
Past-Sensitive Pointer Analysis for Symbolic Execution
David Trabish

Tel Aviv University

Israel

davivtra@post.tau.ac.il

Timotej Kapus

Imperial College London

United Kingdom

t.kapus@imperial.ac.uk

Noam Rinetzky

Tel Aviv University

Israel

maon@cs.tau.ac.il

Cristian Cadar

Imperial College London

United Kingdom

c.cadar@imperial.ac.uk

ABSTRACT
We propose a novel fine-grained integration of pointer analysis with

dynamic analysis, including dynamic symbolic execution. This is

achieved via past-sensitive pointer analysis, an on-demand pointer

analysis instantiated with an abstraction of the dynamic state on

which it is invoked.

We evaluate our technique in three application scenarios: chopped

symbolic execution, symbolic pointer resolution, and write integrity

testing. Our preliminary results show that the approach can have a

significant impact in these scenarios, by effectively improving the

precision of standard pointer analysis with only a modest perfor-

mance overhead.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Symbolic Execution, Pointer Analysis

ACM Reference Format:
David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020.

Past-Sensitive Pointer Analysis for Symbolic Execution. In Proceedings of the
28th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’20), November 8–
13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3368089.3409698

1 INTRODUCTION
We present a novel technique for increasing the precision of pointer
analysis [32, 40, 43, 44] when used in the context of dynamic anal-
ysis and dynamic symbolic execution.1 We show that the increased

1
We note that from the perspective of running a pointer analysis in a dynamic context,

the dynamic analysis scenario is simply a particular case of the dynamic symbolic

execution one in which a single path is explored and no symbolic data (in particular

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3409698

precision, which comes with a modest performance overhead, can

benefit three applications: chopped symbolic execution, symbolic

pointer resolution, and write integrity testing.

Our Approach. Existing dynamic analyses which employ static

pointer analysis run the pointer analysis first and then utilize its

results [2, 7, 13, 33, 47]. We propose a more fine-grained integration:

invoke the pointer analysis on-demand whenever the symbolic ex-

ploration reaches a certain program point
2
where the points-to

information is needed, and at that point instantiate the analysis

with a path-specific abstraction of the current symbolic state. Specif-

ically, our abstraction distinguishes objects already allocated in the

past, which are assigned a unique allocation site, from objects allo-

cated in the future, which can share allocation sites, to an extent

depending on the sensitivity of the pointer analysis. We call our

analysis past-sensitive pointer analysis (PSPA).

Applications.Many dynamic analysis techniques, such as various

forms of integrity enforcement [2, 7, 13] and different extensions

of dynamic symbolic execution [33, 42, 47] rely on the results of

a pointer analysis. In our paper, we specifically explore Chopped
Symbolic Execution [47], Symbolic Pointer Resolution [8, 33, 48], and

Write Integrity Testing [2].

Chopped Symbolic Execution.Dynamic symbolic execution (DSE) [12]

computes an under-approximation of the program’s behavior by

systematically exploring multiple, but not all, program paths. Un-

fortunately, scaling symbolic execution to handle large programs is

challenging due to the well-known state-explosion problem. Thus,

attempts have been made to utilize information gained by pointer

analysis during the symbolic exploration [33, 42, 47]. Chopped sym-

bolic execution [47] is a DSE variant that can skip calls to functions

that users deem as irrelevant to the code they want to analyze. To

safely do so, the analysis relies on the results of a pointer analysis,

which provides conservative information about the side effects of
the skipped function calls, i.e. the memory locations that may be

modified by their code. If those locations are later read by the ana-

lyzed code, a recovery process takes place, in which relevant parts

of the skipped code are executed. Of course, the more precise the

results of the pointer analysis, the fewer unnecessary recoveries

take place and thus the more effective the technique. We show that

by running the pointer analysis in the symbolic state just before

symbolic pointers) are present. Therefore, in the remaining of the paper we mainly

discuss our technique in the more general context of symbolic execution.

2
Technically, we only invoke pointer analysis at procedure call sites.

https://doi.org/10.1145/3368089.3409698
https://doi.org/10.1145/3368089.3409698
https://doi.org/10.1145/3368089.3409698

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

skipped function calls, the number of recoveries can be significantly

reduced (§6.2).

Symbolic Pointer Resolution. Symbolic pointers present a particular

challenge for DSE [8, 33, 48]. Modern DSE systems typically map

each symbolic memory object into a different solver array. Queries

involving symbolic memory objects are then easily translated into

SMT constraints involving the corresponding SMT arrays. Since

symbolic pointers can potentially refer to multiple memory objects,

the DSE system first needs to find all the memory objects to which

the pointer could refer to, so that the right SMT arrays can be

referenced. In one of the most popular memory models, the forking
model [8, 10, 38], the DSE system scans each memory object in

turn, issuing solver queries to determine if the pointer can refer

to that memory object. If a pointer analysis determines that the

pointer cannot refer to an object, that object can be ignored, saving

potentially expensive solver queries. In this paper, we show that our

approach can significantly speed up symbolic pointer resolution,

by eliminating a much larger number of solver queries compared

to a standard static pointer analysis (§6.4).

Write Integrity Testing (WIT). WIT [2] is a well-known defense

against certain classes of security attacks. At a high level, WIT

uses a pointer analysis to determine which pointers are allowed

to access which objects. For instance, the pointer analysis might

determine that a pointerp can only refer to objectsa andb. Dynamic

instrumentation is then added to enforce the results of the static

analysis—e.g., if p is used to access another object c via a buffer

overflow, execution is safely terminated. Of course, the precision of

the pointer analysis has a direct impact on the effectiveness of the

analysis. In our experiments withWIT [2], we show that computing

the analysis in the dynamic context where the program has already

finished its initialization can lead to significant improvements in

precision and thus effectiveness (§6.3).

Main contributions. Our main results can be summarized as fol-

lows:

(1) We propose past-sensitivity—a new form of sensitivity in

pointer analysis which makes use of the dynamic context

under which it is invoked.

(2) We describe a technique for generating path-specific pointer

abstractions in the context of dynamic analysis and symbolic

execution.

(3) We provide an implementation based on the state-of-the-

art symbolic execution engine KLEE [8], which we make

available as open source.
3

(4) We show the benefits of our technique in three different

scenarios: chopped symbolic execution, symbolic pointer

resolution, and write integrity testing.

2 OVERVIEW OF OUR APPROACH
We demonstrate our approach by applying it to the symbolic execu-

tion of the simple program shown in Figure 1.
4
First, the program

allocates two hash tables (t1 and t2), and inserts even elements

3
https://srg.doc.ic.ac.uk/projects/pspa/

4
The example demonstrates code patterns that we encountered in real code: libtasn1
creates a tree-like data structure where nodes are allocated inside a loop andm4 utilizes
multiple hash tables.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 #define N 20

6 typedef struct elem_t

7 {unsigned k; char *v; struct elem_t *next;} elem_t;

8 typedef struct {unsigned n; elem_t **array;} table_t;

9

10 table_t *table_alloc(unsigned n) {

11 table_t *t = malloc(sizeof(table_t));
12 t->array = calloc(sizeof(elem_t *), n);

13 t->n = n;

14 return t;

15 }

16

17 elem_t *table_lookup(table_t *t, unsigned k) {

18 unsigned int hash = k % t->n;

19 elem_t *e = t->array[hash];

20 while (e) {

21 if (e->k == k) break;
22 e = e->next;

23 }

24 return e;

25 }

26

27 void table_insert(table_t *t, unsigned k, char *v) {

28 elem_t *e = table_lookup(t, k);

29 if (!e) {

30 e = malloc(sizeof(elem_t));
31 e->v = malloc(10);

32 e->k = k;

33 int hash = k % t->n;

34 e->next = t->array[hash];

35 t->array[hash] = e;

36 }

37 strcpy(e->v, v);

38 }

39

40 void run(table_t *t) {

41 while (...) {

42 // wait for key and data

43 table_insert(t, k, v);

44 }

45 }

46

47 void main() {

48 table_t *t1 = table_alloc(N);

49 table_t *t2 = table_alloc(N);

50 for (unsigned i = 0; i < N; i++) {

51 table_t *t = i % 2 == 0 ? t1 : t2;

52 table_insert(t, i, "...");

53 }

54 unsigned k1, k2; // symbolic

55 table_insert(t1, k1, "foo");

56 elem_t *e = table_lookup(t2, k2);

57 run(t2);

58 }

Figure 1: Motivating example.

into t1 and odd elements into t2 (line 52). At line 55 it inserts a

new element into table t1 with the symbolic key k1. The insertion
function uses table_lookup to check if the element already exists

in the table, which in turn computes the hash of the input key, and

https://srg.doc.ic.ac.uk/projects/pspa/

Past-Sensitive Pointer Analysis for Symbolic Execution ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

𝑨 𝑬𝑻

t1 t1.array t1.array[hash]

t2 t2.array t2.array[hash]

Figure 2: Abstraction with static pointer analysis.

𝑨𝟏 𝑬𝟏
𝟏, 𝑬𝟏

𝟐,…𝑻𝟏

t1 t1.array t1.array[hash]

𝑨𝟐 𝑬𝟐
𝟏, 𝑬𝟐

𝟐,…𝑻𝟐

t2 t2.array t2.array[hash]

Figure 3: Abstraction with past-sensitive pointer analysis.

iterates over the nodes of the relevant bucket to find the matching

element.

Assume that a developer is interested in testing the part of the

code operating on table t2. The developer could try to reduce path

explosion (e.g., due to the while loop at lines 20–23) by skipping

the invocation of function table_insert at line 55 using chopped

symbolic execution. However, an attempt to skip the invocation

at line 55 using the original technique, which relies on flow- and

context-insensitive pointer analysis, will not be successful, since the

analysis will report a false dependency between the side effects of

table_insert at line 55 and the locations read by table_lookup
at line 56. The relevant part of the abstraction computed by the

(whole-program) pointer analysis is shown in Figure 2. Note that

a context- (and flow-) sensitive pointer analysis will not solve our

problem, since the elements of both tables are allocated in the same

context (at line 30 of table_insert, which is called from line 52).

Leveraging the fact that we need the side effects information

during the execution (in particular before the call at line 55), and

not necessarily at its start, we aim to take advantage of the dynamic

information at hand. In order to run a pointer analysis from a

dynamic context, we need the ability to compute the abstraction of

the current symbolic state. A key observation is that we can benefit

from the ability to distinguish between objects which were already

allocated when the analysis is invoked, even if they have the same

static allocation site.

The abstraction computed using our PSPA approach, at the call-

site of table_insert at line 55, is shown in Figure 3. For each

of the objects allocated until that point at lines 11, 12 and 30, we

assign a unique allocation site in the abstract state. Therefore, when

function table_insert is called at line 55, we know from the dy-

namic abstraction that: t1 points to T1, the field array of t1 points

to A1, and the pointers of that array point (index-insensitively) to

{E11, E
2
1, ...} (the elements that were already allocated at line 30).

Using this information, we can compute precise enough side effects

for the function table_insert, which allows us to eliminate the

spurious data dependencies.

Another challenge arising from our example is the process of

symbolic pointer resolution, a well-known challenge in dynamic

symbolic execution [8, 33]. Note that in our example, when at line

55 table_insert calls table_lookup, the value of the pointer e
at line 19 is symbolic, since it depends on the symbolic hash value

which is derived from k1. Therefore, at line 21, e->k dereferences
a symbolic pointer.

Typically, symbolic executors create one SMT solver array for

each symbolic memory object [8, 38]. Dereferences of symbolic

pointers pose a challenge to this approach, as each symbolic pointer

may refer to multiple objects. As discussed in the introduction, one

of the most common approaches for handling symbolic pointers is

the forking model, used by e.g., KLEE [8]: when a symbolic pointer

is encountered, the entire memory is scanned to find all the objects

to which the pointer could refer. Then, for each possible object,

the pointer is constrained to refer to that object only, making it

straightforward to express SMT constraints involving that pointer.

Determining whether the symbolic pointer can refer to a certain

memory object is expensive, as it involves solver queries.
5

We remark that the blind process of memory scanning can be

improved if one has points-to information in hand. If the symbolic

pointer cannot statically point to an object which has an allocation

site AS, then objects whose allocation site is AS can be ignored in

the scanning process, thus saving solver queries. Obviously, the

success of this approach depends directly on the precision of the

pointer analysis. Consider the symbolic pointer dereference e->k
discussed above. With static pointer analysis, the scanned space

will be reduced to the objects whose allocation site is E (Fig. 2), i.e.

the elements allocated by both tables (t1 and t2). With our PSPA

approach, the scanned space will be further reduced to objects

whose allocation sites is one of {E11, E
2
1, ...} (Fig. 3), thus reducing

the number of scanned objects by a factor of 2.

So far we discussed the benefits of our dynamic approach in the

context of symbolic execution. Now we will show the benefits of

our approach in the context of write integrity testing, which we

introduced in §1. Consider the execution of the run function, which
waits for a key and a value (of an arbitrary size), and inserts them

into the table t2 using table_insert. Note that if our value v is

long enough, then a buffer overflow will occur during the execution

of table_insert at line 37.
When WIT is enforced with static pointer analysis, all the string

buffers allocated at line 31 correspond to a single static allocation

site, and WIT only enforces that the strcpy accesses one of these
buffers. Therefore, when the strcpy function overrides the next

object in memory (which could be another string buffer), a buffer

overflow can be missed. With our dynamic approach, we can per-

form the pointer analysis just before the invocation of run, which

5
Note that this process can be optimized to scan only part of the memory space [11],

but tools like KLEE don’t use these optimizations as they pose some implementation

challenges. Other memory models can also work better in some scenarios [24, 33]

but present various trade-offs. Context-based resolution [48] can accelerate future

resolutions, but is an orthogonal approach.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

enables us to distinguish between each of the already allocated

values, and those that will be allocated in the future. In particular,

we can distinguish between values allocated for t1 and t2. Since
run only references t2 and we track each past-allocated value,

we can distinguish the different values associated with t1. Thus
under some allocation schemes, e.g., when all string buffers are allo-

cated sequentially, these distinctions allow PSPA to detect potential

strcpy buffer overflows that are missed when using a standard

static pointer analysis.

3 SYMBOLIC STATE API
Symbolic execution (SE) [12] is an automated technique for evaluat-

ing the behavior of a program on arbitrary inputs. It has been suc-

cessfully used for e.g., test generation [8, 25], bug and security vul-

nerability discovery [14, 26, 35, 52], equivalence checking [19, 20]

and patch testing [36]. The idea behind symbolic execution was

introduced over 40 years ago [6, 18, 34]. However, in the last decade,

symbolic execution gained new momentum due to the dramatic

improvement in SMT solvers [23], and the invention of dynamic/-

concolic symbolic execution [9, 25].

Roughly speaking, SE engines such as KLEE [8] systematically

explore program paths by maintaining symbolic states. Each such

state records the values of variables and heap-allocated locations

as path-dependent functions of a given symbolic input and a path
condition. The latter is a conjunction of quantifier-free first-order

formulas that tracks the sequence of branches the SE engine fol-

lowed along that path. The path is feasible if and only if the resulting

condition is satisfiable.

Modern SE engines like KLEE compute symbolic states which

reflect the layout and the contents of the program’s memory with

bit-level accuracy: Every time the SE engine encounters a memory-

allocation command, be it of a local variable, a global variable or a

heap object, it adds to the symbolic state a fresh memory object mo
spanning an appropriate number of bytes starting at a unique base
address Bases (mo) ∈ N.6

To simplify the presentation, we assume that the SE engine

represents every memory object as if it is comprised of a sequence

of primitive fields containing primitive values, which are either

integers or addresses. We represent the contents of each primitive

field by a unique symbolic expression e .7

We further expect that every memory object mo in a symbolic

state s has a type t ∈ T , denoted by Types (mo), which determines

the number of its primitive fields and their types (integer or address).

The set of possible types is defined as follows:

T := int | ref | Array(n,T) | Struct(T)

The types int and ref correspond to integer and pointer primi-

tive values occupying a single field. The type Array(n, t) is of

an array containing n ∈ N+ elements of type t , and the type

Struct(t1, . . . , tn) indicates a record type containing n elements

where the ith element, for 1 ≤ i ≤ n, is of type ti . We denote the

number of fields in an object of type t by Size(t) and use Sizes (mo)
as a shorthand for Size(Types (mo)).

6
If the size N of the allocation is symbolic, the engine concretizes N to a arbitrary

admissible size, i.e., one which adheres to the accumulated path constraints.

7
We note that our implementation is bit-accurate.

We assume that the SE engine exposes the set of allocated mem-

ory objects in a symbolic state s, their properties, and the value

of pointer expressions. Specifically, we expect that the SE engine

supports the following operations on a given symbolic state s:
• MOs returns the set of allocated memory objects in s.
• Bases , Types andASs return the base address, type, and allocation
site

8
of mo ∈ MOs , respectively.

• Given a memory object mo, and a field index 0 ≤ i < Sizes (mo),
the functions Types (mo, i), and Es (mo, i) return the type of the

ith primitive field ofmo and the symbolic expression representing

its value, respectively.

• Given a symbolic expression e and a constant value c , the function
mayBeTrues (e = c) determines whether it is possible that e has
the value c in s.

4 PAST-SENSITIVE POINTER ANALYSIS
In this section, we present our technique for determining the ab-

straction when invoking pointer analysis from dynamic contexts.

The technique abstracts thememory graph induced by the symbolic

state using a past-sensitive abstract domain. Thus, we describe these
aspects first.

4.1 Memory Graphs
The memory graph pertaining to a symbolic state s, denoted by Gs ,

is a graph which conservatively represents the possible memory

layout in s: the nodes of the graph are the primitive fields of the

allocated memory objects and its edges record the possible points-

to relations. Given the symbolic state API described in the previous

section, constructing the graph is rather straightforward:

Gs = (N ,E) , where

N = {(mo, i) | mo ∈ MOs ∧ 0 ≤ i < Sizes (mo)}
E = {((mo1, i1), (mo2, i2)) |

mo1,mo2 ∈ MOs ∧ Types (mo1, i1) = ref ∧
mayBeTrues (Es (mo1, i1) = Bases (mo2) + i2)}

Given a symbolic expression e and a symbolic state s , we denote
by Targetss (e) the set of nodes in the memory graph of s corre-
sponding to the locations (primitive fields) that e might point to:

Targetss (e) = {(mo, i) | mo ∈ MOs ∧ 0 ≤ i < Sizes (mo)
∧mayBeTrues (e = Bases (mo) + i)}

Let R be a set of symbolic pointer expressions. We denote by

Gp
s (R) the sub-graph of the Gs obtained by projecting it using R:

Gp
s (R) = (N ′,E ∩ (N ′ × N ′))

where:

N ′ = {n ∈ N | n is reachable in Gs from n′ ∈
⋃
e ∈R

Targetss (e)}

Note that when a function is invoked, it can only operate on the

part of the memory which is reachable from its formal parameters

and global variables. Thus, assuming R contains the symbolic ex-

pressions corresponding to the addresses of the global variables and

the values of the actual parameters in s , we can soundly analyze

the invocation considering only part of the memory represented

by Gp
s (R) instead of Gs .

8
We assume that ASs assigns a tag to every memory object.

Past-Sensitive Pointer Analysis for Symbolic Execution ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

For example, the memory graph of the symbolic state s computed

at line 55 of Figure 1 right before the invocation of table_insert
contains several nodes: local variables (t1, t2, ...), allocated tables,

allocated arrays, etc. The part of the memory graph relevant to the

invocation Gp
s ({t1}), contains only string "foo" and the elements

and the string buffers in table t1.

4.2 Past-Sensitive Abstract Domain
Pointer analysis algorithms conservatively determine the target of

every pointer variable and field in the program. The most common

way to represent this information is to use a points-to graph. A
points-to graph is comprised of nodes representing (fields) of mem-

ory objects and the edges which encode the possible contents of

the pointer fields. In addition, there are several roots, representing
the entry points to the graph—the addresses of variables and the

pointer parameters passed to the program.

Intuitively, one can think of a points-to graph as abstracting a

memory graph by collapsing multiple nodes of the memory graph

into single nodes which can represent one or more memory fields.

To ensure the abstraction is bounded, and thus that the points-to

algorithm terminates, there is a bounded a priori fixed partitioning

of the nodes. For example, all the heap objects allocated at the same

allocation site are often collapsed together into the same node. Dif-

ferent points-to abstractions alter the graph in different ways. For

example, they may refine the abstraction by differentiating between

objects allocated at different calling contexts (object-sensitivity) or

coarsen it by ignoring the distinction between the different fields

of an object (field-insensitivity).

In PSPA, we also use an allocation-based pointer abstraction, but

with a twist: As we know the exact dynamic context in which the

analysis should operate, we distinguish between the objects which

were allocated prior to the analyzed invocation and the ones the

analysis should consider as being possibly allocated from this point

on. Thus, every dynamic context induces its own abstraction. Tech-
nically, our abstract domain A is defined over admissible abstract
states as formalized below:

ASstatic = The set of static allocation sites in P
ASunique = ASstatic × N

as ∈AS = ASstatic ∪ ASunique
v ∈V = Roots
o ∈ O = AS × (N ∪ {∗})

σ ∈A = 2
V × 2O × 2(V∪O)×O

An abstract state (aka points-to graph) σ = (V,O, PT) ∈ A is

comprised of a set of roots V , the program’s entry points into the

memory; a set of abstract nodes O representing memory locations;

and a set of abstract edges PT representing the points-to relations.

A root v ∈ V is the address of a global variable or the value of a

pointer parameter. An abstract node o = (as, f) ∈ O is comprised of

an allocation site as ∈ AS and a field index f for memory objects

which are abstracted in a field-sensitive manner, or an allocation

site and the special symbol ∗ for those which are not.

As explained above, an allocation site is either static, potentially
representing multiple objects allocated at a given line, or a unique
one, representing a single object allocated at a specific address.

During the execution of a symbolic state s , the tag of a memory

object mo, that is ASs (mo), is a unique allocation site (as,n) ∈

ASunique , ifmo is a heap object, and a static one as ∈ ASstatic
otherwise. Therefore, the abstraction of a symbolic state generates

nodes with unique allocation sites for already allocated objects

in the heap. For example, in the program at Figure 1, each object

allocated at line 11 will have a unique allocation site, and therefore

the pointer analysis algorithm will be able to distinguish between

the elements in tables t1 and t2.
Our analysis aims to be field-sensitive, i.e., differentiate between

the pointer values of different fields. Thus, an abstract memory

object (as, f), where f ∈ N, conservatively represents the contents

of the f th field of an object represented by allocation site as. In
case, however, the analysis cannot distinguish between different

fields of the objects represented by as, it degenerates into a field-

insensitive abstraction which uses a single memory object (as, ∗) to
represent all the fields of the relevant objects. Clearly, an abstract

memory object can be represented only in either a sensitive or an

insensitive way. Thus, an abstract stateσ = (V,O, PT) is admissible
if ∀as, f .(as, f) ∈ O ∧ (as, ∗) ∈ O =⇒ f = ∗. In the rest of

the paper, we assume that all abstract states are admissible unless

explicitly stated otherwise.

To define our abstract domain, we need to induce an approxima-
tion order ⊑ over it. An abstract memory state σ1 is more precise

than σ2, denoted by σ1 ⊑ σ2, if σ2 can be obtained from σ1 by

collapsing all the nodes representing fields of some memory objects

into field-insensitive nodes, and, possibly, adding additional edges.

4.3 Abstraction Function
Past-sensitivity amounts to determining the initial state and the

abstract domain for the pointer analysis by abstracting the memory

graph of the symbolic state s on which the analysis is invoked into

a points-to graph.

Essentially, every node in the memory graph of s is mapped to

an abstract node and the edges of the memory graph induce the

points-to relations, with the exception of nodes representing array

elements: Often, the size of arrays is not known at compile time.

Thus, points-to analyses are index-insensitive, i.e., they do not distin-
guish between different elements of an array. However, if the array

elements are structures, the abstraction does not smash together

all primitive fields; instead it distinguishes between the contents of

the different fields of the structure. Another way to understand the

resulting abstraction is to consider a memory graph and “squeeze”

every array in every memory object to be of size one and add to that

single element all the points-to edges emanating from the original

array. Note that the points-to abstraction of the “squeezed” object

can still be field-sensitive. For example, if the memory object is an

array containing, say three point_t structures with fields x and y,
and thus comprised of six primitive fields, the “squeezed” object

would contain two fields: The first would represent all the primi-

tive fields pertaining to the x-coordinate and the second to those
representing the y-coordinate.

To formally define the abstraction function, we first introduce

function AbsFld(t , f) which maps the f th field of a memory object

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

of type t to an appropriate field index of the abstract node:

AbsFld(t , f) =

0 f = 0 ∧ t ∈ {int, ref}

AbsFld(t ′, i) t = Array(n, t ′) ∧ i = f mod Size(t ′)

AbsFld(tk , i) + d t = Struct(t1, . . . , tn)

∧ 0 ≤ k < n ∧ c =
∑k
j=1 Size(tj)

∧ c ≤ f < c + Size(tk+1)

∧ i = f − c ∧ d =
∑k
j=1 AbsSize(tj)

where AbsSize is defined as follows:

AbsSize(t) =

1 t ∈ {int, ref}

AbsSize(t ′) t = Array(n, t ′)∑n
i=1 AbsSize(ti) t = Struct(t1, . . . , tn)

Given a symbolic state s, AbsNode maps every node (mo, i) in
the memory graph of s to the abstract node which represents it:

AbsNodes (mo, i) = (ASs (mo),AbsFld(Types (mo), i)) .

Given a symbolic state s occurring right before the invocation
of a function, we use the symbolic state API to extract the memory

graph of s and abstract it into an abstract state Abs(s) = (V,O, PT).
We assume that the formal parameters of the invoked function

are p1, . . . , pk and that the values of the actual arguments of the

invocation are defined by the symbolic expressions ep1 , . . . , epk .
9

Similarly, we assume that the value of every global variable д ∈
Global is represented by the symbolic expression eд . Thus, assuming

that Gs = (N ,E), the abstraction is defined as follows:

Abs(s) = (V,O, PTV ∪ PT O),where
V = {p1, . . . , pk } ∪ Global
O = {AbsNodes (mo, i) | (mo, i) ∈ N }
PTV = {(v,AbsNodes (mo, i)) | v ∈ V ∧ (mo, i) ∈ Targetss (ev)}
PT O = {(AbsNodes (mo1, i1),AbsNodes (mo2, i2)) |

((mo1, i1), (mo2, i2)) ∈ E}

To localize the analysis of the invoked function to the relevant part

of the state, we compute a projection of s by removing any memory

object which is unreachable from the actual parameters and global

variables. That is, the initial abstract state is given byAbs(sp), where
sp is obtained from s such that Gsp = Gp

s ({ev | v ∈ V}).
Once the abstraction of the initial state s is computed, we run a

standard pointer analysis algorithm to obtain points-to information

which is sound with respect to any symbolic state that might arise

during a symbolic execution of the analyzed function starting at s .

4.4 Soundness
In this section we prove that our past-sensitive approach is sound

with respect to the underlying pointer analysis. We assume that we

have a pointer analysis algorithmwhich is sound with respect to the

standard concrete domain C: A concrete state c ∈ C is comprised of

a stack, a heap, and a set of global variables. We assume a standard

instrumentation of the concrete semantics where each allocated ob-

ject is tagged with its corresponding static allocation site as ∈ AS.
We expect to have a function β : C → A that maps a concrete state

9
For simplicity, andwithout loss of generality, we assume that all the formal parameters

are pointers. This assumption is justified as we ignore integer parameters.

to its best representation as an abstract state σ ∈ A, by merging

objects which have the same allocation sites. The latter induces the

abstraction α : 2
C → A and concretization γ : A → 2

C
functions

in the standard way [21]. In Lemma 4.1 and Corollary 4.2 we ex-

tend the soundness of Andersen’s pointer analysis algorithm [4] to

consider unique allocation sites and arbitrary initial abstract states.

A symbolic state s ∈ S represents a set of concrete states us-

ing the function r : S → 2
C
, where c ∈ r (s) if there is a model

of the path constraints of s whose assignment results in c . The
abstraction function βsym : S → A maps a symbolic state s
to the points-to graph which abstracts the concrete states that

s represents. The abstraction function βsym is an extension of Abs
(§4.3) that takes into account also the local variables of the active

stack frames starting from the analyzed function, and tags heap

objects allocated by the analyzed function with static allocation

sites. In Theorem 4.3, we lift the soundness of the pointer anal-

ysis algorithm in the concrete domain to prove that it is sound

to utilize its results during symbolic execution. For space reason,

the proofs appear in the supplementary material (Appendix A at

https://doi.org/10.6084/m9.figshare.12487679).

Lemma 4.1. Let P be a program with a set of functions F , and f ∈ F .
Let A be the abstract domain presented in the paper, that is:

AS = ASstatic ∪ ASunique

Let σ be the initial abstract state, and σ ′ be the result of running
pointer analysis on f from σ , then if c ′ is reachable from c ∈ γ (σ)
then c ′ ∈ γ (σ ′).

Corollary 4.2. Let P be a program with a set of functions F , and let
c be a concrete state that reaches the invocation of f ∈ F . Let A be
the abstract domain presented in the paper, where:

AS = ASstatic ∪ ASunique

Let σ = β (c), and σ ′ be the result of running pointer analysis on f
from σ , then if c ′ is reachable from c ∈ γ (σ) then c ′ ∈ γ (σ ′).

Theorem 4.3. Let P be a program with a set of functions F , and
let s be a symbolic state that reaches the invocation of f ∈ F . Let A
be the abstract domain presented in the paper, where:

AS = ASstatic ∪ ASunique

Let σ = βsym (s), and σ ′ be the result of pointer analysis on f from
σ , then if s ′ is reachable from s then βsym (s ′) ⊑ σ ′.

4.5 Reusing Summaries
The number of function invocations during the symbolic explo-

ration can be very high, and therefore re-running the pointer anal-

ysis for every invocation which needs to be analyzed might in-

cur high performance overhead. We address this issue by creating

points-to summaries and reusing them when possible.

The reusemechanism is based on a greedy best-effort isomorphism-

checking function checkStateIsomorphism which accepts a func-

tion f, two abstract states s1, for which we have already executed

the pointer analysis, and s2, for which we need to determine the

points-to graph resulting from invoking f on it. checkStateIso-

morphism checks if the two states are isomorphic so that the results

obtained for s1 can be used in the context of s2. The check is done

by finding matching pairs of abstract objects from the two states

https://doi.org/10.6084/m9.figshare.12487679

Past-Sensitive Pointer Analysis for Symbolic Execution ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

starting from the ones pointed to by the global variables and the

function parameters, while taking into account the field-sensitivity

of the investigated objects.

If the isomorphism check succeeds then checkStateIsomor-

phism returns an object-matching map which allows to translate

the already computed points-to graph to the one needed. For ex-

ample, in the context of chopped symbolic execution, this allows

determining the side-effects (mod set) obtained when the analysis

is invoked on s2 from the side effects computed for s1. If it fails, we
re-run the pointer analysis with s2 as the initial state and memoize

the results for future isomorphism checks.

For space reasons, we do not further discuss the reuse mecha-

nism, and refer the interested reader to the supplementary material.

5 IMPLEMENTATION
Our implementation is based on SVF [46] and KLEE [8]. SVF imple-

ments whole-program pointer analysis, thus we extend it to support

local pointer analysis (from an arbitrary initial state), and unique

allocation sites. We integrated the extended version of SVF on top

of KLEE with support for LLVM 3.8. We make our implementation

and associated artifact available at https://srg.doc.ic.ac.uk/projects/

pspa/.

Type Information. In order to abstract symbolic states in a field-

sensitive manner, we need to know the types of memory objects.

Our implementation uses LLVM which often provides imprecise

type information at memory allocation sites. However, a program

can set the type of an object using a cast instruction. Thus, we track

type cast instructions during the symbolic execution in order to

infer type information. If the type of an object cannot be determined,

we conservatively represent it in a field-insensitive manner.

6 EVALUATION
In our experiments, we demonstrate the precision and scalability

benefits of our approach as follows: First, by examining the raw

results of the pointer analysis (§6.1), and second, by evaluating the

effectiveness of our approach in the context of three client analyses:

chopped symbolic execution (§6.2), write integrity testing (§6.3),

and symbolic pointer resolution (§6.4). We used an Intel i7-6700

machine with 8 cores and 32GB of RAM running Ubuntu 16.04.

6.1 Precision
We first evaluate the added precision of our approach by examining

its effect on the size of the computed points-to sets. In particular,

we report the size of the mod-sets and the ref-sets for functions
called during a symbolic execution run, i.e. how many objects the

pointer analysis determines that the function and its callees can

write to and read from, respectively.

As benchmarks, we used three popular libraries which parse

various input formats: GNU libosip (11K SLOC), GNU libtasn1 (19K
SLOC) and libtiff (65K SLOC). GNU libosip is a library for parsing

SIP messages, GNU libtasn1 is a library for decoding and encoding

data in the Abstract Syntax Notation One (ASN.1) format, and

libtiff is a library for parsing TIFF images. We chose these libraries

because we believe they represent programs which are a good fit

for symbolic execution as they have rather complicated logic and

require a relatively simple modeling of the environment.

Table 1: Average size of mod-sets and ref-sets.

Mod-set Ref-set

SPA PSPA SPA PSPA
libosip 17.78 2.94 32.98 3.68

libtasn1 7.35 1.55 8.24 1.94

libtiff 140.16 12.95 126.63 17.44

We compare the precision of the analysis in two configurations:

static pointer analysis (SPA), where we obtain the points-to infor-

mation using a standard pointer analysis, and past-sensitive pointer
analysis (PSPA), our approach for executing the pointer analysis

from a dynamic context. In each configuration, we run our modified

version of KLEE for a limited number of instructions with the DFS

search heuristic (which is deterministic, and thus covers the same

execution paths across configurations), and record the size of the

mod-set and ref-set of called functions. We analyze only functions

called from the application code, excluding the test driver and uclibc
(KLEE’s version of the standard library) internal functions.

The precision improvement of PSPA compared to SPA is signifi-

cant and can be seen in Table 1, which shows for each benchmark

and mode the average size of the computed mod-sets and ref-sets.

The sizes are expressed in terms of abstract objects; we strip away

the uniqueness of allocations sites, for the comparison with the

original abstract domain to make sense.

6.2 Application: Chopped Symbolic Execution
To evaluate the impact of PSPA on chopped symbolic execution, we

integrated the Chopper tool10 into our code base.

Instead of computing the mod-set of a skipped function statically

(as in the original technique), we use PSPA to compute the mod-set

each time a skipped function is invoked. Remember from §1 that

in chopped symbolic execution, whenever the program reads from

the mod-set of a skipped function, a recovery procedure takes place

to execute parts of the skipped function. An imprecise mod-set can

lead to many unnecessary (and expensive) recoveries.

When the program reads from an object that was allocated dur-

ing a recovery, we need to consider its static allocation site for the

side-effects inference, since the poiner analysis generates static allo-

cation sites for objects allocated in the analyzed skipped functions.

Additionally, to correctly handle multiple skipped function calls,

we keep for each skipped call its post-abstract state, i.e. the result
of running pointer analysis on that function. Then, when we skip

another function call, we first merge the abstract state with the

post-abstract states of the previously skipped calls, in order take

into account the information from the skipped calls.

We performed several experiments. In §6.2.1, we show that our

technique significantly reduces the number of recoveries needed in

chopped symbolic execution due to an increase in the precision of

pointer alias analysis. In §6.2.2, we then evaluate chopped symbolic

execution in the context of test generation, showing that it achieves

higher coverage when using PSPA instead of SPA. In §6.2.3 and §6.2.4

we show that PSPA can speed up chopped symbolic execution.

10
https://github.com/davidtr1037/chopper

https://srg.doc.ic.ac.uk/projects/pspa/
https://srg.doc.ic.ac.uk/projects/pspa/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

10-1

100

101

102

103

104

R
ec

o
ve

ri
es

 p
er

 p
at

h

Skipping configurations

SPA
PSPA

libtifflibtasn1libosip

Figure 4: Recoveries per path (log scale).

6.2.1 Reducing the Number of Recoveries. In this experiment, we

show that past-sensitive pointer analysis can help reduce the num-

ber of recoveries during chopped symbolic execution.

We ran chopped symbolic execution with both SPA and PSPA

mod-set computation. For each benchmark, we generate a list of

called functions by running vanilla KLEE for tenminutes.We record

only functions which are called from the main library API which

the test driver invokes, and ignore uclibc internal functions. We

then take ten random samples of ten functions to skip from that list,

to generate ten different skipping configurations. For each skipping

configuration, we ran chopped symbolic execution for ten minutes

with the DFS search heuristic and count the number of recoveries.

Our random selection aims to remove the bias which may come

from the selection of skipped functions. We pick functions from the

ones already reached by KLEE, to make sure that the skipped func-

tions we specify are indeed reached and skipped during execution.

Figure 4 shows the number of recoveries per path executed for

each skipped configuration (ten sets of ten randomly sampled func-

tions for each of the three benchmarks). We can see that PSPA leads

to a number of significant decreases in the number of recoveries.

The reduction for libosip ranges between 0% and 42%, for libtasn1
between 17% and 99%, while for libtiff between 8% and 99%. The

largest decrease occurs in a configuration of libtiff where there are

43,344 recoveries across paths with SPA and only 10 with PSPA, a

reduction of 99%.

6.2.2 Improving Coverage. In §6.2.1, we show that PSPA can help

decrease the number of recoveries in chopped symbolic execution.

As we don’t expect to improve the structural coverage by randomly

selecting the skipped functions, we ran an additional experiment

where the function selection is done manually (note that [47] simi-

larly performs the selection manually).

We then run chopped symbolic execution both with SPA and

PSPA, and with PSPA without reuse to evaluate the impact of our

reuse approach from §4.5. We use two heuristics: depth-first search

(DFS) and random-path selection (Random) [8]. For each mode, we

run chopped symbolic execution for one hour and compute the line

coverage of the generated test suite using gcov.11

11
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Table 2: Line coverage achieved by various configurations.13

Search SPA PSPA
No reuse Reuse

libosip
DFS 567 410 519

Random 592 314 647

libtasn1
DFS 958 1079 1079

Random 950 1019 1019

libtiff
DFS 669 673 673

Random 647 677 1034

In libosip, we chose to skip functions which process different

parts of the URI component of the SIP message. These functions are

widely used in the library, and therefore the context-insensitivity
of SPA leads to accumulation of side effects, which are propagated

from all the call sites in the program. With PSPA, which starts the

analysis from a much more precise initial state, we are able to

locally analyze such functions, and avoid the noise which comes

from considering other call sites.

In libtasn1, some of the skipped functions manipulate a tree

data structure, which represents the structure of the parsed ASN.1

message. The nodes of this tree are dynamically allocated at the

same allocation site, and therefore the analysis treats all the nodes

in the tree as one node. Conversely, PSPA uses unique allocation sites
for dynamically allocated objects, which allows us to distinguish

between the different nodes in the tree.

In libtiff, we skip the logging functions (warnings, errors, etc.)

which receive some parts of the symbolic input and create many

redundant forks. These functions are implemented using function

pointers, and the imprecise function pointer resolution of SPA makes

it impossible to skip these functions efficiently. With PSPA, the

precise initial state plays a critical role in the precise resolution of

function pointers, which allows us to entirely skip these functions

without triggering any recoveries.

The results are shown in Table 2. Chopped symbolic execution

with PSPA (and reuse) outperformed the static mode in five out of

six cases, with an improvement between -9% and 60%. We manually

investigated the case where SPA achieved higher coverage, and

found out that chopped symbolic execution with PSPA had lower

coverage in the skipped functions, but reached more than 100 lines

in the relevant (non-skipped) code which were not reached with

SPA. Thus, the PSPA mode had better results from the viewpoint of

the application (generating test cases for non-skipped code).
12

The effect of the reuse mechanism can be seen in Tables 2 and

3. Running without the reuse mechanism leads to higher over-

head in all six cases, especially in libosip, where the number of

analyzed functions is much higher. In the cases where the addi-

tional overhead was not significant, the coverage remained roughly

the same. In libosip, where the additional overhead was high, the

PSPA mode without reuse was not able to improve upon the SPA

12
It was difficult to automatically ignore the coverage of the skipped functions, because

some code is called from both a skipped and a non-skipped context.

13
The reader might notice the relatively small line coverage achieved in one hour. This

is partly due to the large and challenging benchmarks, and partly because we only

test a subset of the APIs in these libraries.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Past-Sensitive Pointer Analysis for Symbolic Execution ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: The overhead of pointer analysis related computa-
tions. No R: without reuse, R: with reuse, RR: reuse ratio
when run with reuse, N: number of static analysis invoca-
tions when run with reuse.

Search No R R RR N

libosip
DFS 97.87% 6.41% 99.99% 6,680,404

Random 90.18% 2.66% 99.99% 919,326

libtasn1
DFS 3.06% 2.31% 98.86% 967

Random 9.80% 3.54% 99.83% 6,800

libtiff
DFS 3.24% 0.04% 98.75% 401

Random 95.74% 0.52% 99.99% 155,688

mode. Table 3 also shows the reuse ratio, i.e. the percentage of

function invocations for which the result of the mod-analysis could

be reused without re-running the pointer analysis algorithm. The

high reuse ratio suggests that most of the called functions actually

have the same points-to information (with respect to context- and

flow-insensitive analysis). The SE engine creates states which have

different data constraints, but in most of the states this doesn’t

imply different points-to information, therefore data and points-to

information can be seen as mostly independent properties.

6.2.3 CVE Reproduction. In addition to the coverage experiments

presented above, we wanted to understand the impact of PSPA on

the experiments presented in the paper introducing chopped sym-

bolic execution [47]. The paper considers six vulnerable locations

in libtasn1, manually selects a set of functions unrelated to the vul-

nerabilities to be skipped, and then reports the time taken to find

an input that reaches the vulnerable locations with and without

chopped symbolic execution.

We replicated the experiments using both SPA and PSPA in turn.
14

Our results are shown in the last two columns of Table 4. As can

be seen, PSPA leads to significant savings in some cases, e.g., from

04:23 to 00:37 for the third vulnerability when DFS is used; and

from a timeout (set to one hour) to 10:25 for the fifth vulnerability

when DFS is used. However, there are also some cases in which SPA

does slightly better, with the largest difference of 01:51 vs 02:03 for

the second vulnerability when the random heuristic is used.

While trying to understand why SPA does sometimes better, we

realized that the search heuristic used in Chopper (which prioritizes

non-recovery states, before invoking KLEE’s underlying heuristic)

has a large influence on the results. Columns 4 and 5 of Table 4

show the results when this heuristic is disabled. In this case, PSPA

consistently outperforms SPA (with one small exception, 5 vs 4

seconds in one case), although the overall results are worse.

To remove the significant influence of search heuristics on exe-

cution time, we decided to design a series of experiments in which

Chopper can exhaustively explore all the paths in the program (for

a symbolic input of a given size). Since all the paths are explored, we

14
We haven’t managed to incorporate yet one of the optimizations from Chopper, the

slicing optimization [47]. However, that optimization does not directly interact with

the mod-ref computation, which is what PSPA affects. We also found and fixed a bug

in the SVF integration, which has an impact on some of the baseline results.

Table 4: Replication of CVE reproduction experiments from
[47], without the slicing optimization. Times are using the
formatminutes:seconds and the timeout (TO) is one hour.

CVE Search
Chopping-aware heuristic

without with

SPA PSPA SPA PSPA

#1 2012-1569

Random 04:26 00:20 00:30 00:19

DFS 04:57 01:46 00:11 00:06

Coverage 03:54 00:19 00:23 00:23

#2 2014-34671

Random TO TO 01:51 02:03

DFS 04:17 02:15 00:01 00:01

Coverage TO TO 01:20 01:20

#3 2014-34672

Random 00:01 00:01 01:53 01:50

DFS TO TO 04:23 00:37

Coverage 00:01 00:01 01:51 02:02

#4 2014-34673

Random TO TO 02:30 02:12

DFS TO TO 00:02 00:02

Coverage T.O T.O 03:56 01:09

#5 2015-2806

Random 03:46 02:03 06:38 02:04

DFS TO 10:14 TO 10:25

Coverage 02:20 01:00 03:27 01:00

#6 2015-3622

Random 00:03 00:03 00:03 00:02

DFS TO 07:25 07:16 06:33

Coverage 00:04 00:05 00:03 00:03

Table 5: The total execution time (in minutes:seconds), with
a timeout of one hour.

Vanilla SPA PSPA
libosip 33:30 Timeout 04:16

libtasn1 41:29 Timeout 02:12

libtiff 32:40 Timeout 10:02

can simply count the exploration time (with SPA and PSPA respec-

tively), knowing that the search heuristic has no influence (other

than the overhead of the search heuristic itself).

6.2.4 All-path exploration. As discussed above, we constructed

test drivers for our benchmarks that ensure that all paths can be

explored in under an hour with vanilla KLEE. We then run chopped

symbolic execution with SPA and PSPA respectively, with a time

limit of one hour. We skip the same functions as in §6.2.2.

The results are shown in Table 5. The SPA mode times out for all

benchmarks, due to a high number of recovery states, originating

from the imprecision of whole-program static analysis. By contrast,

the PSPA mode achieves a significant speed-up relatively to vanilla

KLEE: 7.9x in libosip, 18.9x in libtasn1 and 3.6x in libtiff.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

6.3 Application: WIT
As discussed in the introduction, Write Integrity Testing (WIT) [2]

is a run-time security mitigation technique that aims to detect buffer

overflows and other memory violations at run-time. WIT works by

using a pointer analysis to assign colours to pointers and memory

objects. A pointer and a memory object have the same colour if

the pointer can alias the memory object. WIT then enforces—at

run-time—that each pointer only writes to memory objects of its

colour, otherwise it terminates the program.

The precision of the pointer analysis is of utmost importance to

WIT as it severely impacts how many buffer overflows it can detect:

If two objects are assigned the same colour, a buffer overflow from

one into the other cannot be detected.

The application of our technique to WIT comes from the obser-

vation that in a security context, we are not interested in moni-

toring with WIT all the paths of a program, just the ones that are

attacker-controlled. In particular, the initialization code is typically

not controlled by the attacker, so one could run the pointer analysis

after the initialization completes. This increases the precision of

the analysis, especially since at that point various configuration

options are fixed by the program. The disadvantage is that the

instrumentation (see §1) needs to be finalized at run-time, which

increases the initialization time.

An implementation of WIT is not publicly available and re-

implementing WIT from scratch is difficult. Therefore, we decided

to conduct our evaluation using two indirect measures: number

of computed colours (a static measure), and number of transitions

between the colours of the buffers allocated in memory (computed

dynamically on a certain workload, assuming a sequential alloca-

tor). The number of colour transitions indirectly measures how

many sequential overflows WIT could prevent. We restrict our

measurements to heap-allocated objects.

More precisely, WIT can detect a sequential buffer overflow if

adjacent buffers have different colours. Therefore, if the colour of

an object being allocated is different from the colour of the previous

object, we increment the number of colour transitions.

We compute colours with both SPA and PSPA, starting in the

execution state after the initialization completes (we manually an-

notated the end of the initialization section, but one could also

automate the process by checking when a user input is first read).

We consider each field of a structure as a separate object with its

own colour when counting the colour transitions.

We built this transition analysis inside KLEE. We run KLEE for

one hour on each benchmark and record the number of paths KLEE

explored under DFS. Then we run KLEE again up to that number of

paths under DFS in both the SPA and PSPA modes. This ensures that

both runs used the same paths to count the number of transitions.

We report the sum of transitions across all the explored paths.

As shown in Table 6, PSPA was able to compute around 4 times

more colours for the heap objects in libosip and libtasn1. For libtiff
the increase in the number of colours is modest—the reason is

that libtiff does not have any setup or initialization code, so our

technique analyses almost the whole program.

For libosip and libtasn1 the number of transitions increases by a

factor of 2.8x and 4.5x respectively when using PSPA instead of SPA.

This shows that PSPA can significantly increase WIT’s ability to

Table 6: The number of WIT heap colours and transitions
computed with different pointer analysis techniques.

Paths Colours Transitions

SPA PSPA SPA PSPA
libosip 12,084,552 70 277 108,532,593 302,069,717

libtasn1 90,290 157 645 8,848,420 39,456,716

libtiff 300 1047 1101 1,938 1,938

detect sequential heap buffer overflows on these two benchmarks,

as it now has the potential to detect several times as many over-

flows. For libtiff there is no difference in the number of transitions,

stemming from the small difference in the number of colours. Note

that for libtiff only 300 paths were executed in one hour, as its

paths are significantly more complex for symbolic execution.

6.4 Application: Symbolic Pointer Resolution
In this section, we show how PSPA can be used to optimize the

forking model for symbolic pointer resolution. As explained in §1

and §2, on a symbolic pointer dereference, the forking model scans

each memory object in turn, issuing solver queries to determine if

the pointer can refer to that memory object. If a pointer analysis

determines that the pointer cannot refer to an object, that object

can be ignored, saving potentially expensive solver queries.

Dynamically computing the points-to set of a symbolic pointer

operand requires a snapshot of the symbolic state at the beginning

of the current function. However, taking a snapshot at each function

call is overly expensive. Instead, we rely on the observation—tested

empirically on our benchmarks—that symbolic pointer dereferences

only occur in a few functions. Therefore, we design a lazy snapshot

mechanism that decides which functions to snapshot at run-time:

The first time we encounter a symbolic pointer, we use the standard

resolution algorithm and remember the called function. The next

time the same function is called, we take a snapshot at its beginning.

Note that this approach has the advantage of having no overhead

for programs that don’t have symbolic pointer dereferences.

To evaluate our approach, we selected programs where symbolic

pointers can be encountered. We selectedm4 (78K SLOC), a popular

implementation of the m4 macro processor included in most UNIX-

based operating systems; GNU make (28K SLOC), one of the most

popular build systems; and SQLite (127K SLOC), a well-known SQL

database engine library. Specifically, these programsmake extensive

use of hash tables which are a prolific source for symbolic pointers.

Each benchmark was run in three configurations: baseline, SPA and

PSPA. For each run, we measured the following parameters: number

of resolution queries, fraction of time spent in pointer resolution,

total execution time and overhead of pointer analysis.

As can be seen in Table 7, SPA only slightly reduced the number

of queries in the case of m4 and make, therefore there was no

significant reduction in resolution time and total execution time.

Moreover, in the case of SQLite, the execution time of SPA was

higher than the baseline, since static pointer analysis took almost 10

minutes.With PSPA, we reduced the number of queries up to a factor

of 6.6x (in SQLite), which also results in a significant decrease in

Past-Sensitive Pointer Analysis for Symbolic Execution ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 7: Symbolic pointer resolution experiments on m4,
make and SQLite. Q: queries, RT: resolution time (%), ET: ex-
ecution time (minutes), SA: static analysis time (%).

Q RT ET SA

m4

Baseline 1,902 56% 49’ -

SPA 1,836 55% 47’ 0.15%

PSPA 960 38% 34’ 0.54%

make

Baseline 21,832 56% 65’ -

SPA 18,872 52% 60’ 0.16%

PSPA 6,222 30% 41’ 1.22%

SQLite

Baseline 7,726 28% 43’ -

SPA 7,726 23% 51’ 14.23%

PSPA 1,166 5% 33’ 0.51%

resolution time and execution time, while keeping the computation

overhead of pointer analysis low (under 1.22%).

7 RELATEDWORK
Pointer analysis is a core static analysis technique, with numerous

applications [1]. As such, many research projects have focused

on improving the precision of the technique by making it flow-

sensitive [31], context-sensitive [49], object-sensitive [37], path-

sensitive [51], as well as using hybrid combinations of the above

techniques [45]. Previous analyses have also tried to make the

analysis sensitive to the context in which objects are allocated [39].

However, as far as we know, we are the first to add dynamic context

sensitivity to pointer analysis which allows much finer abstraction

of the memory state at the call site than other methods.We also note

that PSPA can use and enhance any underlying points-to analysis.

Procedure summaries are a standard technique for performing

inter-procedural analyses [41], and have been used to obtain mod-

ular pointer analysis, e.g., [15, 16]. Our reuse algorithm is similar

in spirit to these approaches. However, instead of using procedure

summaries during the analysis, we employ it only to top-level calls

from which the analysis starts.

Wüstholz and Christakis [50] propose a novel technique for

targeted grey-box fuzzing with online static analysis, which is used

to guide the fuzzer toward recently modified parts of the program.

In their online static analysis, the initial abstract state is computed

by re-executing the path prefix in the abstract domain, which results

in an over-approximation of all possible executions of that prefix.

In our case, the initial abstraction state is computed directly from

the current symbolic state, which is more precise. In addition, we

extend our abstract domain with unique allocation sites, which
brings context sensitivity into the static analysis.

Grech et al. [29] describe a hybrid dynamic/static pointer anal-

ysis for Java programs where static analysis is utilized to over-

approximate the values of stack variables while the information

about the structure of the heap is obtained dynamically. Specifically,

the heap is abstracted using multiple heap snapshots obtained by

profiling the program’s heap [28] during the execution of selected

test cases. The dynamic information allows to sharpen the results of

the analysis and overcome challenging issues such as the handling

of reflection, native code, and lambdas. However, the resulting anal-

ysis is not sound as the heap information is under-approximated.

In contrast, our analysis produces sound results for all executions

starting at the abstracted dynamic/symbolic state. Furthermore,

Grech et al. [29] utilize an a priori fixed heap abstraction, whereas

our analysis employs an input-state specific heap abstraction.

More broadly, there is a lot of work on combining static and

dynamic analysis, including static analysis and dynamic symbolic

execution. For instance, Csallner and Smaragdakis [22] combine

a static checker with a test input generator to guide the latter

toward the errors reported by the former, while Christakis et al. [17]

combine partial static verification with dynamic symbolic execution

by guiding the latter to check the unverified program executions

from the former. Tighter integrations of static and dynamic analysis

also exist, which work by alternating may and must analyses to

simultaneously prove program properties and search for bugs [5,

27, 30]. Our work is similar in spirit to some of these combinations,

but its main distinguishing feature is related to the need for a fine-

grained connection between the concrete memory layout and the

abstraction used by the pointer analysis.

Anand et al. [3] abstract symbolic states to reduce the search

space for programs with recursive data structures, and Yorsh et

al. [53] abstract concrete states to determine whether to terminate

the analysis. We use a similar technique but for a different purpose:

determine the abstract domain of the static pointer analysis.

8 CONCLUSIONS
We have presented past-sensitive pointer analysis, a new design

point for pointer analysis that takes into account the dynamic con-

text in which the analysis is invoked. A different pointer abstraction

is computed for each dynamic context, with the abstraction being

constructed just before the pointer analysis is needed. We show that

this novel design point offers significant benefits in three important

application domains: chopped symbolic execution, write integrity

testing (WIT) and symbolic pointer resolution.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from

the Lev Blavatnik and the Blavatnik Family foundation, Blavatnik

Interdisciplinary Cyber Research Center at Tel Aviv University, the

Pazy Foundation, and Israel Science Foundation (ISF) grants No.

1996/18. This research has also received funding from the EPSRCUK

via a DTA studentship and from European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No. 819141).

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd ed.). Addison Wesley.

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro.

2008. PreventingMemory Error Exploits withWIT. In Proc. of the IEEE Symposium
on Security and Privacy (IEEE S&P’08) (Oakland, CA, USA).

[3] Saswat Anand, Corina S. Păsăreanu, andWillem Visser. 2009. Symbolic execution

with abstraction. International Journal on Software Tools for Technology Transfer
11, 1 (Feb 2009), 53–67.

[4] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-
ming Language. Technical Report.

[5] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, and Robert J. Simmons.

2008. Proofs from tests. In Proc. of the International Symposium on Software
Testing and Analysis (ISSTA’08) (Seattle, WA, USA).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA David Trabish, Timotej Kapus, Noam Rinetzky and Cristian Cadar

[6] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT – A formal sys-

tem for testing and debugging programs by symbolic execution. ACM SIGPLAN
Notices 10, 6 (1975), 234–245.

[7] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Phillipe Martin, and Miguel

Castro. 2008. Data Randomization. Technical Report MSR-TR-2008-120. Microsoft

Research.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems Pro-

grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08) (San Diego, CA, USA).

[9] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases: How to

Make Systems Code Crash Itself. In Proc. of the 12th International SPIN Workshop
on Model Checking of Software (SPIN’05) (San Francisco, CA, USA).

[10] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

2006. EXE: Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06) (Alexandria, VA,
USA).

[11] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

2008. EXE: Automatically Generating Inputs of Death. ACM Transactions on
Information and System Security (TISSEC) 12, 2 (2008), 1–38.

[12] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:

Three Decades Later. Communications of the Association for Computing Machinery
(CACM) 56, 2 (2013), 82–90.

[13] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by

Enforcing Data-flow Integrity. In Proc. of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’06) (Seattle, WA, USA).

[14] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.

Unleashing Mayhem on Binary Code. In Proc. of the IEEE Symposium on Security
and Privacy (IEEE S&P’12) (San Francisco, CA, USA).

[15] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi. 1999. Rele-

vant Context Inference. In Proc. of the 26th ACM Symposium on the Principles of
Programming Languages (POPL’99) (San Antonio, TX, USA).

[16] Ben-Chung Cheng and Wen-Mei W. Hwu. 2000. Modular Interprocedural Pointer

Analysis Using Access Paths: Design, Implementation, and Evaluation. In Proc.
of the Conference on Programing Language Design and Implementation (PLDI’00)
(Vancouver, BC, Canada).

[17] Maria Christakis, Peter Müller, and Valentin Wüstholz. 2006. Guiding Dynamic

Symbolic Execution Toward Unverified Program Executions. In Proc. of the 28th
International Conference on Software Engineering (ICSE’06) (Shanghai, China).

[18] Lori A. Clarke. 1976. A Program Testing System. In Proc. of the 1976 Annual
Conference (ACM’76) (Houston, TX, USA).

[19] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Cross-

checking of Floating-Point and SIMDCode. In Proc. of the 6th European Conference
on Computer Systems (EuroSys’11) (Salzburg, Austria).

[20] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Testing

of OpenCL Code. In Proc. of the Haifa Verification Conference (HVC’11) (Haifa,
Israel).

[21] P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fixpoints.

In Proc. of the 4th ACM Symposium on the Principles of Programming Languages
(POPL’77) (Los Angeles, CA, USA).

[22] Christoph Csallner and Yannis Smaragdakis. 2005. Check ’n’ Crash: Combining

static checking and testing. In Proc. of the 27th International Conference on Software
Engineering (ICSE’05) (St. Louis, MO, USA).

[23] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:

introduction and applications. Communications of the Association for Computing
Machinery (CACM) 54, 9 (Sept. 2011), 69–77.

[24] Bassem Elkarablieh, Patrice Godefroid, andMichael Y. Levin. 2009. Precise Pointer

Reasoning for Dynamic Test Generation. In Proc. of the International Symposium
on Software Testing and Analysis (ISSTA’09) (Chicago, IL, USA).

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proc. of the Conference on Programing Language Design
and Implementation (PLDI’05) (Chicago, IL, USA).

[26] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In Proc. of the 15th Network and Distributed System
Security Symposium (NDSS’08) (San Diego, CA, USA).

[27] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali.

2010. Compositional May-Must Program Analysis: Unleashing the Power of

Alternation. In Proc. of the 37th ACM Symposium on the Principles of Programming
Languages (POPL’10) (Madrid, Spain).

[28] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.

2017. Heaps Don’t Lie: Countering Unsoundness with Heap Snapshots. In Proc.
of the ACM on Programming Languages (OOPSLA’17) (Vancouver, BC, Canada).

[29] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.

2018. Shooting from the Heap: Ultra-scalable Static Analysis with Heap Snapshots.

In Proc. of the International Symposium on Software Testing and Analysis (ISSTA’18)
(Amsterdam, The Netherlands).

[30] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and

Sriram K. Rajamani. 2006. Synergy: A New Algorithm for Property Checking. In

Proc. of the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE’06) (Graz, Austria).

[31] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive Pointer Analysis for Millions

of Lines of Code. In Proc. of the International Symposium on Code Generation and
Optimization (CGO’11) (Chamonix, France).

[32] Michael Hind. 2001. Pointer Analysis: Haven’t We Solved This Problem Yet?.

In Proc. of the 2nd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’01) (Snowbird, UT, USA).

[33] Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for Sym-

bolic Execution. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’19) (Tallinn, Estonia).

[34] James C. King. 1975. A New Approach to Program Testing. In Proc. of the
International Conference on Reliable Software (ICRS’75) (Los Angeles, CA, USA).

[35] Paul Dan Marinescu and Cristian Cadar. 2012. make test-zesti: A Symbolic Execu-

tion Solution for Improving Regression Testing. In Proc. of the 34th International
Conference on Software Engineering (ICSE’12) (Zurich, Switzerland).

[36] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing of

Software Patches. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’13) (Saint Petersburg, Russia).

[37] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized

Object Sensitivity for Points-to Analysis for Java. ACM Transactions on Software
Engineering Methodology (TOSEM) 14, 1 (Jan. 2005), 1–41.

[38] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter

Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: Integrating Symbolic

Execution with Model Checking for Java Bytecode Analysis. In Proc. of the 28th
IEEE International Conference on Automated Software Engineering (ASE’13) (Palo
Alto, CA, USA).

[39] John Plevyak and Andrew A. Chien. 1994. Precise Concrete Type Inference

for Object-oriented Languages. In Proceedings of the Ninth Annual Conference
on Object-oriented Programming Systems, Language, and Applications (Portland,
Oregon, USA) (OOPSLA’94).

[40] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis of Object-

Oriented Programming Languages. In In Proc. of the 12th International Conference
on Compiler Construction (CC’03).

[41] Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow
analysis. Prentice-Hall, Englewood Cliffs, NJ, Chapter 7, 189–234.

[42] Jiri Slaby, Jan Strejček, and Marek Trtík. 2013. Symbiotic: Synergy of Instru-

mentation, Slicing, and Symbolic Execution. In Proc. of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’13) (Rome, Italy).

[43] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found.
Trends Program. Lang. 2, 1 (April 2015), 1–69.

[44] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav.

2013. Alias Analysis for Object-Oriented Programs. Springer Berlin Heidelberg,

Berlin, Heidelberg, 196–232.

[45] Yulei Sui and Jingling Xue. 2016. On-demand Strong Update Analysis via Value-

flow Refinement. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).

[46] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis

in LLVM. In Proc. of the 25th International Conference on Compiler Construction
(CC’16) (Barcelona, Spain).

[47] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.

Chopped Symbolic Execution. In Proc. of the 40th International Conference on
Software Engineering (ICSE’18) (Gothenburg, Sweden).

[48] David Trabish and Noam Rinetzky. 2020. Relocatable Addressing Model for

Symbolic Execution. In Proc. of the International Symposium on Software Testing
and Analysis (ISSTA’20) (Online).

[49] Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer

Analysis for C Programs. In Proc. of the Conference on Programing Language
Design and Implementation (PLDI’95) (La Jolla, CA, USA).

[50] Valentin Wüstholz and Maria Christakis. 2018. Targeted Greybox Fuzzing with

Static Lookahead Analysis. In Proc. of the 42nd International Conference on Soft-
ware Engineering (ICSE’20) (Online).

[51] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal

Context Reduction: A Pointer-analysis-based Static Approach for Detecting Use-

after-free Vulnerabilities. In Proceedings of the 40th International Conference on
Software Engineering (Gothenburg, Sweden) (ICSE ’18).

[52] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. 2006.

Automatically generating malicious disks using symbolic execution. In Proc. of
the IEEE Symposium on Security and Privacy (IEEE S&P’06) (Oakland, CA, USA).

[53] Greta Yorsh, Thomas Ball, and Mooly Sagiv. 2006. Testing, Abstraction, Theorem

Proving: Better Together!. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA’06).

	Abstract
	1 Introduction
	2 Overview of Our Approach
	3 Symbolic State API
	4 Past-Sensitive Pointer Analysis
	4.1 Memory Graphs
	4.2 Past-Sensitive Abstract Domain
	4.3 Abstraction Function
	4.4 Soundness
	4.5 Reusing Summaries

	5 Implementation
	6 Evaluation
	6.1 Precision
	6.2 Application: Chopped Symbolic Execution
	6.3 Application: WIT
	6.4 Application: Symbolic Pointer Resolution

	7 Related Work
	8 Conclusions
	References

