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Software systems change on a continuous basis, with each patch prone to introducing new errors and security
vulnerabilities. While providing a full functional specification for the program is a notoriously difficult task,
writing a patch specification that describes the behaviour of the patched version in terms of the unpatched
one (e.g., “the post-patch version is a refactoring of the pre-patch one”) is often easy. To reason about such
specifications, program analysers have to concomitantly analyse the pre- and post-patch software versions.

In this paper, we propose P3, a framework for automated reasoning about patches via product programs.
While product programs have been used before, particularly in a security context, P3 is the first framework
that automatically constructs product programs for a real-world language (namely C), supports diverse and
complex patches found in real software, and provides runtime support enabling techniques as varied as
greybox fuzzing and symbolic execution to run unmodified.

Our experimental evaluation on a set of complex software patches from the challenging CoREBench suite
shows that P3 can successfully handle intricate code, inter-operate with the widely-used analysers AFL++ and
KLEE, and enable reasoning over patch specifications.
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1 Introduction
Most programs lack a full specification of their intended behaviour, much less a proof that they
conform to it. However, during the continued evolution of programs, it is oftentimes clear to the
developers what the intended goal of a patch is. For example, a refactoring should not change the
behaviour of the program, and a crash fix should make the program return a specific result on some
inputs instead of crashing, with all other behaviour remaining unchanged. Even if the intended
behaviour cannot be easily specified, developers can greatly benefit from the construction of inputs
that lead to different outputs across versions. Such inputs are often useful while validating a patch,
and are prime candidates for inclusion in regression test suites [16].

To reason comprehensively about behavioural changes across versions, program analysers have
to reason concomitantly about both the pre- and post-patch software versions. A way of achieving
this is via product programs [2, 11]. At a high-level, a product program interleaves the statements
from the two constituent versions, renaming variables to ensure no name clashes. For instance,
consider this illustrative example where the two program versions are:
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1 // version 1

2 x = y + 1;

3 x = 2 * x;

1 // version 2

2 x = y + 1;

3 x = x << 1;

Then their product program would be:
1 x1 = y1 + 1;

2 x2 = y2 + 1;

3
4 x1 = 2 * x1;

5 x2 = x2 << 1;

with the variables renamed to have the suffix 1 in the first version and 2 in the second.
With the product program in place, one can easily write a patch specification [7] stating, in our

example, that the final values of x are the same in the two versions:
1 assert(x1 == x2);

Product programs have been mainly used to reason about security hyper-properties such as
non-interference [2]. More recently, product programs and similar constructs have started to
be employed for analysing software patches [18, 28]. In particular, our recent vision paper [7]
introduces the idea of (partial) patch specifications that describe the behaviour of the patched
version in terms of the unpatched one, and shows how these patch specifications can be validated
by manually constructing product programs. However, as far as we know, there is no framework
that can automatically construct executable product programs for real-world software versions.
This would allow arbitrary off-the-shelf analysers, such as greybox fuzzers and symbolic execution
engines, to comprehensively analyse patch specifications of the form above, or automatically
discover inputs that trigger output differences across versions.

In this paper, we introduce P3, a framework for automated reasoning about patches via product
programs. To the best of our knowledge, P3 is the first framework that automatically constructs
product programs for a real-world language (namely C), supports diverse and complex patches
found in real software, and provides runtime support that enables techniques as varied as greybox
fuzzing and symbolic execution to run unmodified. While a real-world language like C includes
many low-level constructs and edge cases, P3 handles a vast majority of practical scenarios and is
designed to be extensible to support additional cases as needed. The accompanying runtime system
within P3 enables unmodified use of existing analysis tools such as greybox fuzzers and symbolic
execution engines, and can likewise be extended to accommodate more specialised use cases.
While many other techniques exist for testing code patches, the key advantage of P3 is that it

enables arbitrary off-the-shelf program analysers to reason about multi-version code and take
advantage of patch specifications, effectively becoming differential program analysers.

Our experimental evaluation on a set of complex software patches shows that P3 can successfully
handle real-world code, interoperate with the widely-used analysers AFL++ [12] and KLEE [6], and
enable reasoning over semantic patch specifications.

In summary, the main contributions of this paper are:
(1) P3, a technique for constructing the product program of different program versions (instead

of identical versions, as done when reasoning about hyper-properties) for real-world C
programs. P3 relies on an abstract syntax tree (AST) matching algorithm which is used to
generate patch annotations that model cross-version divergences in the product program.
Unlike prior work on patch analysis, P3 enables off-the-shelf analysers such as KLEE and
AFL++ to be used unmodified as differential program analysers.

(2) A runtime system that enables such product programs to run as expected, with support for
command-line arguments, global resources such as I/O streams, and program termination
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Fig. 1. End-to-end workflow for P3 (the dotted lines indicate optional elements).

(to avoid terminating the entire product program when only one of its constituents versions
terminates).

(3) An experimental evaluation on complex patches from GNU Coreutils, together with a
comparison against shadow symbolic execution [17], a comparable state-of-the-art technique
that relies on manually merging programs. Our results show that P3 can find the same
cross-version output differences as shadow symbolic execution when run in conjunction
with KLEE, as well additional differences when run in conjunction with AFL++.

(4) An experimental evaluation on the patch specifications from our prior work [7], showing
that P3 can find the same bugs as a previous approach where we manually constructed the
product programs. We further extend the evaluation with additional patch specifications and
show that we can apply P3 even without manually constructed test drivers.

The rest of the paper is structured as follows. §2 presents a motivating example, and §3 shows how
P3 automatically handles various program constructs to create product programs. §3.1 discusses
our program normalisation, §3.2 our program construction rules, §3.3 how patches are processed
to provide the product program construction with information about which program parts have
been added, removed, or modified, and §3.4 the runtime support provided by P3. §3.5 discusses
implementation details, and §3.6 highlights the limitations. §4 evaluates our framework on a set of
challenging patches and semantic patch specifications, and compares it with existing work that
reasons about program paths via program merging and/or patch specifications. Finally, §5 discusses
related work and §6 concludes.

2 Overview and Motivating Example
Figure 1 shows the end-to-end workflow for P3. Given a pre- and post-patch program together
with an optional user-defined patch specification (e.g., as in our recent work [7]), P3 first processes
the code to apply two transformations: program normalisation (§3.1), which rewrites both versions
into a semantically equivalent form that reduces the number of different program constructs used
(e.g., all loops are rewritten into while loops), and patch annotations (§3.3), which marks all the
regions modified by the patch.

P3 then enters product program construction (§3.2), merging the two versions into a single
one and injecting the necessary product program runtime support (§3.4) for dual execution. To
detect control-flow divergences, P3 also inserts checks at every branch point in the program (§4.1).
User-provided patch specifications are also processed accordingly (§4.2).
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1 int has_digit(const char *s) {

2 int found = 0;

3 while (*s != '\0') {

4 if (*s >= '0' && *s <= '9')

5 found = 1;

6 s++;

7 }

8 return found;

9 }

10
11 int main(int argc, char **argv) {

12 assert(argc == 2);

13 if (has_digit(argv[1]))

14 printf("Digits found\n");

15 else printf("No digits found\n");

16 }

(a) Illustrative has_digit program.

1 int has_digit(const char *s) {

2 int found = 0;

3 while (*s != '\0') {

4 found ^= (*s >= '0' && *s <= '9');

5
6 s++;

7 }

8 return found;

9 }

10
11 int main(int argc, char **argv) {

12 assert(argc == 2);

13 if (has_digit(argv[1]))

14 printf("Digits found\n");

15 else printf("No digits found\n");

16 }

(b) Buggy refactoring of has_digit program.

Fig. 2. Two versions of a simple program, used to illustrate the P3 workflow.

The resulting product program can be fed directly into off-the-shelf analysis tools (e.g., KLEE or
AFL++) to automatically discover inputs that trigger control-flow divergences, output differences
or specification violations (§4).
We next show the envisioned end-to-end workflow of P3 using a simple illustrative example.

Shown in Figure 2, we consider a C utility has_digit that scans a NUL-terminated string to detect
whether it contains digit characters. The original version, shown in Figure 2a, implements this
functionality correctly: the variable found is set to 1 iff a digit character is found. The refactored
version, shown in Figure 2b, aims to refactor the code by replacing the if statement with a more
succinct update of found. However, instead of using the bitwise or (|) operator, which would have
led to a correct refactoring, our hypothetical developer used the bitwise xor operator (^) by mistake.
Therefore, the refactored version returns an incorrect result when the string contains an even
number of digits (the cases with no digits or an odd number of digits are handled correctly).
Using P3, the user can simply add a straightforward patch specification for this refactoring,

in the form of a custom assert: pp_assert(found1 == found2)1 just before the return statement. This
assert expresses the user’s intent that the refactoring should not have introduced any behavioural
differences and the two versions of has_digit should behave identically.

As described above, P3 produces a product program of the pre- and post-patch versions, following
the various stages outlined in Figure 1. The resulting program produced by P3 behaves as if executing
both versions at once plus the aforementioned lightweight divergence and specification violation
checks. It also handles the interaction with the environment, e.g, by duplicating the command-
line arguments and giving each version its own set of file descriptors. Therefore, the resulting
program can be analysed as is by off-the-shelf program analysers, which can be effortlessly used as
differential program analysers. For instance, simply running the program produced by P3 for the
example in Figure 2 with KLEE or AFL++ immediately leads to the discovery of a patch specification
violation and the generation of an input which triggers it.

The remainder of this paper describes in detail the various components of P3 that allow it to deal
with real-world patches and complex C programming constructs, and then showcases its strengths
and limitations using a comprehensive evaluation.

1pp_assert is a custom function within the P3 framework which correctly handles the state referred to in each version.
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3 P
3 Design

For the design of P3, we considered two important properties which together ensure that the result
is useful for real-world programs:

(1) Universality. For any two given input programs, a single product program should be con-
structible, i.e. the construction is universal. Universality primarily impacts what C language
constructs are transformed in which way.

(2) Isolation.When executed, the two component programs should be isolated from one another.
For example, reading input in one component should not impact the other component’s input
stream. Isolation primarily impacts how the productised programs may interact with the
environment and will be discussed in more detail in §3.4.

In the remainder of this section, we discuss how P3 builds product programs and what subset of
the C language it covers. The construction is directly inspired by Eilers et al. [11], but extended to
deal with the complexities of a real-world language like C, and with different program versions.
One point to highlight is that P3 can handle the product construction of both entire programs, as
demonstrated in §4.1, as well as partial systems, via the use of custom drivers, as shown in §4.2.

We start in §3.1 by describing the normalisations that are carried out as a pre-processing step to
make the product construction more manageable. Then, in §3.2 we present the product program
construction in detail, outlining how different program constructs are handled, including functions,
branches and loops. §3.3 discusses how we feed patch information into the product construction
process, and §3.4 discusses the P3 runtime. We end by discussing some implementation details in
§3.5 and the main limitations in §3.6.

3.1 Program Normalisation
To reduce the number of different program constructs that need to be considered during product
program construction, we start by normalising the program structure. For example, each for loop
becomes an equivalent while loop.

Figures 3 and 4 show the most important normalisation rules in more detail. The actual prototype
uses additional rules to give a more efficient result when additional constraints are satisfied (e.g., do
<body> while(<cond>); { { <body> } when <cond> evaluates to 0 without side effects and no break

or continue statements appear directly in the loop) as well as rules to simplify the resulting code
(e.g., {{ <body> }}{ { <body> }).

• Loops. All loops are normalised to while loops. The For and DoWhile rules remove for and
do ... while(...) loops respectively.

• Expression-level control flow. All constructs that may perform control flow at the expres-
sion instead of the statement level—such as the comma operator (via Comma), short-cutting
boolean logic (&& and || via LAnd and LOr), ternary conditional operators (?: via Ternary
and Ternary’), and statement-expressions (({/* ... */}), a GNU extension, via StmtExpr
and StmtExpr’)—are hoisted to perform control flow at the statement level instead.

• Function arguments and conditions. Non-trivial (anything except for variable references
and literals) function arguments, conditions, and arguments to return statements are replaced
with temporary variables as per the FnArgs, While, If, Return and Return’ rules. For
example, if (x != 0) { foo(x + 1); } becomes int t1 = (x != 0); if (t1) { int t2 = x + 1;

foo(t2); }.
• Variable declarations. All variable declarations are rewritten to only declare a single
variable at a time (MonoDecl). Variable types, if applicable, are completed to contain ex-
plicit array bounds. For example, int a[] = {0}, b; becomes int a[1] = {0}; int b;. Thereafter,
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For for(<init>; <cond>; <step>) <body> { {<init>; while(<cond’>) {{<body>} <step>;}}
<cond’> is <cond> if it exists and 1 otherwise.

DoWhile do <body> while(<cond>); { _Bool t = 1; while(t || (<cond>)) {t = 0; {<body>}}
t is a fresh identifier.

Comma <ctx>(<lhs>, <rhs>); { <lhs>; <ctx>(<rhs>);
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

LOr <ctx>(<lhs> || <rhs>); { _Bool t = (<lhs>); if(!t) {t = (<rhs>);} <ctx>(t);
t is a fresh identifier.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

LAnd <ctx>(<lhs> && <rhs>); { _Bool t = (<lhs>); if(t) {t = (<rhs>);} <ctx>(t);
t is a fresh identifier.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

Ternary <ctx>(<cond> ? <then> : <else>); {
T t; if(<cond>) {t = (<then>);} else {t = (<else>);} <ctx>(t);

Applied if the type of <cond> ? <then> : <else> is a non-void type.
T is the type of <cond> ? <then> : <else> and t is a fresh identifier.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

Ternary’ <ctx>(<cond> ? <then> : <else>); {
if(<cond>) {<then>;} else {<else>;} <ctx>(((void)0));

Applied if the type of <cond> ? <then> : <else> is a void type.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

StmtExpr <ctx>( ({<stmts> <expr>;}) ); { T t; {<stmts> t = (<expr>);} <ctx>(t);
Applied if <expr> (and thus the statement expression) is of non-void type.
Statement expressions are a GNU extension that execute a compound statement as an expression.
T is the type of ({<stmts> <expr>;}) and t is a fresh identifier.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

StmtExpr’ <ctx>( ({<stmts>}) ); { {<stmts>} <ctx>( ((void)0) );
Applied if the statement expression is of void type.
Statement expressions are a GNU extension that execute a compound statement as an expression.
<ctx>(. . . ) represents the (potentially empty) surrounding expression.

Fig. 3. Normalisation rules part 1.{ denotes a single rewrite step. The rules are applied outside-in to all

subterms until no rule matches (cascading normalisation to a fixed point).

function-level variable declarations with automatic storage duration that immediately ini-
tialise the variable are split into a declaration and a definition (rules SimpleInit, InitList
and ArrayInit). For example, int x = 0; becomes int x; x = 0;.

• Unstructured control-flow. Unstructured control-flow, such as jumps using goto or case

labels inside switch constructs are replaced with structured control flow, such as if statements.
Our research prototype only implements this step in a limited fashion, which is enough to
deal with many programs (see §3.6.1).

These normalisations are quite intricate in some cases, but also lengthy and their details do not
contribute much to the discussion of this paper’s topic. Nevertheless, the next section discusses
one of the more interesting normalisations done, the variable declaration splitting that ensures
that variable declarations are independent of any expressions that may have side effects.

3.1.1 Example Normalisation: Variable Declaration Splitting. The purpose of variable declaration
splitting is to ensure that variables can be declared without causing any undefined behaviour or
other side effects. This ensures that the product program construction can disable effects when
they are not applicable (see, e.g., §3.2.4).
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FnArgs <ctx>(<fn-arg>); { T t = (<fn-arg>); <ctx>(t);
Applied if <fn-arg> is used as a function argument and non-trivial.
T is the type of <fn-arg> and t is a fresh identifier.
<ctx>(. . . ) represents the surrounding expression (including the function call and other arguments).

While while(<cond>) <body> { while(1) {if(!(<cond>)) {break;} {<body>}}
Only applied if <cond> is a non-trivial condition.

If if(<cond>) <then> [else <else>] { _Bool t = (<cond>); if(t) {<then>} [else {<else>}]
Applied if <cond> is a non-trivial condition.
t is a fresh identifier.

Return return <expr>; { T t = (<expr>); return t;
Applied if <expr> is a non-trivial expression of non-void type.
T is the type of <expr> and t is a fresh identifier.

Return’ return <void-expr>; { <void-expr>; return;
Applied if <void-expr> is a non-trivial expression of void type.

MonoDecl <type> <var-1> [ = <init-1>], <var-2> [ = <init-2>] [, <more-vars>]; {
<type> <var-1> [ = <init-1>]; <type> <var-2> [ = <init-2>] [, <more-vars>];

Variable declaration syntax simplified. Actual rule applies to more syntactically complex declarations
(e.g., int x[] = {0}, (*y)[1] = &x;{ int x[] = {0}; int (*y)[1] = &x;).

SimpleInit <type> <var> = <expr>; { <type’> <var>; <var> = (<expr>);
Applied to non-static local variables when <expr> is an assignment expression (i.e., not a initialiser
list). Note that <type> cannot be an array type as array types cannot be initialised by assignment.
Variable declaration syntax simplified. Actual rule applies to more syntactically complex declarations.
<type’> is <type> except that it is never const.

InitList <non-array-type> <var> = <init-list>; {
<non-array-type’> <var>; <var> = (char*)&(<non-array-type’>)<init-list>;

Applied to non-static local variables of non-array type when <init-list> is a initialiser list.
Variable declaration syntax simplified. Actual rule applies to more syntactically complex declarations.
<non-array-type’> is <non-array-type> except that it is never const.

ArrayInit <array-type> <var> = <init-list>; {
<array-type’> <var>; <size_t> i; char *p; p = (char*)&(<array-type’>)<init-list>;
for(i = 0; i < <array-size>; ++i) { ((char*)&<var>)[i] = p[i]; }

Applied to non-static local variables of array type (thus <init-list> must be an initialiser list).
Variable declaration syntax simplified. Actual rule applies to more syntactically complex declarations.
<array-type’> is <array-type> except that it is never const and with explicit size.
<size_t> is a type that is valid to represent array sizes on the target architecture (e.g., unsigned long).
i and p are fresh identifiers.
<array-size> is the size of an object of type <array-type’> in units chars.

While-Body while(<cond>) <body> { while(<cond>) {<body>}
Only applied if <body> is not a compound statement.

If-Body if(<cond>) <then> [else <else>] { if(<cond>) {<then>} [else {<else>}]
Only applied if <then> is not a compound statement or <else> exists and is not a compound statement.

Fig. 4. Normalisation rules part 2.{ denotes a single rewrite step. The rules are applied outside-in to all

subterms until no rule matches (cascading normalisation to a fixed point).

This normalisation applies to variable declarations with automatic storage duration, i.e., block-
scope variables that are not static or extern (which implicitly also excludes _Thread_local variables),
and actually have an initialiser to split off. Initialisation can happen in one of two main ways: Either
a value is assigned (e.g., int x = 0;) or an initialiser list is used (e.g., int x[] = {1};).

For declarations that do not use an initialiser list, the splitting is straightforward (rule SimpleInit
in Figure 4): The declaration is split into a declaration without the initialiser and an assignment of
what was previously used to initialise the declaration. The only complication for this case comes
from qualifiers, see the end of this section. Thus, int x = 0; becomes int x; x = 0;.
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In the presence of an initialiser list, such as int x = {0}; two more complications come up: First,
initialiser lists are not expressions (and thus int x; x = {0}; is not valid). Second, arrays can be
initialised via an initialiser list, but not assigned.

The first issue is solved easily by transforming the initialiser list into a compound literal, which
would, for example, transform int x = {0}; into int x; x = (int){0};, This expression, which looks
like an initialiser list that is cast to the target type, creates an unnamed variable that (due to this
rewriting occurring at block level) has automatic storage duration. For anonymous types, the type
needs to additionally be given a name (e.g., struct { int a; } x = {0}; becomes struct { int a; } S;

struct S x; x = (S){0};). See rule InitList in Figure 4.
While compound literals themselves function as expected for array types (i.e., (int[]){1, 2} is

valid), the assignment needs to be replaced with a memcpy-style loop for declarations of variables
whose outermost type is an array type (rule ArrayInit in Figure 4).2 Thus, int x[] = {1, 2};

becomes:
1 int x[2];

2 char* p;

3 p = (char*)&(int[2]){1, 2};

4 for (size_t i = 0; i < sizeof(int[2]); ++i) {

5 ((char*)&x)[i] = p[i];

6 }

Note that other normalisations, such as the previously mentioned loop normalisation will further
transform this snippet in practice.

Type Qualifiers. The biggest limitation of this approach in general is that of const-qualified
variables. Fundamentally, there is no way of splitting const int x = 1; into a declaration of const int

x; and a later initialisation without invoking undefined behaviour due to ignoring the const rules.
If only the outermost type is const-qualified, (e.g., const int x = 0; rather than struct { const int a;

} x = {0};), our transformation removes that outermost const. While this is an observable change
in theory (e.g., _Generic(&x, int const*: 1, int*: 0) changes depending on whether x is const or
not), real and valid programs that do so are rare (const is used primarily to reject certain operations
as invalid) and we did not encounter any in our evaluation.

The most common use of const in C programs is for the target type of pointers (e.g., char const* s

= "";). Note that we do not strip these uses, nor do we need to, as the obvious splitting is perfectly
valid: char const* s; s = "";. This includes more complicated types such as char* const*.

For this work we do not consider volatile-qualified variables, as not only are they only rarely used
for purpose, but a product program of two versions of a program that requires explicit management
of memory accesses, such as for DMA, is not all that useful.

3.2 Product Program Construction
Our automated product program construction leverages the modular product programs introduced
by Eilers et al. [11]. The construction described in that work focuses on self-product programs
for a toy language, and we extend the idea such that it works across multiple versions and for a
complex real-world language like C. Since we make use of the normalisation step as described in
the previous section, we only have to deal with a subset of program constructs.

Figures 5 and 6 give the formal rules of product program construction. Here, a product transfor-
mation ⟦(𝑠1, 𝑠2)⟧(𝑝1,𝑝2 ) denotes the product of the corresponding statements 𝑠1 from the pre-patch
version and 𝑠2 from the post-patch version, under activation variables (introduced in §3.2.1) 𝑝1 and
𝑝2. Vectors like ®𝑥 represent tuples of variables, expressions or types. In all rules, subscripts 1 and 2

2This is not necessary if the array is a nested type, e.g., struct { int a[1]; } S; struct S x = {0}; can be rewritten as struct {

int a[1]; } S; struct S x; x = (S){0};
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⟦(proc 𝑓 ( ®𝑢1 : ®𝑇1 ) returns (𝑟1 : 𝑅1 ),

proc 𝑓 ( ®𝑢2 : ®𝑇2 ) returns (𝑟2 : 𝑅2 ) )⟧(𝑝1,𝑝2 )

= proc 𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡
(
𝑝1, 𝑝2, ®𝑢1 : ®𝑇1, ®𝑢2 : ®𝑇2

)
returns

(
𝑟1 : 𝑅1, 𝑟2 : 𝑅2

) (sign-prod)

⟦(return 𝑒1, return 𝑒2 )⟧(𝑝1,𝑝2 ) = if 𝑝1 then { 𝑟1 := 𝑒1;

if ¬𝑝 𝑓

2 then return (𝑟1, 𝑟2 ) ; 𝑝 𝑓

1 = false }
if 𝑝2 then { 𝑟2 := 𝑒2;

if ¬𝑝 𝑓

1 then return (𝑟1, 𝑟2 ) ; 𝑝 𝑓

2 = false }

(return-prod)

⟦(return 𝑒1, skip)⟧(𝑝1,𝑝2 ) = if 𝑝1 then { 𝑟1 := 𝑒1;

if ¬𝑝 𝑓

2 then return (𝑟1, 𝑟2 ) ; 𝑝 𝑓

1 = false }

(return-prod-1)

⟦(skip, return 𝑒2 )⟧(𝑝1,𝑝2 ) = if 𝑝2 then { 𝑟2 := 𝑒2;

if ¬𝑝 𝑓

1 then return (𝑟1, 𝑟2 ) ; 𝑝 𝑓

2 = false }

(return-prod-2)

⟦(𝑥1 := call 𝑓 ( ®𝑒1 ), 𝑥2 := call 𝑓 ( ®𝑒2 ) )⟧(𝑝1,𝑝2 ) = (𝑡1, 𝑡2 ) := call 𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (𝑝1, 𝑝2, ®𝑒1, ®𝑒2 ) ;
if 𝑝1 then 𝑥1 := 𝑡1;
if 𝑝2 then 𝑥2 := 𝑡2;

(call-prod)

⟦(𝑥1 := call 𝑓 ( ®𝑒1 ), skip)⟧(𝑝1,𝑝2 ) = if 𝑝1 then (𝑥1, _) := call 𝑓 (𝑝1, false, ®𝑒1, _) ; (call-prod-1)

⟦(skip, 𝑥2 := call 𝑓 ( ®𝑒2 ) )⟧(𝑝1,𝑝2 ) = if 𝑝2 then (_, 𝑥2 ) := call 𝑓 (false, 𝑝2, _, ®𝑒2 ) ; (call-prod-2)

⟦(if 𝑒1 then 𝑠𝑡1 else 𝑠𝑓1 ,

if 𝑒2 then 𝑠𝑡2 else 𝑠𝑓2 )⟧
(𝑝1,𝑝2 )

= 𝑝𝑡1 := 𝑝1∧𝑒1; 𝑝𝑡2 := 𝑝2∧𝑒2;
𝑝𝑓 1 := 𝑝1∧¬𝑒1; 𝑝𝑓 2 := 𝑝2∧¬𝑒2;

⟦(𝑠𝑡1 , 𝑠𝑡2 )⟧
(𝑝𝑡1,𝑝𝑡2 ) ; ⟦(𝑠𝑓1 , 𝑠𝑓2 )⟧

(𝑝𝑓 1,𝑝𝑓 2 )

(if-prod)

⟦(if 𝑒1 then 𝑠𝑡1 else 𝑠𝑓1 , skip)⟧
(𝑝1,𝑝2 ) = 𝑝𝑡1 := 𝑝1∧𝑒1; 𝑝𝑓 1 := 𝑝1∧¬𝑒1;

⟦(𝑠𝑡1 , _)⟧
(𝑝𝑡1,false) ; ⟦(𝑠𝑓1 , _)⟧

(𝑝𝑓 1,false)

(if-prod-1)

⟦(skip, if 𝑒2 then 𝑠𝑡2 else 𝑠𝑓2 )⟧
(𝑝1,𝑝2 ) = 𝑝𝑡2 := 𝑝2∧𝑒2; 𝑝𝑓 2 := 𝑝2∧¬𝑒2;

⟦(_, 𝑠𝑡2 )⟧
(false,𝑝𝑡2 ) ; ⟦(_, 𝑠𝑓2 )⟧

(false,𝑝𝑓 2 )

(if-prod-2)

⟦(𝑠1, 𝑠2 ) ; (𝑡1, 𝑡2 )⟧(𝑝1,𝑝2 ) = ⟦(𝑠1, 𝑠2 )⟧(𝑝1,𝑝2 ) ; ⟦(𝑡1, 𝑡2 )⟧(𝑝1,𝑝2 ) (seq-prod)

⟦(𝑥1 := 𝑒1, 𝑥2 := 𝑒2 )⟧(𝑝1,𝑝2 ) = if 𝑝1 then 𝑥1 := 𝑒1; if 𝑝2 then 𝑥2 := 𝑒2; (assign-prod)

⟦(𝑥1 := 𝑒1, skip)⟧(𝑝1,𝑝2 ) = if 𝑝1 then 𝑥1 := 𝑒1; (assign-prod-1)

⟦(skip, 𝑥2 := 𝑒2 )⟧(𝑝1,𝑝2 ) = if 𝑝2 then 𝑥2 := 𝑒2; (assign-prod-2)

Fig. 5. Formalised product program construction rules for non-while constructs, assuming an already nor-

malised program. Note that 𝑝
𝑓

1 and 𝑝
𝑓

2 in the return-prod rules refer to the function-level activation variables

for the respective versions.

indicate pre- and post-patch statements, respectively, while in all associated code examples, we
similarly use suffixes 1 and 2.3
In this section, we assume that for each statement 𝑠1 in the pre-patch version, we have a

corresponding statement 𝑠2 in the post-patch version. For the case of a self-product program (where
the two versions are identical, as considered in prior work [11]), this matching is of course trivial.
In our work, we extend the matching to take code patches into account. Our extension is such that
3In our implementation, we use a prefix-based approach that is guaranteed to avoid name clashes, but in the paper we use
this simpler naming convention for readability.
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⟦(while 𝑒1 do {𝑠1 }, while 𝑒2 do {𝑠2 })⟧(𝑝1,𝑝2 ) = 𝑐1 := 𝑝1∧𝑒1; 𝑐2 := 𝑝2∧𝑒2;
while 𝑐1 ∨ 𝑐2 do

{ 𝑐𝑜𝑛𝑡1 := false; 𝑐𝑜𝑛𝑡2 := false;

⟦(𝑠1, 𝑠2 )⟧(𝑐1∧¬𝑐𝑜𝑛𝑡1, 𝑐2∧¬𝑐𝑜𝑛𝑡2 ) ;
if 𝑐1 then {𝑐1 := 𝑝1∧𝑒1; }
if 𝑐2 then {𝑐2 := 𝑝2∧𝑒2; }}

(while-prod)

⟦(while 𝑒1 do {𝑠1 }, skip)⟧(𝑝1,𝑝2 ) = 𝑐1 := 𝑝1∧𝑒1; while 𝑐1 do

{ 𝑐𝑜𝑛𝑡1 := false; ⟦(𝑠1, _)⟧(𝑐1∧¬𝑐𝑜𝑛𝑡1, false) ;
if 𝑐1 then {𝑐1 := 𝑝1∧𝑒1 }}

(while-prod-1)

⟦(skip, while 𝑒2 do {𝑠2 })⟧(𝑝1,𝑝2 ) = 𝑐2 := 𝑝2∧𝑒2; while 𝑐2 do

{ 𝑐𝑜𝑛𝑡2 := false; ⟦(_, 𝑠2 )⟧(false, 𝑐2∧¬𝑐𝑜𝑛𝑡2 ) ;
if 𝑐2 then {𝑐2 := 𝑝2∧𝑒2 }}

(while-prod-2)

⟦(break, break)⟧(𝑝1,𝑝2 ) = 𝑐1 := false; 𝑐2 := false (break-prod)

⟦(break, skip)⟧(𝑝1,𝑝2 ) = 𝑐1 := false (break-prod-1)

⟦(skip, break)⟧(𝑝1,𝑝2 ) = 𝑐2 := false (break-prod-2)

⟦(continue, continue)⟧(𝑝1,𝑝2 ) = 𝑐𝑜𝑛𝑡1 := true; 𝑐𝑜𝑛𝑡2 := true (continue-prod)

⟦(continue, skip)⟧(𝑝1,𝑝2 ) = 𝑐𝑜𝑛𝑡1 := true (continue-prod-1)

⟦(skip, continue)⟧(𝑝1,𝑝2 ) = 𝑐𝑜𝑛𝑡2 := true (continue-prod-2)

Fig. 6. Formalised product program loop construction rules, assuming an already normalised program. Note

that 𝑐1, 𝑐2, 𝑐𝑜𝑛𝑡1 and 𝑐𝑜𝑛𝑡2 in the rules for break and continue refer to the respective variables introduced in

the surrounding while of the respective version. Any activation variables that depend on a changed variable

need to take the change into account.

either the two statements continue to be of the same type (e.g., both if statements), or one of them
is an empty statement (denoted in Figures 5 and 6 by skip). §3.3 discusses how the matching is done
for the patched code.

3.2.1 Function Signatures. We start by adjusting the signature of the functions which are part of
the product program being constructed. Figure 5 gives the formal sign-prod rule and below, we
present a concrete C-style example that instantiates it. Consider the function f with the following
signatures in the two versions (the type of the return value and of the second parameter have
changed across versions):

1 // version 1

2 ret_type_1 f(param_type1 x,

3 param_type2 y)

1 // version 2

2 ret_type_2 f(param_type1 x,

3 param_type3 y)

Then, its signature is changed to the following:
1 struct f_ret { ret_type_1 r1; ret_type_2 r2 };

2 struct f_ret f_product(bool p1, bool p2,

3 param_type1 x1, param_type1 x2,

4 param_type2 y1, param_type3 y2)
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In particular, the following transformations are applied:
(1) The parameters, x1, x2, y1 and y2 represent the function parameters in the two versions: x1

and y1 for the first version, and x2 and y2 for the second version.
(2) The function returns a pair of values, the first with the type of the return value in the pre-

patch version, and the second with the type of the return value in the post-patch version.
This is accomplish by creating a new data type struct f_ret (each product function has a
unique such struct associated with it).

(3) The parameters p1 and p2 are called activation variables. Variable p1 controls whether the first
version is active, while p2 whether the second version is active. More exactly, these variables
guard their version’s statements, so that statements of a deactivated version are not executed.
This allows the product program to deal with cases where the function might get called
from only one of the versions: the function is called by setting the activation variable for
that version to true, and the activation variable for the other version to false. The activation
variables also allow the different versions to return at different times, as discussed below.

3.2.2 Function Returns. Note that returning from the product function is equivalent to returning
from both component functions. Therefore, if one version reaches a return statement, it needs to
wait until the other version also returns, if it is activated. This is accomplished by replacing a return
statement with a pair of statements which update the corresponding entry in ret, and disable that
version until the product program returns from that product function by setting the associated
function-level activation variable to false. This is handled in Figure 5 by the return-prod rule
(when a return is modified), return-prod-1 (when a return is removed), and return-prod-2 (when
a return is added).
To illustrate these concepts, consider a function f, whose two versions are defined as follows:
1 // version 1

2 ret_type f(param_type x, param_type y) {

3 return x;

4 }

1 // version 2

2 ret_type f(param_type x, param_type y) {

3 return y;

4 }

Then, the product function f_product is:
1 struct f_ret { ret_type r1; ret_type r2 };

2 struct f_ret f_product(bool p1, bool p2,

3 param_type x1, param_type x2,

4 param_type y1, param_type y2) {

5 struct f_ret ret;

6 if (p1) {

7 ret.r1 = x1;

8 if (!p2) return ret;

9 p1 = false;

10 }

11 if (p2) {

12 ret.r2 = y2;

13 if (!p1) return ret;

14 p2 = false;

15 }

16 }

3.2.3 Function Calls. Rules call-prod, call-prod-1 and call-prod-2 in Figure 5 handle function
call modifications, removals and additions, respectively. Consider the calls to the function f in the
two versions:

1 // version 1

2 v = f(x, y);

1 // version 2

2 v = f(y, x);

The product program is as follows:
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1 struct f_ret f_ret_val;

2 f_ret_val = f_product(p1, p2, x1, y2, y1, x2);

3 if (p1)

4 v1 = f_ret_val.r1;

5 if (p2)

6 v2 = f_ret_val.r2;

The product program construction is done such that the semantics of the two versions are
maintained in the product program, while also having a single function call instead of duplicating
the function calls from each version. The results are then assigned to the respective variables from
both versions based on the activation variables, as shown in lines 3 to 6.

3.2.4 if Statements. The if-prod, if-prod-1 and if-prod-2 rules in Figure 5 deal with if statements.
Recall that the normalisation stage has transformed all conditions to consist of only simple variables
or literals, so they have no side effects, which is essential for the correctness of these rules.
To correctly handle if statements, we need to ensure that if a version’s activation variable is

false, neither condition nor body is executed. To see how this is handled, consider the following
two versions:

1 // version 1

2 if (cond1)

3 then_expr1;

4 else
5 else_expr1;

1 // version 2

2 if (cond2)

3 then_expr2;

4 else
5 else_expr2;

The product program is as follows:
1 int p_t1 = p1 && cond1;

2 int p_t2 = p2 && cond2;

3 int p_f1 = p1 && !cond1;

4 int p_f2 = p2 && !cond2;

5
6 if (p_t1) then_expr1;

7 if (p_t2) then_expr2;

8 if (p_f1) else_expr1;

9 if (p_f2) else_expr2;

On lines 1-4, variables p_t1,p_t2,p_f1,p_f2 store the four possible outcomes stemming from the
two if conditions of the two versions, also taking into account whether the respective version
is active. The then body (lines 6 to 7) and the else body (lines 8 to 9) are then guarded by these
variables.

3.2.5 while Loops. After normalisation, the only loops remaining are while loops, which are handled
by rules while-prod, while-prod-1, and while-prod-2 in Figure 6. Consider the following two
versions:

1 // version 1

2 while (cond1)

3 // body1;

1 // version 2

2 while (cond2)

3 // body2;

Then, the product program is as follows:
1 int c1 = p1 && cond1;

2 int c2 = p2 && cond2;

3 while (c1 || c2) {

4 int cont1 = 0;

5 int cont2 = 0;

6 // product program of body1 and body2

7 if (c1) {

8 c1 = p1 && cond1;

9 }

10 if (c2) {
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11 c2 = p2 && cond2;

12 }

13 }

The conditions of the while loops from both versions are stored in variables c1 and c2, also taking
into account if the respective versions are active. This is done on lines 1 and 8 for the first version,
and on lines 2 and 11 for the second version. The variables cont1 and cont2 are inserted to support
continue statements, see §3.2.6.
The product program of body1 and body2 also uses these variables as activation variables. This

allows the two versions to have different numbers of iterations. For instance, if one of the versions
encounters a break statement, the respective activation variable is set to false, and the loop can
proceed only for the other version, see §3.2.6.

3.2.6 continue and break Statements. The continue-prod and break-prod rules from Figure 6
handle these constructs. We also illustrate the product construction rules with the following while

statement with a continue inside:
1 // version 1

2 while (outer_cond1) {

3 if (inner_cond1)

4 continue;
5 // body1;

6 }

1 // version 2

2 while (outer_cond2) {

3 if (inner_cond2)

4 continue;
5 // body2;

6 }

For these versions, the product program is as follows:

1 int c1 = p1 && outer_cond1;

2 int c2 = p2 && outer_cond2;

3 while (c1 || c2) {

4 int cont1 = 0;

5 int cont2 = 0;

6 int c1_1 = c1 && !cont1 && inner_cond1;

7 int c1_2 = c2 && !cont2 && inner_cond2;

8 if (c1_1) {

9 cont1 = 1;

10 }

11 if (c1_2) {

12 cont2 = 1;

13 }

14 // product program of body1 and body2

15 if (c1)

16 c1 = p1 && outer_cond1;

17 if (c2)

18 c2 = p2 && outer_cond2;

19 }

As before, c1 and c2, defined in lines 1 and 2, store the conditions for the while loop for the
two versions and act as activation variables for the body of these statements. We use additional
flag variables, cont1 and cont2, defined on lines 4 and 5 to temporarily disable the remainder of an
iteration for a version after a continue statement.

Since the if statements are nested inside the while, lines 6 and 7 define the compound activation
variables c1_1 and c1_2 as a conjunction of the current activation variables, the corresponding
continue flag variables, and the conditions from the if statement. These compound activation
variables are then used to guard the body of the if statement of their respective versions. We note
that deeply nested conditionals may, in theory, cause an exponential increase in code size under
the product transformation. Such heavy nesting is typically uncommon given its implications on
code quality and maintainability [24].
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The continue statements are then handled by setting the respective flag variables. The statements
in the loop body are hence no longer executed since they are guarded by compound activation
variables that can only be true if !cont1 or !cont2, respectively, is true. We also note that lines 16
and 18, which update the loop variables, are not guarded by their respective continue flags, as
loop condition must be re-evaluated after a continue statement. In this way, the construction can
handle cases where the two versions continue at different times, and thus have different numbers of
iterations.
We handle break statements in a similar fashion, where we unset the respective loop activation

variable (c1 or c2) whenever a break is encountered, which not only prevents the body of the loop
from being executed but also prevents the loop condition variables from being re-evaluated at the
end of the loop, thereby allowing the respective version to exit the loop.

3.3 Patch Annotations
The product construction presented in §3 assumes that we have two aligned software versions as
input, i.e. that we know which program constructs were added, removed or modified.
The patch annotation step presented in this section involves creating an annotated program

that identifies the constructs added, removed or modified. It is applied immediately after the
normalisation step in order to automate the subsequent product construction stage.
Our approach makes use of an abstract syntax tree (AST) matching algorithm. It works by

comparing the ASTs of the pre- and post-patch versions of the code to identify changes. The
algorithm proceeds as follows:
(1) AST Construction: Both the pre- and post-patch versions of the code are parsed to construct

their respective ASTs. These trees represent the syntactical structure of the code, breaking
it down into nodes that represent programming constructs like statements, expressions, and
declarations.

(2) Node Matching: The algorithm attempts to match nodes from the pre-patch AST with nodes
in the post-patch AST. This matching is done using a combination of structural similarity and
node identifiers, considering the context and position of each node within the tree.

(3) Change Detection: Once the nodes are matched, the algorithm flags nodes that are added,
modified, or deleted:
• Added Nodes: Nodes present in the post-patch AST but not in the pre-patch AST.
• Modified Nodes: Nodes that exist in both ASTs but differ in content (e.g., a change in an
expression).

• Deleted Nodes: Nodes present in the pre-patch AST but missing from the post-patch AST.
Consider the following illustrative example of a patch making a set of changes to the program:
1 // version 1

2 expr1;

3 if (cond1)

4 body1;

1 // version 2

2
3 if (cond2)

4 body2;

5 expr2;

To an AST matching algorithm (like the one used in clang-diff [21]), the aforementioned nodes
are identified by making use of a tree traversal algorithm coupled with a set of heuristics. In the code
above, lines 2 and 5 (highlighted red and green) show the identified deleted and added statements,
respectively. Line 3 (orange highlight) shows the identified modified if condition between the two
versions.

With these annotations in place, the product program construction can proceed as discussed in
§3.2. The code below shows the product program for the example patch, highlighting the manner
in which the previously identified added, deleted and modified nodes are dealt with:
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1 if (p1) expr1; // only in version 1

2
3 // Define the conditions based on the if statements

4 int t1 = p1 && cond1; // Condition for the "then" branch of version 1

5 int t2 = p2 && cond2; // Condition for the "then" branch of version 2

6 int f1 = p1 && !cond1; // No "else" branch, so unused

7 int f2 = p2 && !cond2; // No "else" branch, so unused

8
9 // Execute the "then" branches

10 if (t1) body1;

11 if (t2) body2;

12
13 if (p2) expr2; // only in version 2

In particular, lines 1 and 13 show how the added and deleted statements in the product program
are guarded by activation variables to ensure that the correct statements get executed for each
version. Lines 4 to 7 show how the modified nodes as identified by our previous stage are dealt
with in a product program, whereby the corresponding activation variables in the two versions use
their respective condition expressions, cond1 and cond2, for the first and second version respectively.

3.4 Product Program Runtime
Product programs cannot directly be executed in a normal program context, as their interaction with
the outside environment is effectively duplicated. For example, their main function expects two sets
of command-line arguments and returns two values. Beyond this simple issue related to program
setup, isolation of the two component programs is an important property, as, for example, either
version may try to use the standard input and output streams or attempt to terminate execution of
the whole program.

To address these issues, we provide a runtime system which has three major tasks in the lifecycle
of the product program:
(1) It starts the product program from a normal entry-point.
(2) It handles termination of the individual versions that make up the product program without

terminating the whole product program.
(3) It manages global resources, such as access to standard I/O streams. This task is complicated

in practice by having to deal with external calls, i.e. to functions whose code is unavailable.
Our presentation is done in the context of the C programming language (which our P3 prototype

targets), but similar issues would also need to be addressed in other programming languages.

3.4.1 Startup. The main function of a product program has a form that is incompatible with that
prescribed by the C programming language, as it duplicates the parameters and return value.

To start the program, the runtime provides an appropriate main function that initialises its global
state and duplicates the command-line arguments and environment array before calling the product
program’s main function. This duplication is important, as the argv and environ arrays are writable
in C, which means that each component version needs its own copy to prevent interference.

3.4.2 Shutdown. The runtime includes a standard library shim that is used to intercept calls to
program termination functions such as exit. These shims disable the global activation variable for
the currently active component version instead of terminating the whole product program. Shims
for handler registration functions such as atexit register actions to be performed by our runtime
instead of the standard library.

When the product program returns, the runtime gets the appropriate exit code from the return
value or a global variable if one of the exit functions was called. It then computes the combined
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return value as (return1 == 0 ? 0 : 1) + (return2 == 0 ? 0 : 2), which makes it easy to determine
whether each component version terminated normally.

3.4.3 Global Resources. The runtime manages access to global resources, such as environment
variables (envp) and the standard I/O streams (stdin, stdout, and stderr) so that the component
versions may read data without interfering with one another and write in an attributable manner.
Since the standard I/O streams are directly accessible as global variables, and, even worse, are
associated with well-known file descriptors (0, 1 and 2), wrapping functions such as printf is not
sufficient. Instead, the runtime will open a second set of I/O streams, making the two sets completely
independent. For versions where such management is not really necessary (because the target
program does not actually use standard I/O), this duplication can also be disabled.
To swap between the two sets of I/O streams, the product program is instrumented with calls

to runtime functions libpp_activate1() and libpp_activate2() which will enable the corresponding
streams.4 To assist with debugging, calling libpp_deactivate() returns the program to a neutral
state, in which any usage of these shared resources is an error. This way, it is possible to not only
provide the product program with identical input for its component versions, but also to allow for
intentional differences due to changes in the interface.
Environment variables are handled mostly the same with the additional complication that the

three-value form of main also requires a pointer to the appropriate set of environment variables to
be passed.

3.4.4 External Calls. Source code may not be available for all functions that are called by the target
program. P3 provides multiple ways of dealing with this issue.

First, a handwritten product function can be provided; this is similar to having environment mod-
els in program analysis techniques such as symbolic execution [6]. For common library functions,
such handwritten models can provide effective solutions that can be widely reused.
Alternatively, a normal non-product function can be called for each version as-is, as long as it

is stateless or idempotent. To do so, we first call libpp_activate1() or libpp_activate2() to enable
the appropriate global state for the standard library, before calling the function with appropriate
version-specific arguments. Afterwards, we call libpp_deactivate() to return to a neutral state (see
also §3.4.3).

Finally, if a product function cannot be provided and the function is (possibly indirectly) stateful,
we support a mechanism to duplicate that state by duplicating and renaming the binary object file,
so that two versions of the function are created that do not interfere with one another. We show
the viability of this approach by using it for getopt, which uses global variables to keep the parsing
state in between calls. The object file is duplicated and each symbol is changed to have a unique
version-specific name.5

3.5 Implementation
Our prototype implementation P3 begins by normalising both input versions of a given C program
at the source code level, as per §3.1. This normalisation step also resolves macros and #include

statements. In addition to reducing the number of language constructs that the product program
construction has to consider, this has the added benefit of improving the semantic matching when
generating patch annotations (§3.3). The normaliser uses Clang Libtooling [8] to repeatedly
parse and simplify the source code.
4This also changes errno and environ to that of the respective component version.
5To support the experiments discussed in §4, we do not actually perform this operation at the binary level, but rather
on LLVM bitcode files, as this is the level that KLEE operates on. When this is not necessary, the renaming can also be
performed at the binary level, which we validated using a combination of nm and objcopy driven by a small Python script.
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For the patch annotations discussed in §3.3, we follow a scheme similar to the change() patch
annotations presented in Shadow [28]. However, unlike Shadow our technique is fully automated
and relies on an ASTmatching algorithm for identifying added, deleted and modified nodes between
the ASTs of the pre- and the post-patch versions. In our implementation, we leverage the algorithm
of clang-diff [21]. Note that even when this heuristic step yields suboptimal results, our product
program construction still yields a correct product program.
Next, we perform the actual product program construction, which is also implemented using

Clang Libtooling. To do so, we apply the transformations described in §3.2, where function
signatures, function calls, if statements, and while loops are transformed to accommodate the
product semantics. This is also the stage where the necessary patch specifications are handled.
Moreover, since we expect a developer to write a patch specification while writing the patch itself,
we make use of a custom pp_assert statement which then gets picked up at this product construction
stage and transformed into source-level assertions which are compatible with the off-the-shelf
analysers.

3.6 Limitations
For our research prototype, we have focused on universality (cf §3) and only implemented isolation
to the point of finding general strategies and until our prototype was sufficient for our evaluation.
In the two following sections we will look closer at these two properties.

3.6.1 Universality: Normalisation and Product Construction. While the P3 prototype described tries
to handle most of the cases as encountered within our representative, real-world benchmarks, we
acknowledge that not all C constructs are covered. In particular, our research prototype is unable to
perform normalisation for programs using arbitrary gotos or complex switch/case constructs such as
Duff’s device. We acknowledge the fact that our prototype is not fully universal and would require
further work for full coverage. However, given the richness and flexibility for a language like C, it
is not uncommon for such source-to-source prototypes to exhibit certain limitations, as outlined by
e.g., the popular CIL infrastructure [26].

Moreover, for the specific case of unrestricted gotos whose use has long been deemed harmful [10],
we have only run into a single instance of a backwards goto in the cp benchmark. Instead of
discarding this benchmark, we decided to manually refactor the code to remove the construct and
continued with the evaluation of the patch which then gave us the expected outcome.

3.6.2 Isolation: Runtime and Environment Handling. The global state managed by libpp_activate1()

and libpp_activate2() (see §3.4.3) does not handle all of the global state exposed by the standard
library, although some commonly used functionality is covered. Probably the most important
unisolated resource is the file system, which we omitted as in our benchmarks there are no file
writing conflicts between the two versions. We note that this is a common limitation shared with
other program analysers such as most fuzzers.

To achieve the strongest isolation possible, one would need to intercept file interactions (either
via a source-based approach as we did for input/output streams, or via a lower-level solution such
as intercepting system calls), and perform the results in two isolated namespaces. These can be
created in various ways, ranging from Linux namespaces, as used by containerisation software, to
some specialised manipulation of paths when opening files. Completely modelling the environment
is of course also possible.

On the pure implementation side, our prototype runtime is not thread-safe. This is not a funda-
mental issue, as the usage of libpp_activate1(), libpp_activate2() and libpp_deactivate() (see §3.4.3)
effectively forms critical sections, access to which could easily be synchronised.
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4 Evaluation
Weevaluate our framework P3 on the collection of GNUCoreutils [13] patches fromCoREBench [5].
We conduct two distinct experiments, evaluating the different ways in which we envision P3 to be
useful for testing software patches.
First, in §4.1 we perform whole-program-based validation, where a product program (of the

pre- and post-patch versions) of the entire system is constructed and analysed for control-flow
divergences and output differences, in a manner similar to Shadow [17, 28].
Second, in §4.2 we explore patch specification-based validation (based on the idea of patch

specifications from our earlier work [7]) and explore the challenges faced in writing meaningful
patch specifications and their efficacy in exposing potential bugs when used in conjunction with
our P3 framework.

Our evaluation is designed to assess three strengths of P3: (1) its ability to automatically construct
product programs for real-world code (C in our prototype implementation), (2) its interoperability
with different program analysers (in particular AFL++ and KLEE in our evaluation); and (3) its
ability to deal with patch specifications and both modular and whole-program analysis.

Note that the key strength of P3 is to make arbitrary program analysers be differential program
analysers. Our aim is not to directly compare with the many different specialised techniques for
differential program analysis, but rather show that off-the-shelf analysers can be effectively used
for differential program analysis without requiring any modifications.

4.1 Whole-Program-Based Validation
In this section, we explore the use case of whole-program-based validation using our P3 framework.
The core idea here is that by using our P3 framework and automatically constructing a product
program that combines both the pre- and post-patch versions of the entire system, we can use
multiple off-the-shelf analysers to identify control-flow divergences (where the two versions take
different branches at a conditional statement) and output differences (where the two versions
produce different outputs).
This evaluation methodology is inspired by the Shadow project [17, 28]. Shadow proposes to

merge the pre- and post-patch versions using an approach based on manual annotations, and then
uses a new form of symbolic execution (called shadow symbolic execution) to detect control-flow
divergences and output differences. Such divergences and differences can be valuable to developers
who can check whether they are intended changes or unintentional bugs.

Compared to Shadow, we merge programs in a fully automatic fashion and are not constrained
to using symbolic execution, but can employ different off-the-shelf techniques. To demonstrate this
latter advantage, we use our P3 framework with both KLEE (denoted as P3KLEE) and AFL++ (denoted
as P3AFL++) and in the process demonstrate their complementary advantages.
For our whole-program-based validation, we try to use the same experimental setup as in

Shadow [17, 28]. Shadow starts with test cases that reach the patch, and then explores post-patch
paths to discover those resulting in control-flow divergences and/or output differences.

We use the same methodology and the same suite of patches from CoREBench in our evaluation.
CoREBench [5] is a suite of complex real-world patches and bugs that is often used in the evaluation
of patch testing techniques. The bug-inducing commits have been given an ID within CoREBench.
In particular where the IDs appear as 5=16 and 12=17, it denotes that the commit was exactly the
same but resulted in multiple bugs getting introduced.

For each bug-inducing CoREBench patch, we automatically construct a product program. This
product program is then analysed by both KLEE and AFL++, representative of two popular program
analysis techniques, dynamic symbolic execution and fuzzing, respectively.
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Table 1. Experimental results for P3AFL++ and P3KLEE in comparison to Shadow. The results for P3KLEE and

Shadow are identical. Cells highlighted in grey represent cases where P3AFL++ performs worse (light grey) or

better (dark grey) than Shadow and P3KLEE. Div. column is short for Divergences and indicates whether the

approach was able to find control-flow divergences between the two versions.

ID

Shadow P
3

KLEE
P
3

AFL++

Div. Output diff. Div. Output diff. Div. Output diff.

Expected Bug Expected Bug Expected Bug

1 (rm) ✓ No No ✓ No No ✗ No No
3 (cut) ✓ No No ✓ No No ✗ No No
4 (tail) ✓ Yes No ✓ Yes No ✗ No No
5=16 (tail) ✓ No No ✓ No No ✗ No No
6 (cut) ✓ No Yes ✓ No Yes ✗ No No
7 (seq) ✓ No No ✓ No No ✓ No Yes
8 (seq) ✓ No No ✓ No No ✓ No Yes
10 (cp) ✓ No No ✓ No No ✗ No No
11 (cut) ✓ No No ✓ No No ✗ No No
12=17 (cut) ✓ No Yes ✓ No Yes ✗ No No
13 (ls) ✓ No No ✓ No No ✗ No No
14 (ls) ✗ No No ✗ No No ✗ No No
15 (du) ✗ No No ✗ No No ✓ Yes No
19 (seq) ✓ No No ✓ No No ✓ No Yes
21 (cut) ✓ No Yes ✓ No Yes ✗ No No
22 (expr) ✗ No No ✗ No No ✗ No No

At each branch of the product program, we add instrumentation to check for control-flow
divergences. This is a simple check that introduces an if statement comparing the compound
activation variables of the two versions at that branch point. If a divergence is detected, the
program is crashed (with a certain exit code, to distinguish it from other types of crashes), which
will be detected by the underlying analysers.

P
3

KLEE
. The methodology followed while running product programs with KLEE roughly follows

Shadow, which is also based on KLEE. We take one input from the regression test suite as an initial
seed for KLEE, running in concolic mode. Then, starting from the states reaching control-flow
divergences, we continue exploring paths in breadth-first mode. We run KLEE for 10min and save
all the generated inputs. We then run all these inputs to find those resulting in output differences or
bugs. Concretely, we do so by running the inputs on the pre- and post-patch versions of the utility,
and comparing the outputs. We perform these runs under Valgrind [27], to find memory errors.
P
3

AFL++
. For AFL++, we run the fuzzer for 10min on each constructed product program, with

inputs from the regression test suite of the particular utility that reach the patch being used as
initial seeds. During the fuzzing process, we collect all the inputs leading to crashes caused by
control-flow divergences. As for the KLEE-generated inputs, these inputs are then replayed on the
pre- and post-patch versions of the utility (with Valgrind enabled) to identify any cases that result
in output differences or bugs.
Table 1 summarises the results obtained while following the aforementioned methodology on

the bug-inducing patches from CoREBench, along with a comparison with Shadow.
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Table 2. Bugs and output differences identified by the P3 framework which were missed by Shadow.

ID Input Pre-patch output Post-patch output Classification

7 (seq) 0 3 1 0

0
1
2
3

Bug

8 (seq) -0 No output

1
2
3
4
5
6
7
8
9
10

Bug

15 (du) -x / dir

4 /opt
0 /dev
8 /root
0 /sys

4 /opt
8 /root

Expected

19 (seq) -w -2 .81

-2
-1
0

-2
-1
00
01

Bug

One of the key highlights is that P3KLEE finds all the divergences and bugs found by Shadow.
Importantly, this is done via an automated product program construction, while the merged
programs in Shadow require manual annotations.

The other key highlight is that P3AFL++ offers complementary strengths compared to P3KLEE. This
shows the advantage of being able to run different program analysers in P3. In particular, P3AFL++
misses the bugs introduced by three of the patches in cut, as well as an output difference in one of
the tail patches, which are found by P3KLEE. However, it finds new bugs and output differences
compared to Shadow and P3KLEE: it finds the bugs introduced by the three patches in seq, as well
as an output difference introduced by the du patch. These are highlighted in Table 2, which shows
concrete inputs generated by P3AFL++, together with the output of the pre- and post-patch versions.

Case Study: Regression Bug in seq. The utility seq is used to print sequences of numbers. For
instance, seq 10 2 18 prints the numbers from 10 to 18, with a step of 2. That is, it prints:

10

12

14

16

18

In GNU Coreutils-8.20, an optimisation was added to seq to simplify the common case of
counting with a step of 1 over non-negative integers when no custom formatting is used. The
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Table 3. Patch specifications from [7]. Only the critical assertion is shown. The variables in the two versions

are denoted by prefixes _PP1_ and _PP2_.

ID Patch specification Explanation

14
(ls)

0 == strcmp(_PP1_p, _PP2_p) Refactoring patch, thus the output of the function
should remain unchanged.

22
(expr)

_PP2_v->u.i == _PP1_v->u.i Introduction of a new error case and partial refac-
toring that should not lead to struct v changing.

8b
(seq)

_PP2_buf == _PP2_z ||

(_PP2_z[-1] >= '0' &&

_PP2_z[-1] <= '9')

Modifies output logic of seq such that the output
buffer now exactly mirrors the temporary z vari-
able.

intended aim of this patch was to detect when all operands are plain decimal integers, the requested
step is 1, and no format string is given, and then invoke an internal function seq_fast that increments
the string representation directly:6

1 if (format_str == NULL

2 && all_digits_p (argv[1])

3 && (n_args == 1 || all_digits_p (argv[2]))

4 && (n_args < 3 || STREQ ("1", argv[ 3 ]))) {

5 // ...

6 seq_fast(s1, s2);

7 exit(EXIT_SUCCESS);

8 }

Unfortunately, this optimisation was incorrect: due to an indexing mistake (as highlighted by the
grey box in the listing above), the patched code tested the end operand (which is the third argument)
in seq rather than the step operand (which is the second argument). Despite the optimisation being
incorrect, insufficient testing meant that it made it into an official release, only for the bug to be
discovered and reported later.7
The patch touched a single file, but altered 148 lines of code across 5 different code regions

(hunks). Our P3 framework automatically constructs a product program that runs together the
correct, pre-patch and the buggy, post-patch version, demonstrating that it can handle large complex
real-world patches.
Control-flow divergence checks, as described earlier in the section, are automatically inserted

by P3 throughout the product program. For each input triggering control-flow divergences across
versions, the outputs are compared and differences flagged. With these checks in place, off-the-shelf
AFL++, running the product program produced by P3 was able to generate input 0 3 1 within
10 seconds, which triggered the bug. More precisely, run with this input, the correct pre-patch
implementation prints 0, but the incorrectly optimised post-patch version incorrectly takes the
fast path (because the end value and not the step value is compared to 1) and prints the numbers
0, 1, 2, 3 (one per line).

4.2 Validating Patch Specifications
In order to show the effectiveness of the P3 framework when used in conjunction with patch
specifications, we carry out two related experiments that use (partial) patch specifications to find
multiple real-world bugs from the CoREBench suite.
6https://cgit.git.savannah.gnu.org/cgit/coreutils.git/commit/?id=77f89d014be68e42de5107aee0be95d18ee1735c
7https://debbugs.gnu.org/cgi/bugreport.cgi?bug=13525
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Table 4. Summary of the results obtained by our P3 framework on the patches from [7] with KLEE and AFL++.

ID Kind LoC KLEE AFL++

Time Paths Violation Time Violation

14
(ls)

Inducing 306 2 s 134 Found 1 s Found
Fixing 313 2 s 380 Found 1 s Found

22
(expr)

Inducing 1827 1 s 6 Found 1 s Found
Fixing 1827 3 s 11 None 10min Not found

8b
(seq) Semantic 750 14 s 1121 None 10min Not found

The first experiment uses the patch specifications from [7] along with their test drivers, but
using P3 to automatically construct product programs. By demonstrating that these specifications
and their drivers can be used with P3, we aim to establish that P3 can automate patch testing using
naturally expressed patch specifications.
For the second experiment, we add four more examples from CoREBench and write our own

patch specifications. Unlike for the first experiment, we do not use custom test drivers for these
patch specifications. With this experimental setup we want to explore how well P3 works when
running full-fledged real-world programs with patch specifications.

4.2.1 Patch Specifications with Custom Test Drivers. In our earlier work [7], we wrote patch
specifications for three different patches in three different GNU Coreutils utilities (ls, expr
and seq), together with custom test drivers that call the function modified by the patch. A short
description of these patch specifications can be found in Table 3.
We extract the functions that are modified by the patch, add the patch specifications and then

compute their product program using P3. To run the resulting product function, we slightly modify
the driver so that it can be called as a product main function. The LoC column in Table 3 refers to
the number of lines of code in the product programs automatically constructed by P3 for those
functions and test drivers. Table 4 summarises our results, which we discuss in more detail below.

ls refactoring validation. CoREBench issue #14 contains a patch that was intended to refactor
ls. We first use P3 for the bug-inducing commit whereby we construct a product program of the
original and the refactored code and run it under P3KLEE and P3AFL++. Both tools are able to find
an input that violates the patch specification. We manually verified that this indeed induces the
expected bug.
We then create a compound patch by combining the buggy patch with its supposed fix, also

taken from CoREBench. For this second patch, we also use P3 to construct the product program
followed by an analysis step with P3KLEE and P3AFL++. Our findings match the ones from our earlier
work [7], as we notice another violation of the specification due to a (probably benign) difference
in path concatenation. Providing both full versions of ls with input that causes a violation of the
patch specification shows no visible difference, which is in line with our previous findings [7]. Both
aforementioned specification violating inputs were found almost instantaneously with either tool.
Similar results can be observed when using manually constructed product programs [7].

expr partial refactoring validation. We follow the same strategy for this example, by starting
with the bug-inducing commit for CoREBench issue #22. Again, both P3KLEE and P3AFL++ quickly
find a violation of the patch specification, which we manually verified to induce the expected bug.
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Table 5. Additional patch specifications attempting to capture developer intent. The variables in the two

versions are denoted by prefixes _PP1_ and _PP2_.

ID Patch specification Explanation

3
(cut)

_PP2_n_rp == _PP1_n_rp - 1 The post-patch n_rp value should be one less
than the pre-patch value after the addition
of logic that merges finite range pairs.

7
(seq)

_PP2_argv[1] == _PP1_first.value &&

_PP2_argv[2] == _PP1_last.value

Since this is an optimisation patch for a spe-
cial case, the new start and end values of a
range should be the same as when the opti-
misation was not being used.

8
(seq)

_PP2_z == _PP2_buf ||

*(_PP2_z - 1) == '\n'

Ensures that after the first number is writ-
ten, a newline is not incorrectly added un-
less explicitly intended by the separator.
This maintains the correct sequence format
when using non-newline separators, align-
ing with the commit’s intent to allow flexi-
ble separators.

12=17
(cut)

*_PP1_range_start ==

*_PP2_range_start

The patch adds an option to cut but the
role of range_startwithin print_kth function
should remain unaffected by this new com-
plementary option.

Unlike in the previous case, the patch specification holds for the fixed patch, which incidentally
makes validation slightly harder, as there is no specification-violating input to check. In addition to
manually checking some arbitrarily chosen inputs, we also note that the number of paths generated
by the bounded, but otherwise complete symbolic exploration of the product program is exactly
the same for both our product program and for the program from [7]. Despite the number of paths
being the same, we observe an expected increase in the total number of executed instructions, as
the automated product program construction is more verbose than the manually crafted one. As
AFL++ will never terminate on programs where it does not detect a bug, we used a time budget of
10min, which it reached without finding any specification violation.

seq semantic change validation. For our final case study, we validate the bug-fixing patch for
seq from [7] as a semantic change, rather than by using it to correct an earlier mistake. As in [7],
we use the buggy version of seq as the base version and have the patch specification describe the
intended change. Again, we use both P3KLEE and P3AFL++ to construct the product program and to
look for any violations. As expected, there are no violations.
The number of paths explored by P3KLEE is the same as in the artifact for [7], while the number

of explored instructions again increases. As before, we run P3AFL++ for 10min during which no
violations of our patch specifications were detected.

4.2.2 Patch Specifications without Custom Test Drivers. The setup for this set of experiments aims
to demonstrate the efficacy of our P3 framework when used in conjunction with patch specifications
on full real-world programs, i.e. without the use of any custom test drivers. We believe that this
setup provides a lightweight method of robustly testing patches without the manual overhead of
continuously writing test drivers.
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Table 5 shows the critical part of the patch specifications we wrote, along with a rationale
for what property they validate. Understanding the intended semantic change (or lack thereof
in the case of refactorings) is critical not only for writing these patch specifications, but also for
reviewing patches in general. In fact, our ability to deduce what we believe to have been the
original developers’ intent played a central role in the selection of patches for this experiment.
While we tried to write patch specifications that could reasonably have been written to support the
bug-inducing patch, we of course benefited from some hindsight while writing them.

We used P3 to generate two product programs for each of the chosen benchmarks: one over the
original and the buggy version and one over the original and the fixed version. This enables us to
validate that the patch specification is strict enough to catch the bug and allows the fixed patch to
pass. We used test cases extracted from the bug reports to manually validate that this is indeed the
case. After this initial validation step, we make use of P3’s ability to work with a variety of testing
techniques by analysing these product programs with patch specifications with both AFL++ and
KLEE. For all four cases, both P3AFL++ and P3KLEE were able to find specification violations for the
buggy version of the patches. No specification violations were found for the fixed versions of the
patches (within a timeout of 10min for both KLEE and AFL++).

5 Related Work
The automated product program construction described in this paper is built on the modular
product programs presented by Eilers et al. [11], whose ideas we extend to cover much of the
C programming language and handle different program versions. Product programs have been
originally presented as a form of self-composition to reduce an information-flow hyper-property
relating two program traces to a safety property in the composed program [3]. A concrete method
for computing the composition in a simple language was given in [2].
A large number of automated techniques for validating patches have been proposed in the

literature [9, 14, 15, 17, 23, 25, 32–35]. These techniques rely on specialised program analyses, while
our approach can use off-the-shelf unmodified analysers once the product programs are constructed.
Furthermore, these techniques suffer from the oracle problem; P3 makes it easy to write patch
specifications [7], which we explore in this work.
Product programs have been used in differential assertion checking [19] to determine whether

errors are introduced by a new program version. While the framework could in principle handle
the kind of patch specifications we envision, it focuses exclusively on generic errors such as
buffer overflows. Reasoning is done using static analysis via Boogie [1], which imposes different
requirements on the construction of product programs.
Similarly, product programs have been proposed for relational verification of programs [2], by

way of reducing relational Hoare logic quadruples to standard Hoare triples, which can then be
verified using standard techniques. Our work expands on that approach by computing product
programs for general C programs with only minor restrictions (e.g., no unrestricted goto usage),
and shows that it is not restricted to (relational) Hoare logic or more generally to verification.
Product programs have also been used to find issues with conflicting patches by automatically

verifying semantic conflict-freedom, a property that describes the disjointedness of two patches
versus a single base version on a semantic level, rather than a purely textual or syntactic one [31].

Yi et al. [36] propose the notion of change contracts for evolving software, which are similar
in spirit to patch specifications, but based on the use of a specification language. While both P3
and change contracts support cross-version reasoning, they differ in their approach: P3 reduces
the problem to standard program analysis by transforming version pairs into product programs
amenable to off-the-shelf analysers, thereby turning any off-shelf-analysers into differential program
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testers, while change contracts introduce a dedicated specification language and bespoke verification
engine to express and check intended behavioural changes.

Other forms of multi-version programs have been proposed in the past, e.g., in work on shadow
symbolic execution [17], multi-version interprocedural control flow graphs [20], regression model
checking [35], and GPGPU verification [4].

Over the past decade, automated generate-and-validate program repair techniques have garnered
significant attention. These techniques tend to generate many overfitted patches [22, 30] that need
to be rejected in the validate step. In addition to the usage of pre-existing test suites and implicit
oracles (e.g., checking if compilation succeeds), various heuristic solutions have been proposed to
reject plausible but incorrect patches during validation [9, 14, 15, 25, 32–34]. Our proposed approach
can reject patches that have subtle semantic errors without encountering false positives, but requires
(presumably human-written) patch specifications to do so, thus being unsuited for quick rejection
of large numbers of automatically generated patches. Once a repair attempt has been decided
upon, our framework enables the developer to reason about whether the automatically generated
patch exactly achieves a stated goal, helping a human developer validate their understanding of
machine-generated code.

6 Conclusion
Motivated by the observation that it is often easier to describe the differential behaviour of a
patch than to fully specify the intended behaviour of a program, we present P3, a framework
for automated reasoning about patches via product programs. In this paper, we have shown that
product programs can be computed automatically even for large and non-trivial C programs and
patches, and that the resulting product program can be used by off-the-shelf tools to validate patch
behaviour. We have also demonstrated that partial patch specifications can be easy to formulate
and still catch many practically relevant bugs by encoding assumptions about how the system is
supposed to change.
Through the use of our P3 framework, we demonstrate the advantages of an analysis-agnostic

framework, where we found analysis techniques as varied as AFL++ and KLEE to be complemen-
tary when used in conjunction with our framework on the challenging set of patches from the
CoREBench suite.

7 Data-Availability Statement
Our artifact is available on Zenodo [29], with the latest version accessible at https://srg.doc.ic.ac.
uk/projects/p3/.
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