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Abstract

Deploying fuzzing within CI/CD pipelines can help ensure safe
and secure code evolution. Directed greybox fuzzing techniques
such as AFLGo are a good match for the CI/CD context. These
techniques prioritise inputs based on estimated distances to the
changed code. Unfortunately, computing these distances is often
expensive, making the techniques impractical for short CI/CD runs.

In this paper, we propose an AFLGo-based technique called
PaZZER, which optimises the distance calculation by dropping the
expensive control-flow graph component and computing the call-
graph component in an incremental fashion. Preliminary results are
promising, showing that PaZZER can make CI/CD testing feasible
for large applications: e.g., for Objdump the distance computation
time is decreased from 34min to just 2.5min, with a further 2.3min
saved when an incremental algorithm is used. The significant time
reduction in distance computation allows PaZZER to use most of
the time on actual fuzzing, making it practical for short CI/CD runs
of around 10 minutes.

Our planned full evaluation will involve real-world commits
from a diverse set of nine applications of different sizes. This will
include coverage experiments and an ablation study to investigate
the impact of PaZZER’s design decisions, and a bug-finding case
study comparing it against AFLGo and Google’s CIFuzz. We will
assess the benefits and effectiveness of our approach in terms of
patch coverage, patch proximity, distance computation time, and
time-to-exposure for bugs.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

Evolution is an inevitable characteristic of software, but the high
pace at which modern software evolves poses a key threat to its
reliability. The most popular and effective way of ensuring safe
software evolution is through the use of Continuous Integration
(and Continuous Development), CI/CD pipelines. Typically, these
pipelines run a developer-written test suite on each commit, to
check that the introduced changes did not introduce any issues.
However, with software becoming more complex, these manual
tests may easily miss corner cases responsible for bugs and security
vulnerabilities.

A promising direction is the use of greybox fuzzing within the
CI/CD pipelines to supplement developer-written test suites. In
particular, directed greybox fuzzing adapts greybox fuzzing to target
specific parts of the code and has gathered significant attention
recently. The pioneering work in this area is AFLGo [3], which
extends the popular AFL fuzzer [26] with a heuristic based on the
distance to the target code. Several subsequent techniques have
aimed to improve various aspects of AFLGo. For example, Du et
al. [11] extend AFLGo by taking into account data dependencies
for distance computation, while Wüstholtz et al. [24] provide an
on-demand, online static analysis for distance estimation. Win-
dRanger [6] builds on top of AFLGo by considering basic blocks that
have a better chance of reaching the target(s), while Liang et al. [15]
extend AFLGo to better deal with multiple targets. WAFLGo [25]
follows the same trend and extends AFLGo by adding support for
multiple targets and by directing fuzzing efforts towards sensitive
regions following a software patch.

Existing research from Klooster et al. [12] has shown that in
general, employing per-commit fuzzing campaigns of 10min strikes
a good balance between the desires of developers for quick feedback
and the effectiveness of fuzzing. Additionally, campaigns of 10min
can be just as effective as ones that take 8 hours, especially if
lengthier campaigns are still regularly used to fuzz snapshots of
the repository.

Unfortunately, while AFLGo is designed to target changes, for
many larger applications it is unable to achieve good results within
a short per-commit time budget. The key bottleneck consists of
time spent by the tool in computing the necessary distances to the
lines of code changed by the patch under analysis before the actual
fuzzing campaign starts. Not counting the distance calculation and
other pre-computation steps in the fuzzing budget [3, 6, 11, 15, 27]
skews the perceived efficiency of the fuzzer and does not reflect a
real-world deployment, where the pre-computation stage needs to
run whenever a new code change arrives.

In this work, we address this scalability challenge via two inter-
related optimisations. First, we show that one of the distance types
computed by AFLGo can be dropped, without a significant degrada-
tion in its effectiveness. Second, we replace its distance computation
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(a) Basic blocks from which the target is directly reachable. (b) Basic blocks that can indirectly reach the target.

Figure 1: Types of basic blocks used in AFLGo’s basic-block level, CFG-based distance computation.

with an incremental algorithm, and demonstrate the advantages
and trade-offs incurred by various such algorithms.

The rest of this registered report is structured as follows. §2
provides some background information onAFLGo and a motivating
case study. Then, §3 discusses the optimisations proposed by our
system called PaZZER.1 §4 presents out preliminary results and
§5 the planned evaluation for the full registered paper submission.
Finally, §6 discusses related work and §7 concludes.

2 Motivating Case Study

In this section we briefly describe the inner workings on AFLGo [3]
(§2.1) and present a motivating case study that highlights the time
spent by AFLGo in different stages.

2.1 Background for AFLGo

To effectively generate inputs that reach a set of targets (typically
the targets consists of the changed parts of the code), AFLGo es-
timates the distance from each input in the fuzzing queue to the
targets. The inputs that are closest to a target are then prioritised.

To compute the distance from an input to a set of targets, AFLGo
computes the distance from each basic block traversed by the input
to the set of targets, and then returns the average of these distances.
The distance from a basic block to a target is pre-computed before
the actual fuzzing campaign begins.

Each pre-computed distance has two components: a function-
level target distance and a basic-block-level target distance. The for-
mer computes the distance between the function where the basic
block resides and the functions where the targets reside, while the
latter computes the distance between the basic block and all other
basic blocks that call a target function.

The function-level target distance is based on the Call-Graph
(CG) extracted from the system under test (SUT) and is hence
interprocedural. Essentially, it computes the distance between a
function n and target functions 𝑇𝑓 and is defined as the harmonic
mean of the distances (computed using Dijkstra’s algorithm on

1The name is a combination of PAtch and fuZZER.

the call graph) between 𝑛 and the target functions 𝑇𝑓 :

𝑑𝑓 (𝑛,𝑇𝑓 ) =

undefined if 𝑅(𝑛,𝑇𝑓 ) = ∅[∑

𝑡𝑓 ∈𝑅 (𝑛,𝑇𝑓 ) 𝑑𝑓 (𝑛, 𝑡𝑓 )
−1

]−1
otherwise

(1)

with𝑅(𝑛,𝑇𝑓 ) being the set of all target functions that can be reached
from 𝑛.

The basic-block-level target distance is intraprocedural and uses
the Control Flow Graphs (CFGs) of the functions in the SUT. Fig-
ure 1 shows the two different kinds of basic blocks that are used to
compute this distance. More exactly, Figure 1a shows the kind of
basic blocks from where the target is directly reachable. For such a
basic block 𝐴 the distance estimate is

𝑑 (𝐴) = 𝑐 ·min{CG-based distance to target function} (2)

with 𝑐 a configurable constant (with default value 10 in AFLGo).
The second kind of basic blocks, as shown in Figure 1b, are the

ones from which the target is indirectly reachable. For a basic block
𝐶 , the distance is computed as,

𝑑 (𝐶) = harmonic-mean(𝑑1 + 𝑑 (𝐴), 𝑑2 + 𝑑 (𝐵))

=

(
(𝑑1 + 𝑑 (𝐴))−1 + (𝑑2 + 𝑑 (𝐵))−1

)−1 (3)

In the rest of the paper, for brevity, we refer to the first kind of
distance as CG (Call Graph) distance, and to the second one as CFG
(Control-Flow Graph) distance.

2.2 Performance Analysis for AFLGo

In order to get a better understanding of how suitable AFLGo is
in the context of CI/CD fuzzing, we run the tool on four bench-
marks which were also part of AFLGo’s evaluation [3]. The bench-
marks are picked to be of varying sizes, representing very small
(Giflib [1]), small (Jasper [10]), medium (Libming [2]) and large
(Objdump, part of Binutils [7]) benchmarks. We run our experi-
ments on machines with Intel Core i3-8100 CPU @ 3.60GHz with
32GB of memory, running Ubuntu Linux 20.04 LTS x86_64.

Table 1 shows how much time is spent computing the two types
of distances, together with their sum. As can be seen, the distance
computation step takes significant time in the context of short
CI/CD runs.
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Table 1: Time taken in distance computation for each bench-

mark. Benchmark versions and sizes in lines of code (LOC)

are also provided. Objdump is part of Binutils and the size

is our best estimate taking its dependencies into account.

Benchmark Version LOC

Distance comput. (s)

CG CFG Total

Giflib 72e31ff 7,259 1 32 33
Jasper 142245b 28,256 2 181 183
Libming b72cc2f 82,303 2 192 194
Objdump a6c21d4 570,040 154 1,866 2,020

For Giflib, Jasper, and Libming, the total distance computation
step is within the fuzzing time budget of 600 s (10min). However,
in the case of Jasper and Libming the CFG distance already takes
substantial time, at over three minutes.

For Objdump, representative of large benchmarks, the distance
computation step takes 2,020 s (34min), whichmakes the technique
unsuitable for use within CI/CD pipelines. This is dominated by
the CFG computation, which takes 31min.

These findings motivate our proposed approach of dropping the
CFG distance computation and improving the re-computation of
the CG distance. In particular, we aim to understand the impact
of dropping the CFG distance component on the capabilities of
AFLGo for short CI/CD fuzzing runs, and the time savings achieved
by incrementally computing CG distances.

3 PaZZER

PaZZER updates the AFLGo algorithm in two main ways: it drops
the CFG distance computation (§3.1) and makes the CG distance
computation incremental (§3.2).

3.1 CG Distance Computation

For a basic block 𝑏 within a function 𝑓 , the distance 𝑑 (𝑏, 𝑡) to a
target node 𝑡 is directly given by the precomputed function-level
distance 𝐷 𝑓 between 𝑏 𝑓 , the function where 𝑏 resides, and 𝑡𝑓 , the
function where 𝑡 resides.

𝑑 (𝑏, 𝑡) = 𝐷 𝑓 (𝑏 𝑓 , 𝑡𝑓 )

In PaZZER, 𝐷 𝑓 is computed using an incremental algorithm:

𝐷 𝑓 (𝑏 𝑓 , 𝑡𝑓 ) = IncrementalAlgorithm(𝑏 𝑓 , 𝑡𝑓 , 𝐷old
𝑓

,CGUpdates)

where IncrementalAlgorithm represents the chosen incremental
algorithm, 𝐷old

𝑓
represent the set of distances computed in the old

version of the call graph, and 𝐶𝐺Updates are the updates to the call
graph done in the new version.

3.2 Incremental Algorithms

The incremental algorithm used by PaZZER can have an important
impact on its performance and effectiveness. The literature offers a
wide choice of incremental shortest path algorithms, each present-
ing different tradeoffs in terms of optimality (whether it computes
shortest paths or an approximation), performance, and memory

consumption. We plan to investigate algorithms representative of
these choices, which we summarise in Table 2.

We have selected a total of three incremental algorithms: LPA*,
Anytime D*, and HPA*. We have picked one algorithm to represent
each of the three classes of algorithms based on optimality: optimal,
sub-optimal and near-optimal. We briefly describe each in turn.

LPA* is representative of an optimal butmoderately efficient shortest-
path algorithms. Optimal algorithms guarantee a shortest-path
solution, but they are more expensive than sub-optimal and near-
optimal algorithms. LPA* is based on the A* algorithm while extend-
ing it with incremental capabilities. It guarantees the optimality
of the shortest path solution, ensuring accuracy and precision in
distance computation. LPA* algorithm is useful in cases where the
graph evolves slowly and less drastically. In the context of this
work, it would be useful for SUTs where the changes do not alter
the underlying call graph too much by adding/removing functions
and calls.

Anytime D* is representative of highly efficient algorithms that
produce a sub-optimal solution that gets refined over time. Conse-
quentlyAnytime D* is categorised as a sub-optimal and moderately
efficient algorithm. While it does not always guarantee the shortest
path, it provides a solution quickly and can improve the solution
quality over time, making it suitable for scenarios where time con-
straints are critical. The ability to generate a solution very quickly
might be critical for our larger benchmarks. The memory foot-
print of this algorithm can be quite high when handling significant
changes as more of the nodes need reprocessing.

HPA* is representative of a fast algorithm that produces “near-
optimal” solutions for certain target nodes, useful for cases where
a certain part of the codebase changes a lot. HPA* is considered
near-optimal since it balances between optimality and efficiency
by using hierarchical abstraction to reduce the complexity of the
path-finding problem, thus offering a solution that is close to opti-
mal in a more computationally efficient manner. The hierarchical
abstraction allows it to scale well for large call graphs, but the initial
setup is complex and the initial memory consumption is high due
to the fact that it needs to maintain the abstraction in memory.

With these algorithms in place, our aim is to get a better under-
standing of the optimal use cases for each of the three algorithms.
Given that a key challenge for the deployment of a fuzzer within
a CI/CD pipeline is the highly evolving nature of the system, it
will be important for PaZZER to be able to select the best fitting
incremental algorithm. We hypothesise that larger systems that
evolve quite rapidly would benefit from highly efficient but sub- or
near- optimal algorithms. However, for smaller systems where a
less efficient but optimal algorithm is feasible, that would be the
better choice.

3.3 Directed Fuzzing

PaZZER is built on top of the popular AFLGo fuzzer [3]. While
several different directed fuzzers have been proposed in recent
work, our decision to build on top of AFLGo stems from the fact
that it provides a simple, yet effective solution to the problem.
Furthermore, it offers a stable implementation, which has been
used and extended successfully by several projects.
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Table 2: Summary of incremental shortest-path algorithms we plan to use in PaZZER, based on their use cases.

Algorithm Optimality Description Ideal Use Case

LPA* [14] Optimal Combination of DynamicSWSF-FP [20]
and A*. Uses information from previous
runs to reduce the number of nodes ex-
amined.

Managing call graphs in dynamic codebases
where call relationships change occasion-
ally and those changes are largely local,
maintaining efficient path updates.

Anytime D* [16] Sub-Optimal Variant of D* Lite [13] combined with
Anytime Repairing A*. Finds subopti-
mal paths quickly and improves with
more time given.

Quickly identifying distance estimates in
very large and dense call graphs. For ex-
ample, in case of large repositories that un-
dergo frequent updates, Anytime D* can
rapidly find initial distances after changes
and refine them as more time becomes avail-
able.

HPA* [9] Near-Optimal Hierarchical Path-Finding A* for path-
finding in large graphs with many units.
Breaks the graph hierarchically for near-
optimal paths.

Ideal for large, complex call graphs in a
monolithic codebase where dealing with the
entire Call Graph might be infeasible and
hence breaking the graph into smaller sec-
tions (modules) improves the efficiency of
pathfinding and analysis.

4 Preliminary Results

This section presents our preliminary results, which indicate that
PaZZER has the potential of making directed greybox fuzzing, and
AFLGo in particular, feasible in a CI/CD context.

We first investigate the impact of dropping the expensive CFG
distance component in §4.1, and then measure the impact of an
incremental approach to CG distance computation in §4.2. We run
the experiments on the same machines described in §2.2.

4.1 Impact of Dropping CFG Distances

To understand the impact of dropping CFG distances and using
only CG distances on the effectiveness and performance of AFLGo,
we have run an experiment measuring the time needed to find
known crashes in the four benchmarks introduced in §2.2 (Jasper,
Libming, Giflib and Objdump), with and without CFG distance
computation.

We reuse here the experimental setup from the AFLGo paper [3].
In particular, we mark as targets the method calls from the stack
trace associated with each crash. For our crashes, we select from
the ones provided by the AFLGo artifact:2 for Jasper, Libming
and Objdump, we use CVEs, while for Giflib a non-exploitable
crash bug as no CVE is provided. For each crash, we measure the
Time-to-Exposure (TTE) for both AFLGo and PaZZER, i.e. the time
required to generate an input that triggers the crash. Note that for
this experiment, the incremental component of PaZZER is not used.
We repeat our experiments 20 times to gain statistical confidence
in our results.

Table 3 presents our results. For both AFLGo and PaZZER, we
measure the total time it takes to find the crash in each SUT. We
further break down this time into the distance computation and
the fuzzing run components.

2From https://github.com/aflgo/aflgo/tree/master/examples

Our results show that PaZZER finds all the crashes in signif-
icantly less time that AFLGo, with a speedup between 1.1 x to
5.2 x compared to AFLGo. This gain is especially crucial for larger
benchmarks like Objdump where the distance computation time
for AFLGo far exceeds the 10min fuzzing budget. In such cases, the
use of PaZZER makes it feasible for such benchmarks to be able to
utilise directed fuzzing in a CI/CD setting.

With these preliminary results, we can get a reasonable amount
of confidence in this particular design element of PaZZER. More
precisely, we can see that by only using a CG-based distance mea-
sure in PaZZER, not only can we avoid expensive computation
steps and make the process more scalable, but also do not adversely
impact the effectivess of the directed fuzzing.

4.2 Impact of Incrementally Computing CG

Distances

The second part of our preliminary evaluation looks at understand-
ing the impact of incrementally computing CG distances starting
from the distances already computed for the previous version of the
SUT. In particular, we report the performance of the incremental
LPA* algorithm against the non-incremental Dijkstra’s algorithm
(which is the non-incremental algorithm used by AFLGo) on pro-
grams that undergo changes over time.

In complex changing call graphs, recomputing path distances
withDijkstra’s algorithm can be inefficient and resource-intensive.
Dijkstra’s algorithm requires recomputation of the entire path
from the start node to the goal node whenever there is a change
in the graph, leading to significant computational overhead. As
call graphs often do not change that much, there are important
missed opportunities in terms of reusing previously computed path
distances.

The Lifelong Planning A* (LPA*) algorithm incrementally up-
dates shortest path information when changes occur in the graph.

https://github.com/aflgo/aflgo/tree/master/examples
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Table 3: Time-to-Exposure (TTE) comparison between AFLGo and PaZZER.

Benchmark CVE/Version

AFLGo-TTE (s) PaZZER-TTE (s)

Speedup

Distance Fuzzing Total Distance Fuzzing Total

Giflib 72e31ff 33 89 122 1 108 109 1.1 x
Jasper CVE-2015-5221 183 62 245 2 66 68 3.6 x
Libming CVE-2018-8962 194 176 370 2 192 194 1.9 x
Objdump CVE-2017-8392 2,020 243 2,263 154 284 438 5.2 x

Table 4: Performance comparison of PaZZER (with LPA*

algorithm) and AFLGo (with Dijkstra’s algorithm).

Benchmark

Call Graph Time (s)

Nodes Edges AFLGo PaZZER

Giflib 65 119 1 1
Jasper 744 1,694 2 2
Libming 434 1,347 2 2
Objdump 21,596 51,318 154 14

As discussed in §3.2, it is an example of an optimal incremental
algorithm of moderate efficiency. By incrementally updating its
search for the optimal path based on changes in the graph, LPA*
minimises computational costs and avoids redundant exploration.

Experimental setup. To evaluate the impact of incremental-
ity in the context of CI/CD fuzzing, we have implemented LPA* in
AFLGo. The starting point for our implementation is theDijkstra’s
algorithm implementation from Python’s NetworkX [8] package,
which is the same implementation used by AFLGo. The implemen-
tation is designed to handle unweighted graphs, as needed in the
context of call graphs.

In order to simulate a bug-inducing commit scenario, we take
our running benchmarks from Table 1 and add a bug-injecting
commit. In particular, we select a function in each benchmark, and
add a function call to another selected function. We further add
an abort() statement at the beginning of the called function to
induce a crash. This changes the call graph by adding an extra edge
to it.

We then run both the non-incremental Dijkstra’s algorithm
and the incremental LPA* algorithm and measure the amount of
time it takes for each. Table 4 presents our findings.

For the small and medium-sized benchmarks (Giflib, Jasper
and Libming), due to the relatively small graph sizes, the call graph
distance computation times are small, 1-2s, so the incremental
algorithm does not make a difference in practice.

However, for the large Objdump benchmark, with a call graph
with 21,596 nodes and 51,318 edges, the incremental aspect of the
LPA* algorithm results in a time saving of 140 s. While not as sig-
nificant as in the case of dropping CFG distance computation, this
amount of saving is nevertheless important when a short CI/CD
fuzzing run of 10min is considered.

5 Planned Evaluation

In this section, we discuss the evaluation that we plan to perform
for the full registered paper submission. We start by discussing our
research questions (§5.1) and the systems under test (§5.2). We then
present two experiments: one focusing on coverage and an abla-
tion study (§5.3) and the other focusing on bug-finding (§5.4). For
each experiment, we present the techniques being compared, the
evaluation metrics, the methodology and the experimental settings.

5.1 Research Questions

Our research questions (RQs) are as follows:

RQ1:What is the impact of dropping the basic-block level target
distance used by AFLGo on the capabilities of directed fuzzing for
short fuzzing runs?

RQ2: How does the incremental computation of call-graph-based
distances perform in comparison to recomputation-based non-
incremental methods in terms of accuracy and efficiency?

RQ3:What are the trade-offs between computation time and fuzzing
capabilities when using different incremental algorithms?

RQ4: How does the proposed incremental, directed fuzzing infras-
tructure scale with the size and complexity of codebases, consid-
ering typical CI/CD constraints such as time limits and resource
availability?

5.2 Systems under Test

To comprehensively evaluate our proposed technique, we have
selected a diverse set of systems under test (SUTs) from the OSS-
Fuzz project [21], summarised in Table 5. These SUTs encompass
a diverse array of software projects, covering domains such as
image handling (e.g., Giflib and Libjpeg-turbo), data processing
(e.g., Jasper and Objdump), and secure communication (e.g., Libbpf
and OpenSSL)

The chosen SUTs are categorised into small, medium, and large
(three of each), based on the number of lines of code, as reported by
OSS-Fuzz. This categorisation aligns with the proposed research
questions, allowing us to analyse the performance and efficacy of
our technique across SUTs of different sizes. Small-scale SUTs—
Giflib, Jasper and Libbpf—provide insights into the effectiveness
of the technique in detecting vulnerabilities in compact codebases.
Medium-scale SUTs—Libming, Selinux and Libjpeg-turbo—allow
us to evaluate our technique’s efficacy in moderately-sized projects.
Finally, large-scale SUTs—OpenSSL, Systemd andObjdump—enable
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Table 5: The benchmarks from OSS-Fuzz [21] that we plan to use for the full evaluation.

Name Scale Lines of Code CIFuzz Integration Notes

Giflib Small 7,259 ✗ Library for handling GIF files.
Jasper Small 28,256 ✗ C library for parsing and processing

JSON data.
Libbpf Small 36,670 ✓ AC library for loading, interacting with,

and managing BPF (Berkeley Packet Fil-
ter) programs in the Linux kernel.

Selinux Medium 63,634 ✓ A security architecture integrated into
the Linux kernel that provides manda-
tory access controls.

Libjpeg-turbo Medium 68,397 ✓ A JPEG image codec that uses SIMD
instructions to accelerate baseline JPEG
compression and decompression.

Libming Medium 82,303 ✗ Library for generating SWF (“Flash”)
format movies.

Systemd Large 280,393 ✓ A system and service manager for Linux
operating systems that provides paral-
lelized booting, on-demand starting of
daemons, and more.

Objdump Large 570,040 ✗ Library for displaying various informa-
tion about object files, including disas-
sembly and binary content.

OpenSSL Large 820,725 ✓ Widely-used cryptographic library.

us to assess the scalability and robustness of our approach in han-
dling complex, extensive codebases.

5.3 Coverage Experiments and Ablation Study

The first set of experiments will focus on understanding the impact
of different design decisions in PaZZER on an unbiased selection of
commits from each SUT. These experiments will focus on coverage
as our primary metric.

Techniques under evaluation. Our evaluation will compare the
following tools and configurations:
(1) AFLGo: Representative of a general and effective form of di-

rected fuzzing, along with its complete distance computation
functionality.

(2) PaZZER-No-Increment: PaZZER without incremental dis-
tance computation but with AFLGo’s expensive CFG distance
computation dropped.

(3) PaZZER-LPA*: PaZZER with LPA* as its incremental algo-
rithm.

(4) PaZZER-Anytime-D*: PaZZER with Anytime D* as its in-
cremental algorithm.

(5) PaZZER-HPA*: PaZZER with HPA* as its incremental algo-
rithm.

Evaluation metrics. In this part of the evaluation, we will focus
on the following metrics:
• Patch coverage. For each code change (patch) considered in
each SUT, we will measure the total patch coverage achieved by
the inputs produced by each tool. For patches with a single target

(i.e. a single basic block), this is either 0% or 100% and indicates
whether or not the input set was able to reach the patch. For
patches consisting of multiple target basic blocks, this metric
is defined as the fraction of basic blocks reached by executing
the input set. This will provide an insight into the impact of the
various choices we made regarding the distance metric and the
incremental algorithms on the patch coverage capabilities of the
directed fuzzer.

• Patch proximity. If a tool does not manage to generate inputs
that reach the patch, we will measure patch proximity, i.e. how
close the generated inputs got to the patch. We will use a call-
graph-based distance to the target to compute patch proximity,
and in the case of multiple targets, we will pick the input with
the smallest average distance.

• Time saved in distance computation. Between incremental
configurations of PaZZER and the non-incremental AFLGo, we
will measure the amount of time spent in distance computation.
This will give us the average amount of time saved by making the
directed fuzzing infrastructure use an incremental CG distance
computation.

Methodology and experimental settings. We will run the five
tools on a set of 27 commits from each of our nine SUTs. Each tool
will be given a total fuzzing budget of 10min, which includes the
time required to run the distance computation step. The rationale
behind this time budget is two-fold: (1) Since these tools need to run
within a CI/CD pipeline on every single commit, a short response
time is required by developers; and (2) Prior work has shown that
a short 10min run is often effective [12].
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To address the impact of the size and diversity of changes on
the performance of PaZZER, we introduce the following commit
selection methodology:
(1) For each SUT, we pick all possible continuous sequences of

three commits, starting with a commit from roughly five years
ago. For each such sequence, we compute the average commit
size and the average commit spread, where these metrics are
defined as such:
• Commit Size: The number of code lines added, modified, or
deleted by the commit.

• Commit Spread: The average number of unique source code
files affected.

(2) We sort these sequences into two lists, the first based on average
commit size and the second based on average commit spread.

(3) We then divide both these sorted lists into three parts corre-
sponding to high, medium and low average values.

(4) From these sorted lists, we select a total of nine commit se-
quences, each containing three commits. These nine commit
sequences correspond to the nine different combinations that
can be made with the three (high, medium, low) classes for the
two (average commit size, average commit spread) categories.
Given the commit selection timeframe of five years, we should

have sufficient sequences for each combination, however for cases
where this is not possible, we will skip that combination.

As expected, for each commit in a given sequence, we will con-
sider the lines affected by the commit, and use these as targets for
our five tools. Each tool is run on each commit for 10min while
saving all the inputs being generated during these runs. For AFLGo
and PaZZER-No-Increment where there is no incremental compo-
nent, we will simply re-run them each time for those 27 commits.
For the remaining tools which have an incremental component to
them, we will start from the distances computed for the previous
commit. In particular, this will involve computing the distances for
the commit preceding the given sequence (outside the 10min time
budget), under the assumption that those distances had already
been computed when fuzzing the previous commit.

For all tools, we will also keep track of the amount of time spent
(re)computing distances. Having a selection of commit sequences
based on commit size and spread for each SUT, in conjunction with
the mentioned metrics will allow us to understand the impact of
incremental algorithms and their various variants on the efficiency
of directed fuzzing.

For each run, wewill compute themetrics discussed above, which
in turn will be used to answer the RQs introduced in §5.1.

These experiments will be conducted on a cluster of multicore
Linux workstations. The detailed specifications of the machines
will be provided when presenting our full results.

Our planned experiments will require (excluding the time needed
to compute the distances for the commit preceding each sequence):

9 benchmarks ×
27 commits per benchmark ×
10min per commit ×
20 repetitions ×
5 tools

= 4,050 hours of CPU time

Performing 20 repetitions allows us to present average numbers
for our given metrics with statistical confidence.

5.4 Bug-Finding Experiments

For our second set of experiments, we plan to focus on the bug-
finding capabilities of PaZZER. We plan to extract several recent
bugs reported in OSS-Fuzz for our SUTs, and understand whether
PaZZER would have been able to find the bug within a short CI
budget. We will also compare PaZZER with two other systems:
AFLGo and CIFuzz.

CIFuzz [23] is a system offered byGoogle for running fuzz targets
on pull requests. It is designed for SUTs integrated with OSS-Fuzz
and hosted on GitHub. CIFuzz offers a very basic incremental fea-
ture, in which only the fuzz targets which have previously reached
the files involved in the code change (pull request) are run.

Bug selection methodology. We plan to select 20 bugs reported
by OSS-Fuzz in the SUTs of Table 5, restricting ourselves to those
SUTs also integrated with CIFuzz. From our nine SUTs, five are also
integrated with CIFuzz: Libbpf, Selinux, Libjpeg-turbo, Systemd
and OpenSSL. We will select four bugs from each of these five
benchmarks, for a total for 20 bugs.

Techniques under evaluation. Our evaluation will compare the
following tools:

• AFLGo: The standard configuration of AFLGo. The distance
computation step will be included in its time budget.

• CIFuzz The standard configuration of CIFuzz.
• PaZZER We will configure PaZZER with the incremental algo-
rithm that performed best in the experiments of §5.3.

Evaluation metric. For each bug-introducing commit, we will
record the amount of time it takes for each tool to generate the first
input that exposes the bug, i.e. the Time-to-Exposure (TTE).

Methodology and experimental settings. We run each tool for
10min, as for the experiments in §5.3. Since CIFuzz and PaZZER
have incremental features, we first simulate the fact that they ran on
the versions preceding the bug-introducing commit under analysis.
We do so in two steps: first, we run all the fuzz targets in CIFuzz on
the previous commit, for 10min each, and gather coverage infor-
mation. This coverage information will be used during the actual
run on the error-introducing commits to use only the fuzz targets
affected by the commit, as CIFuzz does. Second, we compute the CG
distances using the previous commit. Of course, we do not count
these steps as part of the 10min time budget, as the assumption is
that the fuzzers have already been run on previous commits.

Like before, these experiments will be conducted on a cluster
of multicore Linux workstations. Our planned experiments will
require (excluding the time needed to simulate the fact that the tool
had run on the previous commit):

20 bugs ×
10min per bug ×
20 repetitions ×
3 tools

= 200 hours of CPU time
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The results of these experiments will provide important insights
into: (1) whether bugs which take a large number of CPU hours
to find with OSS-Fuzz could be found in less than 10min with
PaZZER; (2) whether the incremental aspect of PaZZER enables it
to find bugs which are out of reach for AFLGo; and (3) how directed
fuzzing compares in practice with the simple undirected CIFuzz
deployment.

6 Related Work

Directed greybox fuzzing has gained significant attention due to
its ability to focus fuzzing efforts on specific parts of the codebase,
which is particularly beneficial for identifying vulnerabilities in
critical or recently modified sections of software. The pioneering
work in this area is AFLGo [3], on which PaZZER is based. AFLGo
extends the widely-used AFL fuzzer [26] by incorporating a heuris-
tic based on the distance to the target code. This approach guides
the fuzzer to generate inputs that are more likely to exercise the
specified parts of the code, enhancing the efficiency of the fuzzing
process. Given AFLGo’s effectiveness and popularity, it has served
as the basis of a number of extensions. Some works modify various
features of the AFLGo algorithm, while others present complemen-
tary ways to enhance the algorithm.

DAFL [11] extends AFLGo by incorporating data dependencies
into the distance computation step. WindRanger [6] refines the
target selection process by prioritising basic blocks that have a
higher likelihood of reaching the specified targets, thus improving
the efficiency of the fuzzing process. Addressing the issue of multi-
ple targets affecting the directed fuzzer, Liang et al. [15] enhance
AFLGo to effectively handle scenarios with multiple fuzzing targets
by using a custom distance metric, optimizing the fuzzing process
across different parts of the codebase. Similarly, FishFuzz [27] em-
ploys a hierarchical scheduling strategy to efficiently manage and
prioritise fuzzing multiple targets by dynamically adjusting its fo-
cus based on the observed progress and the relative difficulty of
reaching each target.

WAFLGo [25] is a directed greybox fuzzer designed to efficiently
test commit change sites and their affected code, introducing a
novel critical code guided input generation strategy and a light-
weight multi-target distance metric. These innovations help ensure
comprehensive testing by identifying and focusing on critical code
paths and data dependencies. Despite its effectiveness, WAFLGo
faces significant limitations that make it less suitable for integra-
tion into CI/CD pipelines. The substantial computational overhead
due to intricate distance computations and critical code identifi-
cation processes demands considerable time and resources, which
are often not feasible within the tight time constraints of CI/CD
environments. Although WAFLGo introduces a novel method for
handling multiple targets, the complexity of maintaining individual
directness for each target adds to the computational burden, re-
sulting in slower performance and challenging the quick feedback
cycles required in CI/CD workflows.

As discussed in the introduction, the evaluation of prior directed
fuzzing techniques does not take into account the pre-computation
stages, particularly the distance calculation, as part of the fuzzing
budget [3, 6, 11, 15, 27]. This is an unrealistic assumption, and an

important bottleneck in terms of deploying these techniques within
CI/CD workflows.

TargetFuzz [5] proposes a mechanism to enhance directed grey-
box fuzzing by using a target-oriented seed corpus (DART corpus),
which contains ‘close’ seeds to the targets. This approach signifi-
cantly improves bug-finding capability and efficiency, by providing
a complementary enhancement to directed fuzzing rather than
altering the main algorithm.

While AFLChurn [28] focuses on fuzzing recently changed code
to catch regressions, it operates under the principle of targeting
new code changes with higher priority to ensure that recent modi-
fications do not introduce new bugs. This approach is particularly
effective for regression testing but does not specifically address the
scalability challenges of directed greybox fuzzing within CI/CD
pipelines.

In the same spirit, Klooster et al. [12] propose to use fuzz targets
impacted by the recent code changes in order to reduce fuzzing
overhead. However, this still uses undirected fuzzing and hence
does not try to make the CI/CD fuzzing more directed.

In addition to greybox fuzzing, symbolic execution [4] has also
shown promise in the context of patch testing. Works such as
KATCH [17] based on dynamic symbolic execution target the prob-
lem of patch reachability, while Noller et al. [18] and SHADOW [19]
build on top of dynamic symbolic execution to comprehensively
exercise software patches after reaching their code.

7 Conclusion

We have presented PaZZER, a tool designed to optimise the scalabil-
ity of directed greybox fuzzing within CI/CD pipelines by building
on the foundation established by AFLGo. By addressing the key
bottleneck of distance computation to lines of code affected by
patches, we proposed two inter-related optimizations: eliminating
one type of distance computation and implementing an incremental
algorithm for distance calculation.

Through preliminary experiments, we have demonstrated that
dropping the CFG based distance computation does not significantly
affect the directedness and hence the effectiveness of the fuzzing
process. Additionally, our incremental algorithm shows promising
results in reducing the time required for distance computations,
making it feasible for short per-commit fuzzing runs.

We have outlined a comprehensive plan for further experimental
evaluation to rigorously assess the effectiveness of PaZZER on a
diverse set of applications. This evaluation will measure the im-
provements in fuzzing efficiency and effectiveness in the context of
CI/CD pipelines, focusing on metrics such number of bugs found,
code coverage, and overall performance compared to the original
AFLGo.

By addressing the scalability challenges inherent in directed
greybox fuzzing, PaZZER aims to make per-commit fuzzing cam-
paigns more practical and effective, ultimately contributing to more
reliable and secure software systems.

8 Data-Availability Statement

Our artifact is currently available at [22].
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