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Abstract—Code patches are the basic blocks of software
evolution and several testing and analysis techniques have been
proposed to validate them. However, due to lack of specifications,
most of these techniques focus on generic errors, such as crashes.

In this vision paper, we propose to adopt product programs
as a practical means of writing patch specifications that could
be checked using existing testing techniques.

Future work will investigate the feasibility of automatically
generating product programs for real-world code patches, the
ease of writing useful patch specifications, and the integration of
such patch specifications with existing testing techniques.

Index Terms—code patch, specification, product program

I. INTRODUCTION

We cannot check what we cannot specify. Despite the sig-
nificant progress we have seen in software testing and analysis,
with powerful techniques such as symbolic execution [3],
fuzzing [19] and search-based testing [17] becoming more and
more scalable, these techniques have primarily been applied
to find generic bugs, such as crashes. The primary reason for
this limitation is that most widely-used software systems lack
specifications.

Recent progress on specifying the correctness of software
has been significant. Researchers have specified and verified
several key pieces of infrastructure, such as compilers [13] and
OS kernels [10]. However, the effort of writing specifications
for these systems is tremendous, often involving years of PhD-
level expertise and specifications that are several times larger
than the code itself.

Furthermore, these specifications need to be kept in sync with
the evolution of the code, with the required changes not always
modular. This is perhaps one of the most important reasons for
which these systems have not become more mainstream and
have not attracted a broader developer base. To evolve these
systems, developers would not only need a good understanding
of the code, but also of the (often much larger) specification,
and would need to be proficient in updating both.

In this vision paper, instead of targeting whole-system
specifications, we investigate a more lightweight direction
focused on (partial) patch specifications. Code patches are
the basic blocks of software evolution and many critical bugs
and security vulnerabilities—Heartbleed [8] being just a famous
recent example—are introduced via patches, rather than being
part of the core system since its early stages.

Given an appropriate mechanism for writing software
patches, would developers take advantage of it? Would patch

specifications, rather than whole-system ones, be easier for
developers to write? Could they benefit real-world systems
for which no specifications have been made available? Could
they be used by existing software testing techniques such as
symbolic execution and fuzzing?

We believe that several requirements would make it more
likely to have a positive answer to the questions above. First,
patch specifications should be allowed to be independent of
any previous specifications available in the system. That is,
developers should not be required to understand previous
specifications (but they could choose to do so to reuse them),
allowing them to keep their focus on the context of the patch.

Second, developers should be able to decide to write
anything between full patch specifications (describing all the
new behaviours introduced by the patch) to partial patch
specifications (describing some of the key new behaviours) to
no specifications at all. Our hope is to have patch specifications
adopted incrementally, as part of real-world software.

Third, no manual work should be required to support such
patch specifications. The system should provide an automated
way to refer to the state of the pre- and post-patch versions.

Fourth, these specifications should be executable, in the
sense that they should be expressed via code, in the same
programming language as the one in which the software is
written. This would avoid requiring developers to learn an
unfamiliar specification language.

Finally, these patch specifications should benefit existing
testing techniques, such as symbolic execution and fuzzing,
in an “out-of-the-box” manner. That is, existing tools, say
AFL++ [7] and KLEE [3], should be able to use these
specifications without any modifications.

How would developers write patch specifications? At a high-
level, developers would be given simultaneous access to the
variables (or memory locations more generally) in both the
pre-patch and post-patch versions of the program. As most
variables would be shared between the two versions, they would
be disambiguated by e.g., adding the suffix _prev to the pre-
patch version. With access to both sets of variables, developers
could write arbitrary code that states properties between them.

We have identified product programs [1] as a promising
mechanism for writing patch specifications. Product programs
essentially merge several program versions into a single
program, enabling the use of standard analysis techniques, such



1 int Fn;
2 if (n <= 1)
3 Fn = 1;
4 else {
5 int Fn_2 = 1; // F(n-2)
6 int Fn_1 = 1; // F(n-1)
7 Fn = Fn_1 + Fn_2;
8
9 for (int i = 2; i < n; i++) {

10 Fn_2 = Fn_1;
11 Fn_1 = Fn;
12 Fn = Fn_1 + Fn_2;
13 }
14 }

Fig. 1. Code aiming to compute the n-th Fibonacci number.

if (n <= 1)
- Fn = 1;
+ Fn = n;
else {

- int Fn_2 = 1; // F(n-2)
+ int Fn_2 = 0; // F(n-2)

Fig. 2. Patch for the code in Fig. 1.

as symbolic execution and fuzzing, to reason about properties
that connect the different program versions.

Creating executable product programs for real programs and
code patches is challenging, but if successful, they could enable
existing techniques to check the patch specifications written
by developers.

II. EXAMPLE

To illustrate our idea for patch specifications, consider
the code in Fig. 1, which aims to compute the n-th Fi-
bonacci number. Fibonacci numbers are typically defined by
F (0) = 0, F (1) = 1, F (n) = F (n − 1) + F (n − 2), so the
generated sequence should be F (0) = 0, F (1) = 1, F (2) =
1, F (3) = 2, F (4) = 3, F (5) = 5, .... Instead, the code in
Fig. 1 generates the sequence F (0) = 1, F (1) = 1, F (2) =
2, F (3) = 3, F (4) = 5, F (5) = 8, ....

Suppose the developer notices the incorrect base case and
applies the patch in Fig. 2. Knowing that the patch aims to
shift the sequence to the right by one, they could write the
patch specification:

Fn = Fn 1prev

This would be placed as an assert statement just before
the end of the else case. (Note that while this is a strong
patch specification, it is nevertheless a partial specification, as
it ignores the change in behaviour for n = 0.)

III. PRODUCT PROGRAMS

Developers will only write patch specifications if they can
see an immediate benefit. Therefore, we would like existing
testing techniques to be able to use these patch specifications
“out of the box”, searching for any inputs that may violate the
specifications.

1 int Fn_prev; // previous version
2 int Fn; // current version
3
4 if (n <= 1) {
5 Fn_prev = 1;
6 Fn = n;
7 }
8 else {
9 int Fn_2_prev = 1; int Fn_2 = 0;

10 int Fn_1_prev = 1; int Fn_1 = 1;
11
12 Fn_prev = Fn_1_prev + Fn_2_prev;
13 Fn = Fn_1 + Fn_2;
14
15 for (int i = 2; i < n; i++) {
16 Fn_2_prev = Fn_1_prev; Fn_2 = Fn_1;
17 Fn_1_prev = Fn_prev; Fn_1 = Fn;
18
19 Fn_prev = Fn_1_prev + Fn_2_prev;
20 Fn = Fn_1 + Fn_2;
21 }
22
23 assert(Fn == Fn_1_prev); // patch spec
24 }

Fig. 3. Product program for the code in Fig. 1 and the patch in Fig. 2.

To accomplish this, we propose to adopt the idea of product
programs [1], [4], to create a program that merges the pre- and
post-patch versions, allowing the patch specification to refer
to variables in both versions.

At a high-level, product programs give unique names to the
variables in the two versions and then interleave the instructions
of the two versions. A product program for our example is
shown in Fig. 3. Each version has its own variables: the pre-
patch version has all its variables renamed to add the suffix
_prev. However, for readability, we show a product program
where the read-only argument n and the iteration counter i
are not duplicated, and which exploits the fact that the loop
has the same number of iterations in both versions.

With this product program in place, one can write the
specification discussed above, in an executable form, by adding
the assert shown on line 23:

assert(Fn == Fn_1_prev);

Of course, these patch specifications would be written
directly in the post-patch program (in our example after line 13
in Fig. 1), with the product program constructed automatically
later on, during the testing stage.

IV. PRELIMINARY EXPERIENCE

We have experimented with patch specifications backed-
up by product programs on several patches from the
COREBENCH [2] suite, a collection of complex real-world
patches from popular open-source programs. In particular, we
have investigated writing patch specifications for three patches
from GNU COREUTILS, a suite of core utility programs such
as ls and mkdir, installed on most UNIX-based systems. We
choose to present three of these patches, each illustrating a
different scenario in which patch specifications could prove



1 - if (*linkname == ’/’)
2 + if (IS_ABSOLUTE_FILE_NAME (linkname))
3 return xstrdup (linkname);
4
5 - char const *linkbuf = strrchr (name, ’/’);
6 - if (linkbuf == NULL)
7 + size_t prefix_len = dir_len (name);
8 + if (prefix_len == 0)
9 return xstrdup (linkname);

10
11 - size_t bufsiz = linkbuf - name + 1;
12 - char *p = xmalloc (bufsiz + strlen (linkname) +

1);
13 - strncpy (p, name, bufsiz);
14 - strcpy (p + bufsiz, linkname);
15 + char *p = xmalloc (prefix_len + 1 + strlen (

linkname) + 1);
16 + stpcpy (stpncpy (p, name, prefix_len + 1),

linkname);
17 return p;
18 }

Fig. 4. Patch in ls (COREBENCH #14a), ignoring a declaration moved down.

helpful: refactoring; introduction of an error case and partial
refactoring; and output changes.

Refactoring in ls. Fig. 4 shows a patch in the ls tool which
is intended to be a refactoring—the commit message says

“Do not hard-code ’/’. Use IS ABSOLUTE FILE NAME and
dir len instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

Refactoring patches are an excellent example of a scenario
for which patch specifications are easy to write and effective
in flagging any issues. For this patch, the developer could
simply state just before the return statement on line 17 that
the computed string p does not change across versions:

assert(0 == strcmp(p, p_prev));

In addition, one could also ensure that the early returns are
triggered in the same way across versions. For instance, the
following assert could be added just before line 2 (and a similar
one before line 8):

assert((IS_ABSOLUTE_FILE_NAME (linkname)) ==
(*linkname_prev == ’/’));

This refactoring in ls is incorrect. In particular, the post-
patch version produces a different output in some cases, e.g.
when name and linkname are /a and x. We were able to
construct a small driver that invokes the function containing
the patch, and then ran AFL++ and KLEE on it. Both tools
managed to generate inputs that violated our specification.

The bug made it into an official release of COREUTILS, after
which it was reported by a user [15] and fixed in time for
the next release [14]. Our hope is that with a simple patch
specification like the one above, such errors could be more
easily detected at development time.

As a further check, we incorporated the fix and ran AFL++
and KLEE again. We were surprised to see that the tools
still flagged divergences. For instance, setting name and
linkname to /x//y and a produces the output /x//a in
the original version and /x/a in the fixed version. While our

1 case string:
2 - i = 0;
3 - cp = v->u.s;
4 - neg = (*cp == ’-’);
5 - if (neg)
6 + {
7 + intmax_t value = 0;
8 + char *cp = v->u.s;
9 + int sign = (*cp == ’-’ ? -1 : 1);

10 + if (sign < 0)
11 cp++;
12 do {
13 if (ISDIGIT (*cp)) {
14 - i = i * 10 + *cp - ’0’;
15 + {
16 + intmax_t new_v = 10 * value + sign * (*cp

- ’0’);
17 + if (0 < sign
18 + ? (INTMAX_MAX / 10 < value || new_v < 0)
19 + : (value < INTMAX_MIN / 10 || 0 < new_v))
20 + error (EXPR_FAILURE, 0,
21 + (0 < sign
22 + ? _("integer is too large: %s")
23 + : _("integer is too small: %s")),
24 + quotearg_colon (v->u.s));
25 + value = new_v;
26 + }
27 else
28 return false;
29 }
30 while (*++cp);
31 free (v->u.s);
32 - v->u.i = i * (neg ? -1 : 1);
33 + v->u.i = value * sign;
34 v->type = integer;
35 return true;

Fig. 5. Fragment of the patch in expr (COREBENCH #22a). Original
formatting changed for better readability.

understanding is that this change does not introduce any issues
in ls, it is nevertheless important to be aware of and correctly
document the change. If it is intentional, the specification could
compare the two paths with a custom function that allows for
different representations of the same path.

New error case and partial refactoring in expr. The second
patch we present is in the expr tool, in the code which converts
a string to an integer. This patch added code to detect the case
where the integer is too small or too large, in which case it
exited with an error. To accomplish this, it also refactored this
code. Part of the patch is shown in Fig. 5, with the new error
case on lines 20–24.

Adding a specification for the case where the integer is
out of range would have involved replicating the logic of the
patch, which we found unhelpful. Instead, we added a simple
specification at the end of the refactored function stating that
the refactored code produces the same integer output when the
error case is not triggered in the post-patch version:

assert(v->u.i == v_prev->u.i);

The refactored code introduced an error involving negative
numbers. After constructing a small test driver, both AFL++
and KLEE generated inputs that violated our patch specifica-
tion. The fix proposed by the developers after a user reported the



1 - puts (p);
2 char *z = buf;
3 +
4 + /* Write first number to buffer. */
5 + z = mempcpy (z, p, p_len);
6 +
7 + /* Append separator then number. */
8 while (cmp (p, p_len, q, q_len) < 0)
9 {

10 + *z++ = *separator;
11 incr (&p, &p_len);
12 z = mempcpy (z, p, p_len);
13 - *z++ = *separator;
14 - if (buf_end - n - 1 < z)
15 + if (buf_end - (n + 1) < z)
16 {
17 fwrite (buf, z - buf, 1, stdout);
18 z = buf;
19 }
20 }
21
22 - if (buf < z)
23 - fwrite (buf, z - buf, 1, stdout);
24 + *z++ = *terminator;
25 + fwrite (buf, z - buf, 1, stdout);

Fig. 6. Patch in seq (COREBENCH #8b), with some comments omitted.

introduced bug [6] was a one line change [5]. We incorporated
this fix and used again AFL++ and KLEE: this time no inputs
could be produced that violated the patch specification.

Output changes in seq. The last patch we are presenting,
in seq, performs a bug fix that changes the output of the
tool. For instance, the command seq -s, 6 9 (instructing
the tool to print the sequence from 6 to 9, with comma as a
separator) would print in the pre-patch version:

6
7, 8, 9,

while in the post-patch version it would print: 6, 7, 8, 9

The patch is shown in Fig. 6. The pre-patch version prints
the first number followed by a new line, after which it has a
loop which prints each number followed by a separator into
an output buffer. The post-patch version starts by printing
the first number into the output buffer, and then changes the
loop iterations to print into the buffer first the separator and
then the next number in the sequence. Our patch specification
essentially encodes the fact that just after a separator is printed
in the post-patch version, the contents of the output buffer of
one version is the suffix of the contents of the output buffer
of the other version. We achieved this by adding after line 10
the following assert, where MIN is a macro computing the
minimum of its two arguments:

size_t min = MIN(z_prev - buf_prev, z - buf);
assert(0 == memcmp(z_prev - min, z - min, min));

and the following asserts after the while loop, which encode
the difference introduced by the patch without relating the
states of the two versions:

assert(buf_prev == z_prev
|| z_prev[-1] == *separator_prev);

assert(buf == z || z[-1] >= ’0’ && z[-1] <= ’9’);

As for the other patches, we constructed a test harness and
then ran both AFL++ and KLEE: neither tool found any
specification violations.

Our patch specifications and the test harnesses we con-
structed are both available as part of the paper artifact at
https://srg.doc.ic.ac.uk/projects/patch-specs/ and https://doi.org/
10.5281/zenodo.7591940.

V. DISCUSSION AND FUTURE WORK

Our preliminary evaluation has shown that in several sce-
narios, patch specifications can be written in a lightweight
manner, and find inadvertently introduced bugs. The key
difference between a regular functional specification and a
patch specification is that the latter encodes what has changed
in the program. By definition, this is exactly what the developer
has been working on, so they are in the best possible context
to write a patch specification.

Patches typically change a subset of program behaviour;
for refactorings, this subset is empty. Therefore, perhaps the
simplest way to approach patch specifications is to focus on
the case where the behaviour should be unchanged, as we did
for the ls and expr patches. This typically means that the
output (to the program, function, or code fragment) should
stay the same in those cases. Such patch specifications are
quite easy to write, but can be effective in finding common
types of bugs, where the patch mistakenly changes program
behaviour in too many or too few cases. Importantly, note that
these specifications can be written at a fine level of granularity,
involving intermediate program states, rather than only in terms
of the final output, as it is usually the case in differential
testing [16].

Patch specifications encoding output changes, such as the
one for seq, are more difficult to write, but can nevertheless
be easier to state than regular specifications. Of course, it is
easy to think of cases where regular specifications are easier to
write than patch specifications, in which case the former should
be preferred. Patch specifications are not meant to replace, but
rather complement regular specifications.

While in principle one could write a patch specification
for any change, the most useful specifications are those that
encode relationships between the two versions in a different
way than the code itself (see the expr patch where we found
it unhelpful to write a specification for the error case). In this
paper, we have also assumed that specifications are written for
individual patches. Of course, sometimes it may make more
sense to write specifications for a group of patches (e.g. those
forming a pull request) or involving non-consecutive versions
(as we did for the ls patch after incorporating the fix).

Patch specification can be useful in understanding a patch,
but their main utility is in conjunction with an automatic testing
or verification tool. To this end, they depend on the ability
to construct product programs. To date, product programs
have not been shown to scale to large codebases. Whether
they can be generated automatically for real-world patches of
large programs is still an open question. Challenges include
keeping the execution of the two versions synchronised (e.g.



not repeating common function calls in each version, handling
loops with different numbers of iterations across versions,
etc.), determining the program points associated with the patch
specification in the two program versions (if the patch is
written in the current version, it may be difficult to find the
right program point in the previous version, and developer
assistance might be needed for more complex patches), and
dealing with environmental side effects, such as those related
to input and output streams (so that the two versions do
not incorrectly interfere with one another), among others.
Nevertheless, recent work on modular product programs [4]
and our current experience building a prototype that constructs
product programs for C code are promising.

VI. RELATED WORK

While we are unaware of prior work directly targeting
developer-written patch specifications, there is a large body of
work on code-level specifications, e.g. [18], including work on
integrating specifications and testing [9].

Product programs have been used in differential assertion
checking [11] to determine whether errors are introduced
by a new program version. While the framework could in
principle handle the kind of patch specifications we envision, it
focuses exclusively on generic errors such as buffer overflows.
Reasoning is done using static analysis, which imposes different
requirements on the construction of product programs.

In addition to product programs [1], [4], other forms of
multi-version programs have been proposed in the past, e.g.
in work on shadow symbolic execution [20] and multiversion
interprocedural control flow graphs [12].

VII. CONCLUSION

Software patches are the basic blocks of software evolution
and they should be comprehensively tested. In this paper, we
have proposed the use of product programs as a practical
means of writing patch specifications that could be checked
using standard testing techniques such as fuzzing and symbolic
execution. We have reported our promising initial experience
writing specifications for complex patches and have identified
several important directions for future work.
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