP-discovered vocabulary (MPNIFV) do not subsume the pro-
grams synthesised by the full vocabulary used in §4.2.1. For
instance, there were 11 loops synthesised by MPNIFV and
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Figure 3. Mean time to execute all loops with str.KLEE and
vanilla.KLEE, as we increase the length of input strings.

not the full vocabulary. These were mostly loops that look
for a strspn from the end of the string. Conversely, there
were 7 loops synthesised by the full vocabulary but not the
MPNIFV vocabulary. Three of these were loops that required
3 arguments to strspn, one was a strchr , and 3 were a strrchr
loop. Overall, the vocabularies in Tables 3 and 4 synthesised
88 out of the 115 loops.

4.3 Loop Summaries in Symbolic Execution

The next three sections discuss various scenarios that can
benefit from our loop summarisation approach: symbolic
execution (this section), compiler optimisations (§4.4) and
refactoring (§4.5).
Recent years have seen the development of several effi-

cient constraint solvers for the theory of strings, such as
CVC4 [28], HAMPI [24] and Z3str [5, 53, 54]. These solvers
can directly benefit symbolic execution, a program analysis
technique that we also use in our approach. However, to be
able to use these solvers, constraints have to be expressed
in terms of a finite vocabulary that they support; standard
string functions can be easily mapped to this vocabulary, but
custom loops cannot.

To measure the benefits of using a string solver instead of
directly executing the original loops, we wrote an extension
to KLEE [6] (based on KLEE revision 9723acd) that can trans-
late our loop summaries into constraints over the theory of
strings and pass them to Z3 version 4.6.1. We refer to this
extension as str.KLEE, and to the unmodified version of KLEE
as vanilla.KLEE.

Figure 3 shows the average time difference across all loops
between these two versions of KLEE when we grow the
symbolic string length. We use a 240-second timeout and
show the average execution time across all loops. For small
strings of up to length 8 the difference is negligible, but then
it skyrockets until we hit a plateau where some loops start to
time out with vanilla.KLEE. In contrast, str.KLEE’s average
execution time increases insignificantly, with an average
execution time under 0.36s for all string lengths considered.
Figure 4 shows the speedup achieved for each loop by

str.KLEE over vanilla.KLEE for symbolic input strings of
length 13. For over half of the loops, str.KLEE achieves a
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Figure 4. The speedup for each loop by str.KLEE over
vanilla.KLEE for inputs of length 13, sorted by speedup value.

speedup of more than two orders of magnitude, with sev-
eral loops experiencing speedups of over 1000x (these in-
clude loops where str.KLEE times out, and where the actual
speedup might be even higher). For others, we see smaller
but still significant speedups. There is a single loop where
str.KLEE does worse by a factor of 2.5x; this is a strlen func-
tion where it takes 1.4s, compared to 0.5s for vanilla.KLEE.

4.4 Loop Summaries for Optimisation

Compilers usually provide built-in functions for standard
operations such as strcat, strchr , strcmp, etc. for optimisation
purposes7,8. The reason is that such functions can often be
implemented more efficiently, e.g. by taking advantage of cer-
tain hardware features such as SIMD instructions. In addition,
compilers often try to identify loops that can be translated
to such built-in functions. E.g., LoopIdiomRecognize.cpp in
LLVM 8 łimplements an idiom recogniser that transforms
simple loops into a non-loop form. In cases that this kicks
in, it can be a significant performance win.ž9

However such loop recognises are typically highly spe-
cialised for certain functions, so we wanted to understand
if our more general technique could be helpful to compiler
writers in recognising more loops. To do so, we built a simple
compiler that translates our vocabulary back to C. We then
benchmarked the compiled summary against the original
loop function.
We ran each function for 10 million times on a workload

of four strings about 20 characters in length. Picking the
strings has a large impact on the execution time and it is
difficult to choose strings that are representative across all
loops, since they come from different programs and modules
within those programs. Therefore, we make no claim that
this optimisation should always be performed, rather we try
to highlight that there are indeed cases where summarising
loops into standard string functions can be beneficial.

The programswere compiledwith GCC version 5.4.0 using
-O3 -march optimisation level. Figure 5 shows the results of
this experiment. The bars going up show cases in which the

7https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
8https://clang.llvm.org/docs/LanguageExtensions.html
9http://llvm.org/doxygen/LoopIdiomRecognize_8cpp_source.html
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Figure 5. Relative time between running the original loop
vs. running the synthesised program for each loop.

summarised version is faster, and bars going down cases in
which it is slower. Whether the summary achieves a speedup
or slowdown is mostly due to the function being synthesised.
For instance, loops summarised by strrchr see important
speedups because the glibc implementation of strrchr uses
hand-crafted assembly based on fast vectorized instructions.
Replacing the loop with a call to strrchr is beneficial here as
the compiler does not optimise the loop enough to compete
with handcrafted assembly.

By contrast, loops summarised by strspn are slower, be-
cause the glibc implementation of strspn builds a lookup
table of the characters it needs to span over, which is expen-
sive. This is because strspn is optimised for cases where one
wants to span over a large set of characters and the span
is large. In our example we had loops that e.g. simply skip
whitespace, which does not fit this pattern.

Therefore, our data suggests that it is always beneficial to
replace strrchr, whereas for strspn we should only replace
when the accept string is long. A similar analysis can be
performed for the other string functions in our vocabulary.

4.5 Loop Summaries for Refactoring

Our technique could also be incorporated into a refactoring
engine. We envision an IDE that would highlight certain
loops and suggest to developers a change that would re-
place them with more readable and less error-prone calls to
standard string functions.
We decided to evaluate the refactoring potential of our

loop summarisation approach by manually submitting some
patches that summarise loops in five open-source projects,
selected from those used to build our loop database (see §4.1).

We submitted patches to five different applications, three
of which accepted some or all of our proposed changes. Fig-
ure 6 shows three loop summarisation patches that were
accepted in patch, libosip and wget.
The responses we received show that depending on the

functionality involved, some developers prefer to have loops,
while others prefer functions. For example, developers who
rejected our strspn summaries cited as reasons strspn’s rela-
tive obscurity and the performance implications that we also
discovered in §4.4. On the other hand, the developers who

accepted our patches found the standard string functions
more readable. In wget, we also noticed prior patches from
developers that did similar replacements.

5 Limitations

Our approach, as presented, is limited by the single pointer
input/output interface to which loops have to conform. This
restriction could be relaxed. For example, allowing an integer
output instead of a pointer could be achieved with minor en-
gineering effort. Allowing for loops that take two strings as
input would be a larger effort. It would require both moder-
ate engineering effort and a new small-model theorem. The
synthesis will also require new gadgets conforming to the
two-pointer interface. The new small-model theorem could
be difficult to prove because the loop traverses two lists, but
could exploit the fact that the loops are traversed in-sync.

While the synthesis algorithm supports any code conform-
ing to the single pointer interface as gadgets, gadgets are
limited by the scalability of symbolic execution. The gadgets
we chose are either constant (i.e. isnull), linear (i.e. strchr )
or quadratic (i.e. strspn) in terms of their input size. Gadgets
of higher than quadratic complexity would likely make the
synthesis impractical.

We recognise that some of the loops we summarise could
be recognised bymore lightweight approaches such as source
code pattern matching or scalar evolution approaches such
as the one used by LLVM’s LoopIdiomRecognize. However,
it would be difficult to apply these approaches for complex
loops that require additional modifications, such as condi-
tionally incrementing a pointer after loop exit, setting it to
the end of the string etc. More generally, pattern matching
approaches require great manual effort in finding the pat-
terns and then encoding them. In fact, during development
we found it difficult to manually synthesise loops because
equivalence checking kept finding incorrectly-handled edge
cases, so we preferred to tweak the synthesis parameters
rather than attempting to manually synthesise the loops.

In §4.3, we show large increases in the scalability of sym-
bolic execution with our summaries. This does not directly
imply the same speed-ups would be observed when running
whole programs with loops summaries, however we believe
this work is an important step towards scaling symbolic
execution to large strings.

6 Related Work

Similar to our work, S-Looper [52] automatically summarises
loops with the aim of improving program analysis. Their
technique uses static analysis to enhance buffer-overflow
detection. Our work is more general in that it is applicable to
any analysis that operates on C directly, generating human-
readable summaries that can even be used for refactoring.
Godefroid and Luchaup [17] use partial loop summarisa-

tion to enable concolic execution to reason about multiple
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Program Before After

patch
while (*s != '\n')

s++;
s = rawmemchr(s, '\n');

libosip
while (('␣' == *pbeg) || ('\r' == *pbeg)

|| ('\n' == *pbeg) || ('\t' == *pbeg))

pbeg++;

pbeg += strspn(pbeg, "␣\r\n\t");

wget
p = path + strlen (path);

for (; *p != '/' && p != path; p--)

;

p = strrchr(path, '/');

p = p == NULL ? path : p;

Figure 6. Examples of loop summarisation patches accepted by developers.

paths through a loop at once. Their summaries consist of
pre- and post-conditions, which they automatically infer
during concolic execution. Similarly, loop-extended symbolic-

execution [38] uses a combination of symbolic execution and
static analysis to summarise loops in order to speed up sym-
bolic execution. As for S-Looper, these two approaches are
intertwined with their analysis, unlike our approach which
can be immediately used in any technique.

STOKE [39] is an assembly level superoptimizer that speeds
up loop-free code segments. With its recent extension to
loops [10] their work is similar in spirit. They also use bounded
verification to aid synthesis, but instead of a small-world the-
orem they use a sound verifier to generalise to arbitrary
bounds. Their work focuses on optimising libc functions,
whereas our work focuses on summarising loops in arbitrary
programs, therefore we believe the work is complementary.
Srivastava et al. [47] present an approach synthesising

loops from pre- and post-conditions using a verifier. While
more precise, they require user-specified annotations, mak-
ing it inapplicable as an automatic summarisation technique.
LLVM’s LoopIdiomRecognize pass attempts to replace

loops that match memset or memcpy patterns and is quite spe-
cific to these functions (other compilers, such as GCC, have
similar passes that recognise patterns). It detects induction
variables from which it can recognise stride load and store
instructions. Their to-do includes functions like strlen for
over 6 years, showing that such passes require significant
expertise to implement. By contrast, our approach is more
general and can easily be extended by adding a gadget.
More generally, program synthesis has seen renewed in-

terest in recent years [1, 13, 20ś22, 31, 43, 47]. Our synthesis
approach is based on CEGIS [44], with the synthesizer and
verifier both based on dynamic symbolic execution [42].

Program equivalence may be considered one of the most
important problems in formal verification and has been the
subject of decades of research [48]. Due to the vast literature
on the topic and space, we only briefly review the subject.
Proving program equivalence is useful in many domains

ranging from translation validation [26, 30, 34, 36, 41], regres-
sion verification [18, 19], automatic merging [45], semantic
differencing [14], and cross-version verification [23, 27].

One common approach for attacking the problem, e.g., [51],
is establishing a simulation invariant between the states of
two programs. Tracking the simulation enables defining a so-
called correlating semantics which allows reasoning about
correlated (interleaved) execution of two programs [3, 14, 49].
In contrast to these techniques, our approach focuses on es-
tablishing the equivalence of programs without co-executing
them, but instead examines their input/output behaviour on
bounded examples using symbolic execution.
Symbolic execution-based methods [6, 9, 11, 12, 32, 35]

often focus on practical equivalence verification up to a cer-
tain input bound. In contrast, we speculatively search for a
synthesised program that agrees with the investigated loop
on bounded inputs, and develop a small model theorem [33]
which allows us to lift symbolic execution validated bounded
equivalence to full equivalence.

7 Conclusion

In this paper, we presented a novel approach for summarising
loops in C code. This approach uses counterexample-guided
synthesis to generate the loop summaries, Gaussian pro-
cesses to optimise the vocabulary used, and a formal proof
to show that the summaries are correct for unbounded loop
lengths if they are correct for the first two iterations.
We evaluated our approach on a large loop database ex-

tracted from popular open-source systems and assessed its
utility in several contexts: symbolic execution, where we
recorded speedups of several orders of magnitude; compiler
optimisations, where several summaries resulted in signif-
icant performance improvements; and refactoring, where
some of our summary patches were accepted by developers.
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