
Empir Software Eng
https://doi.org/10.1007/s10664-018-9600-2

On the correctness of electronic documents: studying,
finding, and localizing inconsistency bugs in PDF readers
and files

Tomasz Kuchta1 ·Thibaud Lutellier2 ·
Edmund Wong2 ·Lin Tan2 ·Cristian Cadar1

© The Author(s) 2018. This article is an open access publication

Abstract Electronic documents are widely used to store and share information such as bank
statements, contracts, articles, maps and tax information. Many different applications exist
for displaying a given electronic document, and users rightfully assume that documents will
be rendered similarly independently of the application used. However, this is not always the
case, and these inconsistencies, regardless of their causes—bugs in the application or the file
itself—can become critical sources of miscommunication. In this paper, we present a study
on the correctness of PDF documents and readers. We start by manually investigating a large
number of real-world PDF documents to understand the frequency and characteristics of
cross-reader inconsistencies, and find that such inconsistencies are common—13.5% PDF
files are inconsistently rendered by at least one popular reader. We then propose an approach
to detect and localize the source of such inconsistencies automatically. We evaluate our
automatic approach on a large corpus of over 230 K documents using 11 popular readers and

Communicated by: Paolo Tonella

Tomasz Kuchta and Thibaud Lutellier contributed equally to this paper.

� Cristian Cadar
c.cadar@imperial.ac.uk

Tomasz Kuchta
t.kuchta@imperial.ac.uk

Thibaud Lutellier
tlutelli@uwaterloo.ca

Edmund Wong
e32wong@uwaterloo.ca

Lin Tan
lintan@uwaterloo.ca

1 Imperial College London, London, UK

2 University of Waterloo, Waterloo, ON, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9600-2&domain=pdf
http://orcid.org/0000-0002-1823-0061
mailto:c.cadar@imperial.ac.uk
mailto:t.kuchta@imperial.ac.uk
mailto:tlutelli@uwaterloo.ca
mailto:e32wong@uwaterloo.ca
mailto:lintan@uwaterloo.ca

Empir Software Eng

our experiments have detected 30 unique bugs in these readers and files. We also reported
33 bugs, some of which have already been confirmed or fixed by developers.

Keywords Cross-software inconsistencies · Document correctness · Image comparison ·
Error-message clustering

1 Introduction

Many different applications exist for displaying a given type of electronic document, and
inconsistencies between these applications can be critical sources of miscommunication.
For example, there are many Portable Document Format (PDF) readers (such as Acro-
bat Reader, Evince, and Firefox), image file readers (such as ACDSee, Eye of GNOME,
and Geeqie), and word document readers (such as Microsoft Word, Abiword, and Libre-
office). Electronic documents are increasingly displacing paper documents for delivering
important information including medical advice, bills, maps, and tax information. To avoid
miscommunication, it is crucial to display an electronic file consistently across different file
readers.

The PDF format was created to alleviate the portability problems of electronic files.
Unfortunately, there are still many inconsistencies among PDF file readers. For example,
the Chrome and Mozilla support forums contain hundreds of complaints from users about
PDF files being displayed differently across readers. These issues include drug information
sent to doctors that cannot be properly displayed or opened (Google Chrome Help Forum
2015), customers unable to read their online bills (Mozilla Support Forum 2013), and web
designers worrying that customers cannot correctly display the PDF files on their web-
sites (Chromium Bug Tracker 2016). There are two main causes of inconsistencies between
PDF readers.1

(1) Bugs in readers: PDF readers, such as Acrobat Reader, Evince, and
Chromium, contain bugs. Figure 1 presents such a bug in Firefox’s embedded
PDF reader. The image on the left shows the rendering of a PDF by Chromium, while
the image on the right shows the same document rendered by Firefox. Firefox
fails to display the map properly and fills large areas with black colour. Firefox
developers confirmed our bug report (Bugzilla@Mozilla 2016).

(2) Bugs in files: PDF files contain bugs, causing readers to display them inconsistently,
or even fail to load them. For example, if a special font is not embedded in a PDF
file, some readers fail to display the contents of this file on a computer that does not
contain this font. If one can automatically detect those inconsistencies, the creators or
owners of PDF files could modify them to ensure the files they share will be displayed
as intended by all users.

There is a blurry line between bugs in readers and bugs in files, as some PDF readers are
more tolerant to errors than others. In addition, we learned that in many cases, developers
are willing to provide workaround patches to the readers to tolerate bugs in malformed

1In this paper, we use the term PDF reader, or just reader, to refer to any application that takes a PDF file as
input, such as PDF viewers, editors and processing utilities.

Empir Software Eng

Fig. 1 An example of a bug in Firefox. Chromium rendering on the left, Firefox rendering on the
right

files. For example, we reported a damaged file to the Poppler rendering library. In the
comments posted in the bug tracker (Bugzilla 2016) the developers confirmed that the file
was broken, but since key parts (e.g., the object catalogue) were undamaged, they decided
that Poppler should be able to render this file and proposed a fix.

Regardless of whether the bugs are in readers or files, they cause content to be displayed
inconsistently, affecting the correct communication of information. As a result, it is impor-
tant to design techniques to automatically detect cross-reader inconsistencies, which could
reveal such critical bugs affecting electronic documents and can also lead to better docu-
ment recovery techniques, recently tackled by the research community (Demsky and Rinard
2005; Long et al. 2012; Kuchta et al. 2014).

In this paper, we conduct a large-scale empirical study to understand the severity of
cross-reader inconsistencies, and propose new techniques to automatically detect them.
Specifically, we study the inconsistent display of popular PDF readers on more than 230,000
real-world PDF files previously mined from US government websites (Garfinkel et al.
2009). Since those files are offered by the government, it is essential that they are opened
and rendered consistently by a wide range of PDF readers.

By manually inspecting how different readers behave on a small fraction of these PDF
files, we identify several challenges of automatically detecting bugs in readers and files.
First, a pixel-by-pixel comparison of the rendered images is too strict, leading to many
spurious alarms, e.g., due to tiny differences related to how certain characters are displayed.
Second, capturing and comparing rendered images accurately is expensive and impractical
for such a large data set, even on a cluster of machines. Third, many inconsistencies are
caused by the same underlying error in a reader or PDF file, resulting in many redundant
inconsistencies to be detected.

To address these challenges, we have devised a multi-stage approach for automatically
detecting crashes and inconsistencies. First, we load every document in a portfolio of read-
ers, and (1) report any crashes, and (2) record all warnings and errors logged by the readers.
Second, for each reader, we cluster documents based on the warnings and errors issued in
the first phase. Third, we select a representative from each cluster, load it in several read-
ers, and then capture and compare the rendered images across readers. Then, we use a form
of delta debugging (Zeller and Hildebrandt 2002) to precisely localize the source of incon-
sistency and generate a reduced PDF file that only displays a small number of inconsistent
objects. Finally, we analyze any detected inconsistencies and report them to developers.

Empir Software Eng

We apply our approach to the 230 K files in the Govdocs1 database, which auto-
matically detected 30 unique bugs in popular PDF readers such as the ones embedded by
Chromium and Firefox. We also reported 33 bugs (including 11 manually detected on Win-
dows readers), some of which had already been confirmed or fixed by developers. These
bugs affect the correctness of the displayed PDF file, causing e.g., readers to crash or PDF
elements to be skipped.

In summary, we make the following contributions:

– We conduct the first (to the best of our knowledge) study of cross-reader inconsistencies
by manually examining and categorising a random sample of 2,313 PDF files from
the Govdocs1 database. We found that cross-reader inconsistencies are common—
314 out of 2,313 (13.5%) files are displayed inconsistently—the displayed image is
different in at least one reader. Common symptoms include missing images and font
inconsistencies.

– We design a technique to automatically detect crashes and inconsistencies across PDF
readers based on error filtering, clustering, and image processing techniques.

– We apply our techniques to the 230 K files in the Govdocs1 database to find cross-
reader inconsistencies, which detected 30 unique bugs in popular PDF readers.

– We develop a technique to precisely locate document elements causing an inconsis-
tency. This can help developers identify potential bugs in document readers faster.

– We assemble a database of documents that expose errors in these readers, annotated
with the types of errors exposed, error messages triggered and a link to the discus-
sion of each bug report. This database could help researchers and practitioners address
other software reliability challenges including testing other readers, and diagnosing and
fixing bugs in readers and PDF files.

Our database is made available at http://srg.doc.ic.ac.uk/projects/pdf-errors.

2 Technique

Our technique takes a set of PDF documents and a portfolio of PDF readers as input, cross-
checks whether these readers open the same PDF document consistently, and outputs a list
of documents that crash readers or display differently in the readers. Display inconsistencies
in turn indicate either bugs in the readers or in the PDF document. For each document that
is detected inconsistent, we use delta debugging to produce a reduced PDF file that only
displays inconsistent objects. Our technique also outputs clusters of PDF documents, each
of which contains PDF documents that are likely to expose the same bug.

Figure 2 presents a high-level overview of our approach, which consists of three main
phases: the filtering phase (Section 2.1), the inconsistency detection phase (Section 2.2) and
the inconsistency localization phase (Section 2.3). In the filtering phase, PDF documents are
opened in a portfolio of PDF readers. If a reader crashes on a PDF file, our technique reports
a crash bug. Otherwise, it collects error messages and warnings emitted by the readers to
standard error, and then clusters the documents that produce similar error messages. From
each cluster, our approach randomly selects a candidate and proceeds to the second phase.

In the inconsistencies detection phase, our technique opens the candidates in a set of PDF
readers and captures screenshots. It then cleans the screenshots by removing some captured
elements of the graphical user interface (e.g., different background colour) and applies an
image similarity technique on the cleaned screenshots to detect display inconsistencies. A

http://srg.doc.ic.ac.uk/projects/pdf-errors

Empir Software Eng

Fig. 2 Overview of our approach, which consists of three main phases: the filtering phase (Section 2.1), the
inconsistency detection phase (Section 2.2), and the inconsistency localization phase (Section 2.3)

display inconsistency between two readers happens when parts of the same document are
shown differently in the two readers.

We apply the inconsistency localization phase to each document that is displayed incon-
sistently. In particular, we apply delta debugging (Zeller and Hildebrandt 2002) to reduce
the number of visible objects in the file. At the end, we obtain a reduced PDF file that
only renders a small number of inconsistent objects (usually one visible object). This allows
developers to know which type of objects in the PDF file is causing the issue.

We employ this three-phase approach to address the challenges described in the intro-
duction. One challenge is that comparing rendered images is expensive, and unscalable for
a large data set of 230 K PDF files. For example, it takes 40 seconds to render and capture
a page with two readers and 5 seconds to compare them. Thus, the total amount of time for
rendering, capturing and comparing just the first pages of the 230 K documents for only
two readers is approximately 125 days. To address this issue, the filtering phase employs
a lightweight approach to quickly identify PDF files that are more likely to be malformed
or trigger bugs in the readers. It also aims to group PDF files that cause the same bug in a
reader to address the challenge of different documents exposing the same underlying bug.

Another challenge is that a pixel-by-pixel comparison between the rendered images is too
strict, reporting differences that are often unnoticeable or unimportant to human eyes. Thus,
in the second phase, we leverage an advanced image similarity algorithm (Sampat et al.
2009) that is based on the human visual system to accurately detect bugs while tolerating
unimportant differences. We also report how other image similarity algorithms compare on
this task.

2.1 Phase 1: document filtering

The first phase of the process serves two purposes: (1) selecting the documents that are
likely to be malformed or trigger presentation problems in the readers, (2) grouping the
documents that exhibit similar erroneous behaviour.

Empir Software Eng

Specifically, this phase opens each document in every PDF reader considered and cap-
tures the error messages printed on the terminal. Intuitively, these error messages are
observable signs of potential bugs with either the reader or the document. These observ-
able signs are features that can help us group similar bugs, as it is reasonable to assume that
similar error messages are likely to indicate similar root bugs. Our results from Section 5
show that our filtering approach selects files that find relatively more unique bugs than in a
random sample.

We analyzed the standard error messages produced by the readers (across our data set
and other studied PDF documents) and prepared a set of 501 regular expressions corre-
sponding to the observed classes of error messages. An example of a regular expression
is (Syntax Warning|Error): Could not parse ligature component
‘‘(char|old|chart)’’ of ‘‘(char [0-9] +|.+ old|bar chart)’’
in parseCharName. For each document that produces at least one error message, we
try to match each message against our set of regular expressions. The matching is per-
formed separately for each document and PDF reader. We ignore a message if it does not
match any of the regular expressions. Many times the same error message is emitted by
different documents. We leverage this fact to cluster documents based on the similarity of
these emitted error messages.

We create feature vectors with each element of the vector corresponding to a single class
of error messages (as encoded by the regular expressions). The elements in the vector have
a value of 1 if the corresponding error was matched and 0 otherwise. These feature vectors
are then used by a clustering algorithm to group files which trigger similar error messages.

We use the popular K-means clustering algorithm (MacQueen 1965; MacQueen et al.
1967). K-means iteratively groups a population of data points around K centroids represent-
ing the centres of the clusters. We use the K-means++ algorithm (Arthur and Vassilvitskii
2007) to choose the initial locations of the centroids and the sum of squares (inertia)
as a distance metric. We configure the algorithm to cluster ten times and return the best
assignment.

Establishing the right value of K—the number of clusters—is a known challenge in K-
means clustering. Having too few clusters results in data points with smaller degree of
similarity being grouped together, while having too many clusters poses a risk of putting
similar data points in separate clusters. To tackle this problem, we use a known selec-
tion algorithm for K: the Silhouette (Rousseeuw 1987) method. Silhouette is a coefficient
describing how well each of the data points in the set fits in its cluster. It is calculated
by measuring how far away a data point is from its cluster neighbours and also from the
other clusters. The values of the coefficient fall into the range of [−1, 1], where −1 means
a bad clustering (elements not in the right clusters), 0 means overlapping clusters and 1
means a good clustering. To select the right K, we start with value 2, perform the cluster-
ing and calculate the Silhouette coefficient. We then increase K by 1 and repeat the process.
We stop when the Silhouette coefficient is at least 0.9 and we use Euclidean distance as a
metric.

For each reader, we generate a different set of clusters of PDF files. The rationale is
that a given file may expose different errors in different readers. For example, for a file F:
reader R1 may generate no error messages, while reader R2 generates one error message,
and reader R3 generates a different error message. This likely indicates that F exposes no
bug in reader R1, but two different bugs in R2 and R3. By clustering PDF files for each
reader separately, our approach can capture such differences.

Empir Software Eng

2.2 Phase 2: inconsistency detection

Error messages from PDF readers alone are not enough to detect inconsistencies accu-
rately. For example, two readers may emit identical error messages for one file, but this file
may still be displayed differently by the two readers because they have different recovery
strategies to address the error. Therefore, a graphical detection technique, our inconsistency
detection phase, is necessary to detect inconsistent images.

This phase performs three steps: (1) capturing screenshots of the PDF files rendered by
different PDF readers, (2) cropping the screenshots to remove the background and GUI
elements and (3) running an image similarity algorithm to detect inconsistent displays of
the same file with different readers.

Due to the size of our data set, we only consider the first page of each document when
detecting inconsistencies. We explain the rationale behind that choice in more detail in
Section 4.1.

Capturing rendered images A straightforward approach to capturing the images ren-
dered by PDF viewers consists of running PDF readers in full-screen mode, displaying the
result on a real monitor, and taking a screenshot. However, this simple technique has several
flaws. First, the screenshot quality depends on the monitor’s display size. Second, taking
screenshots on a real monitor is slow, and does not scale to a large set of PDF files.

To improve the scalability of the screenshot capture process and the quality of the images,
we use Xvfb (2010), a tool that renders graphics in a buffer instead of a real monitor.
Using Xvfb, we can set up a high screen resolution and ensure that the captured screen-
shots are high-quality images. In addition, because the PDF files are rendered in memory, it
significantly increases the speed and scalability of the screen capture.

Cropping screenshots As we display PDF files in full-screen mode, most of the GUI
control elements (e.g., for opening a file) are hidden. However, the screenshots still contain
elements that differ across PDF readers that are not related to document inconsistencies.
For example, if the screen resolution is larger than the rendered page, the PDF reader will
display a uniform background colour that can differ across PDF readers. Therefore, we use
PDFBox to extract the page size, and crop the screenshots to keep only the part of the image
containing the actual document.

Detecting display inconsistencies Once we obtain cropped screenshots for each doc-
ument and PDF reader pair, we apply image processing techniques to detect display
inconsistencies.

We use a state-of-the-art algorithm for image similarity detection, called Complex
Wavelet Structural Similarity Index (CW-SSIM) (Sampat et al. 2009). This algorithm aims
to detect elements of an image that appear similar to the human eye by focusing on the
structure of the objects in the image. This is important because external sources can add
noise (e.g., interpolation or anti-aliasing of the software and libraries used for capturing and
cropping screenshots.) The CW-SSIM index is robust to such nonstructural transformations.

The goal of this similarity metric is to decompose images into families of wavelets, (i.e.,
visual channels) that are similar to the decomposition done by human eyes to recognize
patterns (Solomon et al. 1994). Then the CW-SSIM index between two images is measured
by comparing discrete values of the wavelets obtained for the two images.

Empir Software Eng

The CW-SSIM index ranges from 0 to 1. A value close to 1 indicates that the two
compared images are similar, hence no inconsistencies are detected. A low CW-SSIM
value indicates visual inconsistencies. For n readers, we select a base reader (Acrobat
Reader), and compare all remaining n − 1 readers with this base reader to obtain n − 1
CW-SSIM indexes per file. If one of these indexes is below a certain threshold, the file is
considered inconsistent, i.e., the file is displayed differently in at least one PDF reader. If
all the CW-SSIM indexes are above the threshold, the file is considered consistent across all
the tested readers. We empirically chose a threshold of 0.88 by running a preliminary study
on a small set of PDF files.

We also experimented with seven other similarity algorithms and justify our choice of
CW-SSIM in Section 5.1.

2.3 Phase 3: inconsistency localization

Once inconsistent files have been detected, we attempt to automatically find which elements
of the PDF file are causing the inconsistency. To locate the inconsistent elements, we lever-
age a debugging technique called delta debugging (Zeller and Hildebrandt 2002). The delta
debugging algorithm we used is described in Algorithm 1. T is the similarity threshold and
sim the similarity algorithm we used to compare screenshots (i.e., CW-SSIM).

The main idea is to iteratively remove visible objects of an inconsistent PDF file to gen-
erate a minimum valid PDF file only containing a small number of inconsistent objects. At
each stage, we generate two PDF files, one containing half of the visible objects, and the
other containing the other half. Then, we run the inconsistency detection phase on each PDF
file and keep the one that still reveals the inconsistency. If both new files reveal the incon-
sistency, we randomly select one. This process is then repeated until one of the following

Empir Software Eng

three conditions is reached: (1) we obtain a PDF file containing only one inconsistent object,
(2) the new PDF file is no longer inconsistent, (3) we reach the tenth iteration. Condition (2)
can be reached due to false negatives in the image similarity algorithm and cases where
there is no single object responsible (e.g., performance bugs). Condition (3) is to ensure that
our algorithm remains scalable for PDF files containing tens of thousands of visible objects
and only happened for five files.

We implement the inconsistency localization algorithm using the Apache PDFBox
library, a Java library that can be used to manipulate or generate PDF files.

3 Experimental setup

In this section we present the experimental setup used in our study. We describe our data set
in Section 3.1, our portfolio of readers in Section 3.2 and our infrastructure in Section 3.3.

3.1 Data set

Govdocs1 (Garfinkel et al. 2009) is a data set of about one million documents crawled
from US government web pages (the *.gov domain). The set contains documents and files
of various formats, including PDF documents.

For this study, we extracted all the files with *.pdf extension from the data set. The total
number of extracted files is 231,232. We found that amongst the extracted files there are
10 files which have the suffix .pdf but are not PDF files; that is 0.004% of all the files.
Furthermore, we have found that there are 1,309 duplicates within the extracted files; that
accounts for 0.57% of all the files. Neither the non-PDF files, nor the duplicates could have
negatively influenced the results as their percentage compared to the set size is negligible.

According to the metadata information attached to the Govdocs1 corpus, there are
another 3,688 files categorized as PDF. However, since these files do not have *.pdf
extension we do not consider them in our study.

In further sections of the paper, when we refer to data set we mean the PDF files that we
use, rather than the whole Govdocs1 set, which also includes other types of files (unless
we explicitly state otherwise).

The data set is appropriate for our experiments for the following reasons:

– Widely-used publicly-available data set. The Govdocs1 data set has been widely
used by the digital forensics community (Grajeda et al. 2017) and the original
paper (Garfinkel et al. 2009) discussing in detail the need for a curated corpus like
Govdocs1 has over 200 citations up to date. Also, the data set is freely available,
which makes results accessible and reproducible.

– File Content Diversity. While it is true that Govdocs1 files were collected from a
common source (governmental web pages), the searches were performed using words
randomly chosen from a dictionary, random numbers and a combination of the two. In
total 25,330 unique search terms were used while crawling for the files in our PDF set.
We believe that such a high number of the search terms used contributes to the data set
diversity. We encountered a broad range of types of PDF documents in the set, such as
forms, scanned paper documents, scientific articles, and maps.

– File Size Diversity. The files in the set are also diverse in terms of file size and the
number of pages, as presented in Table 1.

Empir Software Eng

Table 1 Basic statistics,
extracted using pdfinfo, for
the GovDoc1 data set;
pdfinfo failed for 15
documents

Min Max Median Average Total

File size 931 B 68.8 MB 155.1 KB 579.9 KB 127.8 GB

Pages 1 3,200 10 27 6,443,316

– Creating Software Diversity. We inspected the files for optional metadata fields, Cre-
ator and Producer.2 The Creator field is meant to store the name of the original
software that created the document for those documents which were initially created
in a different format and then converted to PDF. The Producer field is meant to store
the name of the software that converted the documents to the PDF format. While these
fields are optional, 90% of the files in our data set contain both of them.

Using the Creator and Producer fields, we extracted the information on the operating
system (OS) used to create a file. As expected, the majority of the files have been cre-
ated on Windows (68%). 14% of the files were created on Unix-based systems (mostly
Mac and Solaris). We could not extract OS information for the remaining files.

We also looked at the software used to create the files. There are ∼18,000 unique
creators and ∼1,400 unique producers in our PDF set. These numbers are high because
they consider different versions of a product as different software. In order to perform
further analysis, we grouped different versions of similar software.

We found 54 applications that were used in the creation of at least 100 documents
(either as a producer or a creator). Adobe Acrobat Distiller is the most popular software
used by far (34% of the files were created by Distiller). This is not surprising as Distiller
is the most popular way to create PDF files on Windows. The second most common
tool to create PDF files in this data set is PScript (12%). PScript is a document con-
verter used by many different programs (e.g., Microsoft Office, Ghostscript). Acrobat
PDFMaker and the MacOS printer driver PDFWriter are also quite common (respec-
tively 8% and 7%). Other commonly used software includes Microsoft Office suite
(Word, PowerPoint, Excel), Adobe suite (Capture, Photoshop, InDesign, etc.), LaTeX
converters, printer drivers (Hewlett-Packard, Canon, Lexmark, etc.), browsers (Inter-
net Explorer and Mozilla), commercial document creator tools (QuarkXPress, Corel
WordPerfect, Amyuni), open source document converters (PrimoPDF, Ghostscript,
OpenOffice, iText), and Apple software (Quartz, Keynote).

We also found a small number of files (673) for which the Creator or Producer
fields have been changed to “U.S. Gov. Printing Office” or “Government Accountabil-
ity Office.” It is possible that these files have been generated using software specific to
the US government and therefore are not representative of PDF documents which can
be found elsewhere. However, they only represent 0.1% of all the Creator and Producer
fields.

Overall, our analysis of Creator and Producer metadata demonstrates the diversity
of the tools used to generate the PDF files, despite the fact that all of the files have been
crawled from a single source of US government domains.

– PDF Standard Revision and Creation Date Diversity. Table 2 presents a detailed
breakdown of the number of files in our data set for each of the PDF standard version.
There are representatives for every PDF standard revisions from 1.0 up to 1.7. The files

2http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf reference 1-7.pdf, pg. 844

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Empir Software Eng

Table 2 Numbers of documents in our data set for various versions of the PDF standard

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Files # 954 6,665 41,082 52,804 87,008 22,123 19,304 1,276

Percentage 0.4% 2.9% 17.8% 22.8% 37.6% 9.6% 8.3% 0.6%

creation date ranges from early nineties to 2009.3 Since version 1.7, the PDF format
has not changed much, with extensions regarding forms in 2008 and 2009, security in
2011 (change in the password checking algorithm), and a new format 2.0 in July 2017.
Since we do not deal with password-protected files, we believe that the 2011 update
has little impact on our study. While the files created with the 2017 standard could
create different types of inconsistencies, this update is too recent and possibly fewer
documents in this format have been created so far. The diversity of PDF versions and
document creation times is a desirable feature of the data set for our study.

– Real-world documents. The documents from the Govdocs1 corpus are real-world
documents that have not been crafted, fuzzed or cherry-picked to highlight incorrect
behaviors or security issues of a specific PDF reader. This is important because in our
study we want to find out about inconsistencies in “common” PDF files, in order to
better understand how often the problem occurs in the real-world scenarios.

– Privacy and contents issues. Creating a new documents corpus, e.g., by crawling the
web, is challenging from the legal and privacy point of view. Collected data might
contain personal information that should not be redistributed, copyrighted material or
illegal content, e.g., pornography. Govdocs1 corpus was designed in a way that it can
be used freely without violating the law.

3.2 Portfolio of readers

Many PDF readers are available for different operating systems. For this study, we focus on
readers running on the Linux operating system, and evaluate 11 popular PDF readers. Three
of the readers are command line utilities, but as mentioned in the introduction we use the
term reader to denote any application that processes PDF files.

In our portfolio we have three command line tools: pdfinfo, pdftk and ps2pdf,
six popular PDF readers: Acrobat Reader,4 Xpdf, Evince, Okular, qpdfview,
MuPDF, and two web browsers: Firefox and Chromium.

Evince, Okular, qpdfview and pdfinfo use the same PDF library, Poppler.
However, the codebases are quite different and these readers behave differently. A good
example is one of the bugs we reported5 in which an inconsistency is visible for Evince
but not for Okular. The PDF backend is only a part of the final result, as every PDF reader
also needs the rendering component that shows results on the screen. Because of that, we
believe it makes sense to test readers based on the same backend, even though some of the
bugs are common for all of them.

3We filtered out all dates reported prior to the introduction of PDF 1.0 in 1992 and after the Govdocs1
paper publication year, i.e., 2009.
4Acrobat Reader is not supported on Linux. We used the last available version from 2013, which is
newer than files in the data set.
5https://bugs.freedesktop.org/show bug.cgi?id=97485

https://bugs.freedesktop.org/show_bug.cgi?id=97485

Empir Software Eng

Table 3 presents the readers that we use in each phase. In the filtering phase we do
not consider the output from Firefox, Chromium and Acrobat Reader, because we
found that these readers do not produce any useful PDF parsing messages on the terminal
(of these three, only Firefox emitted parsing-related messages, but only for five of all
the tested documents). In the inconsistency detection and localization phases we do not use
pdfinfo, pdftk and ps2pdf, as they are command-line tools and do not display visual
representation of a PDF document.

3.3 Infrastructure

Phase 1: Filtering We load all documents by using readers from our portfolio. To speed
up this time-consuming process, we leverage a cloud infrastructure. The infrastructure is
a set of virtual machines running in an Apache CloudStack-based cloud. We used
Vagrant with VirtualBox to create the machines. Each virtual machine is configured
to have 16 CPUs running at 1GHz, with 16GB of RAM and a 80GB hard drive. We allo-
cated around 30 such virtual machines in our cloud. Inside each machine there are 14 LXC
containers, each of them representing a separate execution environment. Both the VMs and
the containers are running Ubuntu 14.04. Each container is constrained to use only one
core, leaving 2 free cores per each VM for the host OS. The containers are configured to
run the graphical interface LXDE in headless mode using Xdummy or Xvfb.

We split the document set into a number of partitions. Each container is assigned one
partition at a time. In our experiments we used a centralized storage mounted by all the VMs
in the cloud via the NFS protocol.

We control the containers using Ansible, which is a cloud automation tool. Each con-
tainer is loaded with an Ansible playbook (a sequence of commands) which performs the
necessary setup and invokes a Bash script which executes the experiment.

To cluster error messages, we implemented a Python v3 script which extracts fea-
ture vectors from the captured standard error messages. The script makes use of the
scikit-learn package (Scikit learn 2017) for K-means clustering and the calculation
of Silhouette coefficient.

We use xdotool to automatically perform the necessary graphical user interface
interactions such as mouse clicks or getting the name of the window.

Table 3 Portfolio of PDF
readers used in each phase Reader Version Phase 1 Phases 2 Phase3

pdfinfo 0.24.5 �
pdftk 2.01 �
ps2pdf 9.1 �
Xpdf 3.03-16 � � �
Evince 3.10.3 � � �
Okular 0.19.3 � � �
qpdfview 0.4.7 � � �
MuPDF 1.3-2 � � �
Firefox 44.0.2 �
Chromium 48 � �
Acrobat Reader 9.5.5 � �

Empir Software Eng

Phase 2 and 3: Inconsistency Detection and Localization These two phases were per-
formed on a different machine, equipped with an Intel i5-2400 3.10GHz CPU and 6GB of
RAM, running Ubuntu 14.04. Due to technical problems, the screenshots for Firefox
were captured in the cloud VMs. For related technical reasons, the Firefox screenshots
were not used in inconsistency localization.6 We use the Xvfb virtual screen buffer to open
the files in high resolution.

To compare screenshots, we use MATLAB version R2015 and two libraries:
Steerable Pyramids (Matlabpyrtools 2016) and CW-SSIM (Complex-wavelet struc-
tural similarity index (cw-ssim) 2013).

Performance It takes around a week to load all the documents in the cloud. Once standard
errors are captured, it takes several hours to cluster the files. Comparing two images with
CW-SSIM in our setting takes 5s; we need seven comparisons (Acrobat Reader vs the
rest) per file, which requires 35–40s per file. Inconsistency localization takes roughly 8-11
minutes per file. We believe these numbers are reasonable, give the data set size and that we
operate on relatively large images (3000×3000 pixels before cropping).

3.4 Research questions

In Sections 4, 5 and 6 we present a series of experiments. The experiments were conducted
to answer the following research questions:

1. Section 4: How frequent are cross-reader inconsistencies and what are the main types
of inconsistencies?

2. Section 5: How well does our automated technique perform in terms of finding cross-
reader inconsistencies?

3. Section 6: How well does our inconsistency localization based on delta debugging
perform?

4 A study of cross-reader inconsistencies

We first manually study a reasonably large random sample of 2,313 PDF files from the
Govdocs1 database. This empirical study has two main goals. The first is to under-
stand how severe cross-reader inconsistencies are, i.e., how often PDF files are displayed
inconsistently and what the common symptoms are.

The second goal is to produce a random set of PDF files with ground-truth knowledge
about cross-reader inconsistencies. Such information allows us to measure the standard met-
rics of precision and recall of the automated detection techniques: precision is the fraction of
reported inconsistencies that are true inconsistencies, and recall or true positive rate is the
fraction of all true inconsistencies that are detected. F1 is the harmonic mean of precision
and recall.

6A bug in Xvfb prevented us to display the PDF files with Firefox in Fullscreen mode, making the
screenshots incorrect.

Empir Software Eng

4.1 Methods

It is impractical to manually examine the 230K files of the Govdocs1 database. Thus,
we study a one percent random sample of 2,313 documents. We open each document with
the eight graphical PDF readers (described in Section 3.2) and identify any rendering dif-
ferences. To reduce manual effort, we first automatically took screenshots of the displayed
images in each reader. Then one of the authors manually compared the screenshots to deter-
mine if two screenshots generated from the same PDF file reveal any inconsistencies. If
they do, we then manually open the file in the two readers and compare the displayed PDF
images to confirm the inconsistency; it is to ensure that bugs in the screen capture tool do
not affect our results.

On average, a PDF file in our sample has 28 pages, and more than 64,000 pages for
all 2,313 files. For eight readers, there would be more than 500,000 images to check—
prohibitively expensive for a manual analysis. Therefore, we focus on inconsistencies found
on the first page of each document only.

Because we are not the authors of the PDF files, we do not know what is the correct ren-
dering for each file. Therefore, we use the “majority” rule to classify inconsistent displays.
If five readers or more have identical renderings and the others display the page differently,
we consider the five readers to be correct and the others incorrect.

When a reader cannot render a non-embedded font, it will replace it with a default font.
Most readers use different default fonts, and because there is no standardized behaviour on
the correct rendering of a missing font, we cannot determine which reader behaves correctly.
As a result, we only report the total number of such files.

One may consider using Acrobat Reader as the ground-truth, as it is developed by
the same company that created the PDF format. However, Acrobat Reader also has
bugs, and furthermore the Linux version is no longer supported, with several known bugs
present (Archlinux 2015).

4.2 Inconsistencies are common

Table 4 shows that cross-reader inconsistencies are quite common—out of the 2,313 pages
manually verified, 13.5% are rendered differently by at least one reader. Since these PDF
files originate from US government websites, they are meant to be correctly read by users
and were not generated to be displayed inconsistently in different readers on purpose. Yet, a
significant portion is not. The bottom part of Table 4 shows the agreement between readers,
e.g., in 41% of the cases 7 out of the 8 readers behave similarly.

To understand if our random sample size is big enough, we calculate the margin of
error for this sample, which is 1% with 95% confidence. This means that with 95%

Table 4 Number of consistent
and inconsistent files # of files %

Consistent with all readers 1999 86.5%

Inconsistent 314 13.5%

7/8 readers agree 128 41%

6/8 readers agree 92 29%

5/8 readers agree 38 12%

≤4/8 readers agree 56 18%
For the latter, we report how
many readers behave similarly
(“agree”)

Empir Software Eng

confidence, the percentage of inconsistent files in the entire Govdocs1 database would be
13.5%±1%.

When projected on the entire 230K database, this percentage represents 28K to 33K
inconsistent files, which can cause many of the miscommunication issues described in the
introduction. Since only the first pages of those documents have been studied, and an incon-
sistency can happen anywhere in the document, the number of inconsistencies would likely
be bigger than 13.5% when all pages of the documents are considered.

4.3 Types of inconsistencies

Table 5 shows the different types of inconsistencies that we encountered. The numbers from
this table do not map directly to the number of files triggering inconsistencies presented
in Table 4, because one file can expose several issues in the same reader (e.g., missing an
image and displaying an incorrect colour) or the same issue in multiple readers (considered
as multiple bugs since they are present in multiple readers), and multiple files may expose
the same issue in one reader (e.g., the 26 missing-image inconsistencies of MuPDF shown
in Table 5 are all caused by a single MuPDF bug).

We describe each type of inconsistency below:

Performance issues The first type of inconsistencies one notices when opening a PDF file
concerns performance. This is not a graphical bug by itself, but our tool was able to detect it
nonetheless. While we can ensure that the reader is fully loaded before taking the screenshot,
it is not trivial to ensure the PDF page is fully rendered before taking a screenshot. If the
reader takes too long to render the file, the screen capture might occur before the file is fully dis-
played. We decided to allow a reasonable time of 30s for the reader to display the file. If
after this time the file is still not rendered correctly, we report a performance bug. Our results
indicate that MuPDF, Acrobat Reader, Evince and Xpdf always render the PDF files
within 30s, while the other PDF readers experience performance problems for some files.

Missing images We observed several cases of missing images during our study. While
in principle those issues could also be created by bugs in the PDF files (e.g., incorrectly
compressed images), the 28 issues we encountered were caused by bugs in Chromium,
Firefox and MuPDF. The bug in MuPDF was already known, while the other bugs were
new and confirmed by the developers. Figure 3 shows the missing image bug in MuPDF.
This bug happened because of specific image encodings that were not well supported by
the readers. This issue is critical when it occurs in scanned documents for which each page
consists in one large image. In such cases, the buggy reader only displays blank pages.

Map bugs Maps are challenging to render because they are generally made of several
superposed layers of graphic vectors and often contain advanced features such as transparent
objects. In the data set, we found several maps that were incorrectly rendered, similar to the
example in Fig. 1. These are bugs in the PDF readers.

Colour inconsistencies can either be bugs in the reader or in the PDF file. Figure 4 shows
a colour bug in the Ubuntu version of Acrobat Reader 9.5.5. In this example, the back-
ground colour rendered by Acrobat Reader is different from the background colour
rendered by other readers. Colour bugs can also be caused by buggy files, if the colour space
of the file is incorrectly encoded. While no information is usually lost, this significantly
affects the design of the document and can be a major issue for graphic designers.

Empir Software Eng

Ta
bl
e
5

Is
su

es
de

te
ct

ed
in

th
e

ra
nd

om
sa

m
pl

e,
so

rt
ed

by
ty

pe
an

d
re

ad
er

Is
su

e
ty

pe
A
c
r
o
b
a
t

R
e
a
d
e
r

C
h
r
o
m
i
u
m

E
v
i
n
c
e

F
i
r
e
f
o
x

M
u
P
D
F

O
k
u
l
a
r

q
p
d
f
v
i
e
w

X
p
d
f

To
ta

l

Pe
rf

or
m

an
ce

is
su

es
0

1
0

1
0

15
8

0
25

M
is

si
ng

im
ag

es
0

1
0

1
26

0
0

0
28

M
ap

bu
gs

0
0

2
4

0
0

0
0

6

C
ol

ou
r

in
co

ns
is

te
nc

ie
s

44
19

5
28

7
3

0
0

10
6

G
ra

di
en

ti
nc

on
si

st
en

ci
es

0
0

5
6

3
1

0
0

15

Fo
rm

in
co

ns
is

te
nc

ie
s

12
12

0
0

0
0

0
0

24

O
th

er
s

2
4

4
16

25
6

0
0

57

Fo
nt

is
su

es
17

8

To
ta

l
58

37
16

56
61

25
8

0
26

1

To
ta

lU
ni

qu
e

B
ug

s
3

5
4

9
8

2
0

0
31

A
cr

ob
at

de
no

te
s
A
c
r
o
b
a
t

R
e
a
d
e
r

Empir Software Eng

Fig. 3 An example of a missing image bug in MuPDF. MuPDF on the right, other readers on the left

Form inconsistencies These inconsistencies occur when forms are included in the PDF
file. Chromium and Acrobat Reader highlight editable fields while other readers do
not. We believe such discrepancies are neither bugs in the PDF files, nor in the readers.

Others This category contains a wide range of inconsistencies that appear rarely and are
generally caused by bugs in a specific reader or rendering library. For example, we found a
bug in Evince that occurs only in rare cases when a PDF file contains images that have a

Fig. 4 Example of colour discrepancy between Acrobat Reader (left) and other readers (right)

Empir Software Eng

Fig. 5 An example of “other” types of inconsistencies. Chromium rendering on the left, distorted Evince
rendering on the right

colour depth inferior to 8 bits. Figure 5 displays an example of this bug. We filed this bug
against the Poppler rendering library and the developers fixed it. 7

Font inconsistencies As we cannot know which readers display the correct font, we only
report the total number of files that had at least one font inconsistency (178 in Table 5).
Indeed, 178 out of 314 files that reveal inconsistencies contain a font inconsistency. This
inconsistency occurs when an uncommon font is not embedded in the PDF file. In this case,
the reader will either use a default font to replace the non-embedded font or simply not
display the text. Figure 6 shows and example of this issue.

Reader reliability Our experiments enable us to assess the relative reliability of the eight
readers. The row Total of Table 5 shows the total number of bugs exposed in each reader,
while the row Total Unique Bugs presents the number of unique bugs. We assessed unique-
ness manually based on the type of inconsistency, potential identical warnings and error
messages, the similarity of the documents, and whether the exact same set of readers behave
similarly. For example, if two PDF files have the same inconsistency (e.g., a jpeg image
is not displayed) with the same readers, then we consider that these two files reveal only
one unique bug. On the other hand, if the image in the first file is incorrectly displayed
with one specific reader (e.g., Evince) and the image in the second file is incorrectly dis-
played with a different reader (e.g., Chromium), then these two PDF files reveal two unique
bugs. Visual inconsistencies are often subjective, so best effort judgement seems to be a
reasonable approach.

We can use both measures as an approximation of reader’s reliability. With all other fac-
tors being equal, the higher the number of unique bugs, the lower the quality of a reader’s
codebase. On the other hand, under the assumption that the Govdocs1 data set is repre-
sentative of real-world documents (which we discuss in Section 3.1), the total number of
bugs in each reader correlates with its frequency of failure in the field. Looking at these two
metrics, MuPDF is the least reliable reader with 8 unique bugs and 61 bugs, while the most
reliable reader is Xpdf with no bugs.

Summary The experiments presented in this section try to answer the research question
How frequent are cross-reader inconsistencies and what are the main types of inconsistencies?

7https://bugs.freedesktop.org/show bug.cgi?id=94371

https://bugs.freedesktop.org/show_bug.cgi?id=94371

Empir Software Eng

Fig. 6 Chromium (left) can render the incorrectly embedded characters, while other readers (right) cannot

As we found out, cross-reader PDF inconsistencies are surprisingly common and we can
categorize the inconsistencies into several common types. Finally, some PDF readers exhibit
more visual inconsistencies than others.

5 Automatic results

In this section, we evaluate our automatic inconsistency detection technique described in
Section 2. We devised two experiments, one using the random sample of documents that we
manually inspected in Section 4, and the other using the entire 230 K database.

5.1 Results for the random sample

We perform the first experiment on the sample of documents studied in Section 48. This
experiment evaluates the inconsistency detection phase of our approach: we perform image
comparison on all files in the evaluation set without filtering to potentially identify all
inconsistent PDF files. The aim of this experiment is to use the manually-determined
ground truth to establish the precision and recall of our automated image comparison
technique.

Our automatic tool detected 189 true inconsistent files, which revealed 21 unique bugs
in the readers and 124 incorrect files. We consider a file as incorrect if it does not follow
the PDF format specification or does not embed or subset non-standard fonts. While font
embedding is not included in the PDF specifications, it is included in many publisher stan-
dards. For example, the minimum requirements for PDF published on IEEE Xplore platform
include “embed or subset all fonts” (ENGINEERING 2008).

The detection precision, recall and F1 for our approach are 33%, 60%, and 43% respec-
tively. While 43% is the highest F1 value, we can tune the threshold of our technique to

8For technical reasons we needed to exclude one file from the sample, because PDFBox was unable to parse
it.

Empir Software Eng

obtain different precision and recall values. In other words, because our inconsistency detec-
tion tool is based on a similarity score, we can modify the threshold to either reduce the
number of false positives or false negatives. Figure 7 shows the ROC curve associated with
the CW-SSIM similarity algorithm we used. This curve shows that we can get a reason-
ably good true positive rate (60%) while keeping a low false positive rate (20%). Increasing
the true positive rate to 80% can be done if we accept to increase the false positive rate to
50%.

We also experimented with other image similarity algorithms: Absolute Error (AE),
Mean Absolute Error (MAE), Mean Squared Error (MSE), square Root Mean Squared
Error (RMSE), Normalized Cross Correlation (NCC), Peak Signal to Noise Ratio
(PSNR) (Huynh-Thu and Ghanbari 2008) and Perceptual Hash (PHASH) (Zauner 2010).
Figure 7 shows the ROC curves for each of them. CW-SSIM and PHASH are the best per-
forming image comparison metrics. We select CW-SSIM as it was our first choice; it is
also a bit faster (we did not perform a thorough time measurement but we believe that one
second is a good estimate).

False positives 73% of the false positive results are due to limitations of CW-SSIM.
Some documents contain few or no structured elements (e.g., almost blank pages), mak-
ing it difficult for CW-SSIM to identify structural similarities. These are edge cases where
simpler techniques such as a histogram comparison might provide more accurate results.
Future work could be done to use different image comparison algorithms depending on
the visual features of the PDF file being evaluated. 11% of the false positives are due to
GUI problems that are not correctly removed from the screenshots. In 10% of the cases,
the files were correctly detected as inconsistent by our algorithm, but the manually gener-
ated ground truth was incorrect. The remaining false positive results were mostly due to
spurious graphical bugs. We do not consider these spurious graphical bugs as true positives
because their root cause is external to the PDF reader (e.g., bugs in the Unity graphical
shell).

Fig. 7 ROC curves for different image similarity algorithms

Empir Software Eng

False negatives Local inconsistencies such as font inconsistencies can be challenging to
detect. For example, consider a document in which only a few words are rendered with an
incorrect font; automatically detecting those few incorrectly rendered words is hard. This
concerns the vast majority of the inconsistent files classified as correct by our tool. Those
“local” discrepancies are very hard to spot when looking at the entire pages because most of
the page is actually rendered correctly. Possible improvements could be done by extracting
the locations of the different text boxes from the PDF’s metadata and running the image
comparison on specific parts of the screenshot.

5.2 Results for the entire set

In the second experiment we evaluate our end-to-end approach, as described in Section 2.
We analyze the whole data set of over 230,000 files: in the first stage, we load each doc-
ument in every PDF reader used for this phase, detect crashes and capture emitted error
messages. We then create clusters of documents for each reader based on the emitted error
messages, randomly select one document from each cluster and run our inconsistency detec-
tion tool on the first page of the document. The reason for random selection of a single
document from each cluster is the assumption that clustering should group documents with
similar issues together. This allows to minimize the number of tested files to just one file
per cluster; in our experiments, this reduces the test set size from 230K to 103. Although it
is a heuristic, our experiments show that it yields good results.

Error messages The number of documents in the Govdocs1 data set that cause the read-
ers to emit an error message of interest varies between 3,771 and 28,438, with an average of
15,293 and a median of 14,085 across the PDF readers. In total 65,406 files generated warn-
ings or error messages in at least one of the readers, which accounts for 28% of documents
in the set.

Crashes In the first phase of our approach, we detect PDF reader crashes, such as seg-
mentation faults and aborts. Table 6 presents the number of non-spurious crashes observed
in ps2pdf, pdftk, Evince and qpdfview (the other readers had no crashes or only
spurious ones).

Inconsistency bugs Table 7 shows the number of clusters created for each PDF reader
after running the filtering phase. This varies between only 2 clusters for pdftk and
Okular and 41 for Evince, for a total of 103 clusters.

The column Clusters for indicates the PDF reader that generated the error messages that
were used for clustering. The column Number of clusters presents the number of cluster
obtained.

We randomly sampled one file (or candidate) from each cluster and compared the ren-
dered images both manually and using our automated technique. We assume that the file
selected from the cluster is representative of the other files in the cluster. In the table we

Table 6 Number of crashes detected

Reader ps2pdf pdftk Evince qpdfview Others Total

Crashes 2 (2) 5,281 (3) 112 (2) 8 (2) 0 5,403 (9)

The number of unique errors is shown in parentheses

Empir Software Eng

Table 7 Inconsistencies for
cluster candidates Clusters Number of Inconsistent Bugs triggered

for clusters candidates by candidates

pdfinfo 5 2 2

pdftk 2 1 1

ps2pdf 19 7 7

Xpdf 9 2 2

Evince 41 16 23

Okular 2 2 3

qpdfview 13 4 5

MuPDF 12 6 6

Total 103 40 49 (10)

The third column shows the
number of inconsistent cluster
candidates. The number of
unique bugs is shown in
parentheses

only display the results of manual inspection in order to illustrate the usefulness of cluster-
ing independently of the accuracy of image comparison, but we also present the results of
our automatic tool below.

The column Inconsistent candidates reports the number of candidates that are inconsis-
tent across the readers and the column Bugs triggered by candidates displays the number
of bugs triggered by the inconsistent candidates. An inconsistent file can trigger different
bugs in different readers, so this number might be higher than the number of inconsistent
candidates.

For example, the first row shows that documents which generate error messages in
pdfinfo were split into five clusters. From each of the clusters we randomly sample one
candidate, resulting in a total of five candidates. Two out of these five candidates are incon-
sistent across PDF readers. Further manual examination of these two candidates indicates
that they reveal two bugs.

In total, 40 out of 103 candidates have inconsistencies. Therefore 38% files selected via
clustering are inconsistent compared to only 13.5% inconsistent files in our random sample
discussed in Section 4. Across the inconsistent cluster candidates we found a total of 49
bugs, out of which 10 were unique. The rate of unique bugs to the number of files for cluster
candidates is 10 / 103 = 9.7%, which is higher that the rate of 31 / 2,313 = 1.3% for the
random sample. The higher percentages of inconsistent files and unique bugs suggest that
the clustering approach is indeffective.

Results of image comparison on the candidates Finally, if we use the automatic image
comparison-based inconsistency detection, we get 24 cluster representatives detected as
inconsistent, which contain a total of 31 bugs, 6 unique bugs and 14 incorrect files.

Correlation with file producer With pdfinfo, we retrieved the authorship data of the
files producing standard errors or having non-zero return status. We extracted creator, pro-
ducer and author of the file to see whether there is a correlation between inconsistent files
and the software that produced them. The results are non-conclusive although there are
many files that share common origins: there are ∼18,000 distinct creators, ∼1,400 distinct
producers and ∼48,000 distinct authors.

We further analyzed the metadata of the files in the random sample, as presented in
Table 4. First, we analyzed the correlation with the version of PDF document.

Table 8 presents the percentage of files for each PDF version in our sample, as well as
the percentage of inconsistent files for each version. First, we can see the distribution of

Empir Software Eng

Table 8 Comparison between the distribution of files across PDF versions in the entire random sample and
in the inconsistent files from the random sample

Percentage 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Whole random sample 0.6% 3.0% 16.8% 23.2% 37.8% 9.2% 8.8% 0.7%

Inconsistent files 2.5% 3.5% 20.4% 21.3% 25.8% 12.1% 13.7% 0.6%

files across PDF versions in our random sample closely follows the distribution of our entire
data set showed in Table 2.

Second, the distribution of inconsistent files across PDF versions roughly follows the
distribution of the PDF versions in the sample, with a few exceptions. The largest difference
occurs for PDF 1.4. Indeed, this version represents 37.8% of the random sample, but only
25.8% of the inconsistent files. Additionally, we measured the Pearson correlation between
inconsistent files and PDF versions and did not find any correlation. For all PDF versions,
the Pearson coefficient is between -0.1 and 0.1.

We also analyzed the correlation between creators and producers that were used to
produce more than 20 documents in our random sample.

We found 12 creators used to generate more than 20 documents: InDesign, Pscript,
Capture, PDFMaker, Print Server, PageMaker, POP90, Office, FrameMaker, WordPerfect,
Microsoft Word, and QuarkXPress.

Only three creators have a small correlation with inconsistent PDF files. InDesign and
QuarkXPress have a small positive correlation (Pearson coefficient between 0.1 and 0.3)
with files rendered inconsistently. PScript presents a small negative correlation (Pearson
coefficient between -0.1 and -0.3). For all the other creators, we found no correlation with
incorrectly rendered documents.

There are seven producer fields used in more than 20 documents: Acrobat Distiller,
Acrobat PDF Writer, Acrobat PDF Library, Ghostscript, Corel PDF Engine, Etymon, and
PDFContext. None of them shows any significant correlation with inconsistently rendered
PDF documents.

Summary of inconsistencies and bugs detected in both experiments Our technique
automatically detected inconsistencies and bugs in both the experiments in Sections 5.1
and 5.2. In total, our approach detected 229 inconsistent files and 5,403 crashes/exceptions
automatically, including 30 unique bugs in the readers and 138 incorrect files. The number
of unique bugs (30) is not the sum of the number of bugs detected in each experiment, as
some bugs overlap.

Bug reports One of the outcomes of the project was filing 33 bug reports of which 17
were confirmed or fixed. We filed the bugs throughout the project, with some of them being
spotted during the development of the tool. We did not report all bugs, as some of them had
already been reported or fixed.

The list of bug reports is presented on our project website at https://srg.doc.ic.ac.uk/
projects/pdf-errors/results.html. Currently out of 33 reported bugs, 8 have already been
fixed, 9 have been confirmed as true bugs, 5 have been triaged as “won’t fix”, and 11 await
confirmation. Note that one of the fixed bugs (#17 on the list) was marked as a duplicate as
there was a parallel report of a problem. We still count the bug towards the 33 unique bugs
as that was our judgement at the time of reporting.

https://srg.doc.ic.ac.uk/projects/pdf-errors/results.html
https://srg.doc.ic.ac.uk/projects/pdf-errors/results.html

Empir Software Eng

Summary The experiments presented in this section try to answer the research question
How well does our automated technique perform in terms of finding cross-reader incon-
sistencies? We show that the technique is able to find more inconsistencies in cluster
candidates compared to a random selection of documents. We also show that our algorithm
of choice for visual inconsistency detection is one of the two algorithms with the best ROC
curve.

6 Inconsistency localization evaluation

To evaluate the accuracy of our inconsistency localization technique, we run it on the 189
true inconsistent files detected by our approach on the random sample (see Section 5.1).
The inconsistency localization algorithm was able to generate a reduced PDF file in 86% of
cases. Most files (139) were reduced to only two visible objects, 13 to only one, and 21 to
more than two.

We evaluated the correctness of the reduced PDF files by manually examining them to
verify whether they actually reveal an inconsistency. 84% of the reduced PDF files display
an element that is inconsistent. Figure 8a shows an example of inconsistent file incorrectly
displayed by Okular and Fig. 8b shows the same issue on the reduced file obtained after

a

b

Fig. 8 Inconsistency between Adobe Reader (left) and Okular (right) before (a) and after reduction (b)

Empir Software Eng

inconsistency localization. As we can see, the file has been reduced to only contain the
inconsistent element.

43% of the incorrectly reduced PDF files are due to the inconsistency not being caused
by a specific element. For example, MuPDF has a bug in its fullscreen functionality that
does not work correctly when the size of the page is too large or too small compared to the
screen’s resolution, regardless of the elements in the file. The other 57% of the cases seem
to be caused by false positives in CW-SSIM.

In number of bytes, reduced files are 31% smaller than the original file. This is a rela-
tively small reduction compared to the one in number of displayed objects, as a PDF file
must contain many base structures to remain valid. We refer to the size of these base struc-
tures as the base file size. Using the base file size, we can also compute the relative size
reduction, i.e., reduced f ile size − base f ile size

original f ile size − base f ile size
. Our approach has a substantial relative size

reduction of 86%.

Summary The experiments presented in this section try to answer the research question
How well does our inconsistency localization based on delta debugging perform? We show
that in most cases the localization algorithm was able to reduce the “buggy” document to
just a couple of visible objects.

7 Cross-OS inconsistencies

Since there are more Windows users than Linux users, there is a possibility that developers
of PDF readers spend more time improving the reliability of their PDF readers on Windows
than on Linux, and it is possible that the inconsistencies we found are only a problem on
Linux.

In this section, we aim at determining whether the files we detected as inconsistent
on Linux readers also reveal bugs in Windows PDF readers. More specifically, we aim at
answering the following two research questions:

Question 1: Are the inconsistencies we detected OS specific?
Question 2: Can we use the files we detected as inconsistent on Linux to detect bugs in

another OS and other PDF readers?

7.1 PDF readers on windows

To understand whether the inconsistencies we found are OS specific, we chose, when pos-
sible, equivalent Windows versions of the software we tested on Linux. More precisely,
Firefox, Chromium and MuPDF have an equivalent version for Windows. For Xpdf we
only found a more recent version (4.00.1) while for Evince, only an older version was
found (2.32.0.145). For Acrobat Reader, we chose to use the most recent version on
Windows (Acrobat Reader DC) as it is likely to be the most used PDF reader on this OS.
Okular and qpdfview do not have a Windows version available.

We completed this set of Windows PDF readers with two popular readers that are specific
to Windows. The first one is Edge, Microsoft default browser on Windows 10, and the
second one is Sumatra PDF, a popular lightweight PDF reader. In total we evaluated 8
PDF readers on Windows 10.

Empir Software Eng

Table 9 Comparison between bugs on Linux and Windows version of PDF readers

PDF reader # Linux # Windows

Firefox 7 5 (71%)

Chromium 4 3 (75%)

mupdf 2 1 (50%)

Evince 3 3 (100%)

Total 16 12 (75%)

Linux column shows the number of bugs reported on Linux. # Windows represents the number and
percentage of the reported bugs that also occur in the Windows version of the reader

7.2 Experiment details

For this experiment, we focused on the files we reported during our evaluation of Linux
PDF readers. We reported 19 files revealing 22 different bugs. We focused on these files
because these represent unique bugs that we found.

7.3 Results

7.3.1 Are the inconsistency we detected OS specific?

To answer this research question, we focus on bugs we reported for PDF readers that are
cross-OS (e.g., Firefox, Chromium). The goal is to find out whether these bugs only
occur in the Linux version or in both versions of the reader. When possible, we used the
same version of the reader (Firefox, Chromium, MuPDF). In the case of Evince, the
Windows version is older than the Linux version.

The results displayed in Table 9 show that 75% of the bugs we reported for Linux also
occur on Windows 10. The reason is that most of these bugs occur in the shared backend
library that parses the PDF file and not in the OS specific source code.

7.3.2 Can we use the files we detected as inconsistent on Linux to detect bugs
in another OS and other PDF readers?

To answer this question, we check how many of the inconsistent files we reported for Linux
readers also reveal bugs on Windows readers. Table 10 displays the number of reported
inconsistent files on Linux that also reveal bugs on Windows readers. For example, the
Acrobat column indicates that 5 of the 19 inconsistent files on Linux readers reveal bugs
in Acrobat Reader on Windows. We reported 11 bugs to the developers for the Windows
readers (4 for Acrobat Reader, 3 for Edge and 4 for Sumatra PDF).

The files we reported for Linux helped us find inconsistencies in all the Windows read-
ers tested. In particular, we found inconsistencies in Acrobat Reader DC, the most recent

Table 10 Number of reported inconsistent files on Linux that also reveal bugs in Windows readers

Acrobat Firefox Chromium Edge Sumatra Evince mupdf xpdf

5/19 11/19 3/19 5/19 5/19 7/19 6/19 4/19

Empir Software Eng

version of Acrobat Reader on Windows. We also found 5 inconsistencies in both Microsoft
Edge and Sumatra, two PDF readers that do not have an equivalent reader working on Linux.

This study highlights that the PDF inconsistency problem is not restricted to Linux read-
ers, and that the files which are inconsistent on Linux readers are also likely to reveal
inconsistencies in Windows readers.

8 Discussion and threats to validity

8.1 Conclusion validity

Visual inconsistencies can be subjective. While most of them are clear (e.g., crashes and
missing images), some are ambiguous (e.g., colour differences can be so small that some
people consider them different while others see no difference). Therefore, there is a potential
threat regarding the labelling of inconsistencies in our study. To mitigate this issue, the
labelling was done by one of the authors, then independently verified by another author and
two other students.

We empirically choose an optimal threshold and image comparison algorithm for our
data set. However our study covers very diverse documents, and the optimal threshold or
image comparison algorithm might be different for specific types of documents (e.g., image
or text). In the future, we plan to take the content of the file into consideration for choosing
the optimal threshold and image comparison algorithm to use.

8.2 Internal validity

Despite its large size of about 230K files, the PDF files used in our evaluation come from a
single source of the U.S. government’s websites. Thus, the results on other PDF files may
be different. However, the data set should be reasonably representative for real-world PDF
files. To mitigate this issue, we did an extensive study on the data set, investigated the files’
metadata and found out the files were produced by a wide range of software.

We mostly focus on PDF readers available on Linux. However, we claim the PDF incon-
sistency issue is generalizable to other platforms. To support this claim, we did a small study
on the 18 files we reported for Linux PDF readers and found that these files also reveal
inconsistencies in 8 different Windows PDF readers.

8.3 Construct validity

If one PDF file exposes the same bug in all readers, and causes all readers to fail in the
same way (e.g., all display an identical but wrong image), our approach would fail to detect
this bug as there are no visual inconsistencies. However, in practice, we have not seen such
cases during our manual examination.

8.4 External validity

Although the presented technique is tuned for PDF documents, it is not bound to the PDF
format. The same methodology of capturing error messages and return codes, clustering
and then comparing screenshots could be applied to other document readers, like e.g., MS
Word viewers, image viewers or web browsers. The aspects that need to be adjusted for a
specific application, e.g., a different document type, are the regular expressions used for

Empir Software Eng

the emitted messages and the cropping functionality which removes application specific UI
elements from the screenshots. The technique is applicable in a broader context because we
treat programs in the portfolio in a black-box manner and capture their externally visible
behaviour only.

More generally, the technique can be used to tackle the problems that arise when cross-
checking a portfolio of programs on a large data set of inputs: which inputs to select (error
messages), how to group similar inputs (clustering) and how to detect issues using a simi-
larity metric (image comparison). The presented tool can be used by end-users to check that
the published document is presented as expected and by developers to automatically detect
bugs in a portfolio of viewers.

8.5 Practical applicability

We envision the practical applicability of this research in two directions: 1) as empir-
ical evidence/systematic study of the PDF inconsistency problem, and 2) as a tech-
nique/methodology for cross-testing a portfolio of reader programs and for cross-
verification of document correctness.

Our empirical research highlights and quantifies the, otherwise anecdotal, problem of
cross-reader PDF inconsistencies. The fact that these inconsistencies appear is an interesting
problem on its own due to the intended portable nature of the PDF format. The results also
show the difficulty of implementing a complex document format standard and a potential for
inconsistencies to appear across different implementations of the standard. We hope that our
empirical study will spawn further research into document correctness and reader testing.

Our proposed inconsistency detection technique and prototype could be applied by:

– Developers to test their implementations of parsers and viewers. Our error clustering
algorithm can help select interesting documents, the delta-debugging component can
help to narrow down the problems and the minimized document can serve as a test case.

– Publishers/designers to make sure that the document looks consistently and as expected
across multiple viewers (similarly to what is being done for web pages).

– End-users for sanity checks against bugs such as missing images or inability to load a
file in certain readers.

– Other researchers who want to study similar inconsistency issues but find the data set
is too large for thorough analysis.

9 Related work

The cross-reader inconsistency issue is analogous to the more studied cross-browser
inconsistency (CBI) problem (Roy Choudhary 2014; Saar et al. 2014; Choudhary et al.
2010, 2012; Mesbah and Prasad 2011; Ochin 2011; Choudhary 2011; Eaton and Memon
2007). Different browsers can render the same webpage differently, and some of those
inconsistencies are critical when a browser does not support a particular HTML element.

Eaton and Memon first introduced the CBI issue in Eaton and Memon (2007). They
propose an approach based on an inductive model to detect bugs in web application that can
lead to CBIs. This first approach to detect CBIs only focus on incorrect web applications. If
a bug in a specific browser creates an inconsistency for a correct web application, then this
approach would not detect it. In addition, this approach is based on HTML tags and is not
transferable to the cross-reader inconsistency problem.

Empir Software Eng

The CBI problem has been addressed incrementally by Choudhary et al. in several
papers (Roy Choudhary et al. 2014; Choudhary et al. 2010, 2012; Choudhary 2011). First,
Webdiff, described in Choudhary et al. (2010) and Choudhary (2011), combines a structural
analysis of the DOM structure of a web page and a histogram comparison of screenshots
of the web page opened in two different browsers to detect CBIs. CrossCheck (Choudhary
et al. 2012) is built on the top of WebDiff, with the addition of a web crawler allowing to
detect inconsistencies on entire web applications instead of single web pages. Finally, X-
pert (Roy Choudhary et al. 2014) improves CrossCheck by only considering elements that
are leaf nodes of the DOM structure. It builds a model for each browser by crawling a spe-
cific web application. The models include transitions between pages, as well as the DOM
structure and a screenshot of each page. The models are then checked for equivalence using
the chi-square distance between the histogram of each element of the screenshot.

Concurrently with WebDiff (Choudhary et al. 2010; Choudhary 2011), Mesbah and
Prasad proposed a very similar approach to detect cross-browser inconsistencies (Mesbah
and Prasad 2011). The main difference with WebDiff is that they consider the trace-level
behavior of the web application.

Different causes for CBI were identified in Ochin (2011). The most common reasons for
CBI are HTML tags, CSS, font rendering, DOM, scripts, add-ons and third-party entities.
Out of all these reasons, only the font rendering issue is also applicable to the cross-reader
inconsistency issue.

While the importance of studying cross-browser inconsistencies has been widely rec-
ognized, cross-reader inconsistencies have been under-studied. Furthermore, some of the
techniques used to detect cross-browser inconsistency are not directly applicable to cross-
reader inconsistencies (for example, they rely on matching the DOM, the structured
representation of HTML documents, but the structure of a PDF does not change when
opened by different readers). On the other hand, our approach is applicable to a wide vari-
ety of electronic documents, including HTML, because it treats the documents and readers
as black boxes.

The work from the cross-browser testing area that is most closely related to ours is
Browserbite (Saar et al. 2014). As in our approach, the technique operates in a black-
box manner; it combines image processing for inconsistency detection with machine learn-
ing for improving accuracy. However, in addition to the different domain, Browserbite
is evaluated on only 140 websites, which does not raise the same scalability challenges that
we encountered for our corpus of 230 K documents, which requires solutions such as our
clustering approach. We use a white-box binary search to find inconsistent locations, while
Browserbite splits image into regions and performs a linear comparison of all regions;
we also use CW-SSIM for image comparison, while Browserbite uses histograms.

Many techniques have been developed to detect malicious or vulnerable PDF
files (Smutz and Stavrou 2012; Corona et al. 2014; Maiorca et al. 2013; Tzermias et al.
2011; Laskov and ŠRndić 2011; Laskov 2013). Indeed, PDF files can contain embedded
JavaScript elements which can be potentially vulnerable or malicious. Common methods to
detect such files consist of analysing the metadata and the structure of the PDF file to detect
malicious JavaScript components.

MDScan (Tzermias et al. 2011) is a stand-alone tool that combines static analysis of the
document and dynamic analysis to detect malicious documents. First, a static analysis of
the PDF file is used to detect and extract any embedded JavaScript source code. Then this
code is executed and MDScan attempts to detect malicious shellcode execution.

PJScan (Laskov and ŠRndić 2011) is the first approach using static analysis to detect vul-
nerable PDF files. It focuses on extracting features from Javascript code embedded in PDF

Empir Software Eng

files. Smutz and Stavrou (2012) present another approach based on machine learning that
aims to detect vulnerabilities. The features used to detect malicious PDF files are extracted
from the metadata and the structure of the PDF (e.g., number of pages, objects, producer,
javascript elements, etc.). This approach was compared to PJScan and provided much bet-
ter results. An improvement of existing static detection (Laskov and ŠRndić 2011; Smutz
and Stavrou 2012) was proposed in Laskov (2013). The main change was to consider fea-
tures in object streams. As object streams are generally encoded, they are often used to hide
malicious code. While machine learning could also be used to detect potential inconsistent
elements, this approach is very different from our work. In this work, we chose a dynamic
approach: both the error clustering and the screenshot comparison require executing the
PDF reader.

Maiorca et al. (2013) present a new approach to generate malicious PDF files that
cannot be detected by techniques based on machine learning and propose a new tool,
Lux0R (Corona et al. 2014) to detect this kind of attack.

While dealing with PDF files, those studies consider a completely different problem from
ours. We focus on benign documents and do not consider malware. Our technique, through
detecting display and behavior inconsistencies across different readers, has the potential to
identify malicious PDF targeting a specific PDF reader. However, we did not investigate this
possibility and assumed that all the files mined from the US government websites are benign.

To address cross-reader inconsistencies, standards such as PDF/A and PDF/X have been
proposed to ensure that PDF files will always be rendered consistently (ISO 2001, 2005).
However, those specifications are highly restrictive and typically only used for archiving data.
For example, when looking at the sample of PDF files we extracted from the Govdocs1
data set, we found that none of these files conformed to the PDF/A or PDF/X standards.
Another possible solution to reduce display differences is flattening the PDF file. However,
flattening a PDF file may add more inconsistencies when merging the different layers of
the original file. In addition, flattening may break the internal structure of the file, making
some operations (e.g., selecting the text) impossible. Therefore, a new solution is necessary
to help users know whether the PDF they share will be viewed correctly across the readers.

Prior work on recovering electronic documents (Kuchta et al. 2014; Demsky and Rinard
2005; Long et al. 2012) can leverage our inconsistency detection and localization tech-
niques. Previous work in this space uses image similarity to assess the quality of repaired
input (Long et al. 2012).

10 Conclusions and future work

This paper presents and quantifies the research problem of cross-reader inconsistencies,
which are caused by bugs in readers and files. We conduct an empirical study on 2,313 PDF
files, which shows that cross-reader inconsistencies are common. In addition, we propose
techniques to detect and localize inconsistencies automatically on over 230K PDF docu-
ments. Our approach has detected 30 unique bugs on Linux. We also reported 33 bugs to
developers, 17 of which have already been confirmed or fixed.

In the future, we plan to automatically fix the detected bugs in PDF files to ensure
consistency across readers. The fault localisation component of our technique based on
delta-debugging makes it possible to narrow down the problem to specific objects in the doc-
ument. Then we could focus on removing or fixing those problematic objects. Fixing PDF
documents is not a trivial task due to document format constraints such as cross-reference
table that lists object offsets in the file, or object numbers which are used to cross-reference

Empir Software Eng

objects within the document. Even removal of a problematic object may result in a need
to update other objects referencing the removed one or object offsets in the mentioned
cross-reference table.

Another potential line of work is to extend the technique to other operating systems
and document types. That would involve preparing the corresponding virtual machines and
tuning our screenshot capture tools. Other document/file types might also need a different
similarity metric—a study of ROC curves similar to the presented one might be necessary
to pick the best metric for the task.

Finally, with more engineering effort we could improve system’s performance and try to
analyze randomly chosen pages of the document or a whole document, rather than the first
page only. We believe that the current performance is reasonable given the data set size.
However, more work in this area would make it possible to further scale up the technique.

Our database of clusters of PDF files and detected bugs, which we make available at
http://srg.doc.ic.ac.uk/projects/pdf-errors, could help researchers and practitioners address
software reliability challenges including testing other readers, and diagnosing and fixing
bugs in readers and PDF files.

Acknowledgments We would like to thank Zhou Wang for his help on image comparison, William
Culhane and Lukas Rupprecht for helpful discussions, and Thomas Joseph for project infrastructure support.

This research was generously supported by EPSRC through the Early-Career Fellowship EP/L002795/1,
Microsoft Research through a PhD scholarship, the Natural Sciences and Engineering Research Council of
Canada, and an Ontario Graduate Scholarship award.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Archlinux (2015) [wontfix] wrong colours in adobe reader (acroread). https://bbs.archlinux.org/viewtopic.
php?id=193918

Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the
eighteenth annual ACM-SIAM symposium on discrete algorithms. Society for industrial and applied
mathematics, Philadelphia, pp 1027–1035

Bugzilla (2016) bug 94260 - pdf file doesn’t load or is displayed inconsistently. https://bugs.freedesktop.org/
show bug.cgi?id=94260

Bugzilla@Mozilla (2016) Bug 1244729 - [PDF Viewer] Incorrect PDF display (large portions of the map
appear as black). https://bugzilla.mozilla.org/show bug.cgi?id=1244729

Choudhary SR (2011) Detecting cross-browser issues in web applications. In: 2011 33rd international
conference on Software engineering (ICSE). IEEE, Piscataway, pp 1146–1148

Choudhary SR, Versee H, Orso A (2010) Webdiff: automated identification of cross-browser issues in
web applications. In: 2010 IEEE international conference on Software maintenance (ICSM). IEEE,
Piscataway, pp 1–10

Choudhary SR, Prasad MR, Orso A (2012) Crosscheck: combining crawling and differencing to better detect
cross-browser incompatibilities in web applications. In: 2012 IEEE fifth international conference on
Software testing, verification and validation (ICST). IEEE, Piscataway, pp 171–180

Chromium Bug Tracker (2016) PDF’s not displaying with Chromes PDF Distiller. https://code.google.com/
p/chromium/issues/detail?id=333918

Complex-wavelet structural similarity index (cw-ssim) (2013) http://www.mathworks.com/matlabcentral/
fileexchange/43017-complex-wavelet-structural-similarity-index--cw-ssim-

Corona I, Maiorca D, Ariu D, Giacinto G (2014) Lux0r: detection of malicious pdf-embedded javascript
code through discriminant analysis of api references. In: Proceedings of the 2014 workshop on artificial
intelligent and security workshop. ACM, New York, pp 47–57

http://srg.doc.ic.ac.uk/projects/pdf-errors
http://creativecommons.org/licenses/by/4.0/
https://bbs.archlinux.org/viewtopic.php?id=193918
https://bbs.archlinux.org/viewtopic.php?id=193918
https://bugs.freedesktop.org/show_bug.cgi?id=94260
https://bugs.freedesktop.org/show_bug.cgi?id=94260
https://bugzilla.mozilla.org/show_bug.cgi?id=1244729
https://code.google.com/p/chromium/issues/detail?id=333918
https://code.google.com/p/chromium/issues/detail?id=333918
http://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-structural-similarity-index--cw-ssim-
http://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-structural-similarity-index--cw-ssim-

Empir Software Eng

Demsky B, Rinard M (2005) Data structure repair using goal-directed reasoning. In: Proceedings of the 27th
international conference on software engineering. ACM, New York, pp 176–185

Eaton C, Memon AM (2007) An empirical approach to evaluating web application compliance across diverse
client platform configurations. Int J Web Eng Technol 3(3):227–253

ENGINEERING IC (2008) PDF Specification for IEEE xplore (Part A-core requirements). IEEE, Piscataway
Garfinkel S, Farrell P, Roussev V, Dinolt G (2009) Bringing science to digital forensics with standardized

forensic corpora. Digit Investig 6:S2–S11
Google Chrome Help Forum (2015) PDF viewer bug with tcpdf. https://productforums.google.com/forum/#!

msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ
Grajeda C, Breitinger F, Baggili I (2017) Availability of datasets for digital forensics–and what is missing.

Digit Investig 22:S94–S105
Huynh-Thu Q, Ghanbari M (2008) Scope of validity of psnr in image/video quality assessment. Electron Lett

44(13):800–801
ISO (2001) Part 1, graphic technology: pre press digital data exchange. ISO, Geneva
ISO (2005) Document management: electronic document file format for long-term preservation. ISO, Geneva
Kuchta T, Cadar C, Castro M, Costa M (2014) Docovery: toward generic automatic document recovery. In:

Proceedings of the 29th ACM/IEEE international conference on automated software engineering. ACM,
New York, pp 563–574

Laskov P (2013) Detection of malicious pdf files based on hierarchical document structure. In: Proceedings
of the network and distributed system security symposium, NDSS 2013. The internet society, Reston

Laskov P, ŠRndić N (2011) Static detection of malicious javascript-bearing pdf documents. In: Proceedings
of the 27th annual computer security applications conference. ACM, New York, pp 373–382

Long F, Ganesh V, Carbin M, Sidiroglou S, Rinard M (2012) Automatic input rectification. In: 2012 34th
international conference on software engineering (ICSE). IEEE, Piscataway, pp 80–90

MacQueen J (1965) On convergence of k-means and partitions with minimum average variance. In: Annals
of mathematical statistics, vol 36, p 1084. INST MATHEMATICAL STATISTICS IMS BUSINESS
OFFICE-SUITE 7, 3401 INVESTMENT BLVD, HAYWARD, CA 94545

MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In:
Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol. 1, Oakland,
pp 281–297

Maiorca D, Corona I, Giacinto G (2013) Looking at the bag is not enough to find the bomb: an eva-
sion of structural methods for malicious pdf files detection. In: Proceedings of the 8th ACM SIGSAC
symposium on information, computer and communications security. ACM, New York, pp 119–130

Matlabpyrtools (2016) http://www.cns.nyu.edu/∼lcv/software.php
Mesbah A, Prasad MR (2011) Automated cross-browser compatibility testing. In: Proceedings of the 33rd

international conference on software engineering. ACM, New York, pp 561–570
Mozilla Support Forum (2013) PDF.js not being displayed correctly. https://support.mozilla.org/en-US/

questions/948061
Ochin JG (2011) Cross browser incompatibility: reasons and solutions. International Journal of Software

Engineering & Applications (IJSEA) 2(3):66–77
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J

Comput Appl Math 20:53–65
Roy Choudhary S, Prasad MR, Orso A (2014) X-pert: a web application testing tool for cross-browser incon-

sistency detection. In: Proceedings of the 2014 international symposium on software testing and analysis.
ACM, New York, pp 417–420

Saar T, Dumas M, Kaljuve M, Semenenko N (2014) Cross-browser testing in browserbite. In: Web
engineering. Springer, Berlin, pp 503–506

Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK (2009) Complex wavelet structural similarity: a new
image similarity index. IEEE Trans Image Process 18(11):2385–2401

Scikit learn (2017) http://scikit-learn.org/stable/
Smutz C, Stavrou A (2012) Malicious pdf detection using metadata and structural features. In: Proceedings

of the 28th annual computer security applications conference. ACM, New York, pp 239–248
Solomon JA, Pelli DG et al (1994) The visual filter mediating letter identification. Nature 369(6479):395–397
Tzermias Z, Sykiotakis G, Polychronakis M, Markatos EP (2011) Combining static and dynamic analysis

for the detection of malicious documents. In: Proceedings of the fourth european workshop on system
security. ACM, New York, p 4

Xvfb (2010) x window system version 11 release 7.6. http://www.x.org/archive/X11R7.6/
Zauner C (2010) Implementation and benchmarking of perceptual image hash functions na
Zeller A, Hildebrandt R (2002) Simplifying and isolating failure-inducing input. IEEE Trans Softw Eng

28(2):183–200

https://productforums.google.com/forum/#!msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ
https://productforums.google.com/forum/#!msg/chrome/tVNKJhiv-XQ/tH9RZyPlJGwJ
http://www.cns.nyu.edu/~lcv/software.php
https://support.mozilla.org/en-US/questions/948061
https://support.mozilla.org/en-US/questions/948061
http://scikit-learn.org/stable/
http://www.x.org/archive/X11R7.6/

Empir Software Eng

Tomasz Kuchta is an engineer at Qualcomm, where he works on product security. His interests span
across the areas of symbolic execution, dynamic software analysis, security, systems and software reliabil-
ity. Tomasz has a PhD in Computer Science from Imperial College London, a Master’s degree from Cracow
University of Technology, and several years of software engineering experience in the industry.

Thibaud Lutellier received the Diplôme d’Ingénieur from Télécom Saint-Etienne and the M.A.Sc. degree in
computer engineering from the University of Waterloo. He is currently working toward the PhD degree at the
University of Waterloo. His research interests include bug detection, program repair, and machine learning.

Edmund Wong is a PhD student at the University of Waterloo, and he had received his master’s degree in
2014. His research interest includes automated documentation generation for source code comments and the
application of documentation analysis to improve software reliability.

Empir Software Eng

Lin Tan a Canada Research Chair, is an Associate Professor in the Department of Electrical and Computer
Engineering at the University of Waterloo. She received her PhD from the University of Illinois, Urbana-
Champaign. She is an associate editor of IEEE Transactions on Software Engineering (2017-present) and an
editor of the Springer Empirical Software Engineering Journal (2015-present). She was the program co-chair
of MSR 2017, ICSE-NIER 2017, and ICSME-ERA 2015. Her co-authored papers have received an ACM
SIGSOFT Distinguished Paper Award at FSE in 2016 and IEEE Micro’s Top Picks in 2006. Dr. Tan is a
recipient of an NSERC Discovery Accelerator Supplements Award, an Ontario Early Researcher Award, an
Ontario Professional Engineers Award – Engineering Medal for Young Engineer, a University of Waterloo
Outstanding Performance Award, two Google Faculty Research Awards, and an IBM CAS Research Project
of the Year Award.

Cristian Cadar is a Reader (Associate Professor) in the Department of Computing at Imperial College
London, where he leads the Software Reliability Group. His research interests involve designing practical
techniques and tools for improving the reliability and security of software systems. Cristian has received
several research awards, including the Jochen Liedtke Young Researcher Award, the HVC Award and the
ACM CCS Test of Time Award. He was general chair for the European Conference on Computer Sys-
tems (EuroSys) 2016 and co-chair for the New Ideas Track of the International Conference on Software
Engineering (ICSE NIER) 2017. He is Associate Editor for the ACM Transactions on Software Engineer-
ing and Methodology (TOSEM). Cristian has a PhD in Computer Science from Stanford University, and
undergraduates and Master’s degrees from the Massachusetts Institute of Technology.

	On the correctness of electronic documents: studying, finding, and localizing inconsistency bugs in PDF readers and files
	Abstract
	Introduction
	Technique
	Phase 1: document filtering
	Phase 2: inconsistency detection
	Capturing rendered images
	Cropping screenshots
	Detecting display inconsistencies

	Phase 3: inconsistency localization

	Experimental setup
	Data set
	Portfolio of readers
	Infrastructure
	Phase 1: Filtering
	Phase 2 and 3: Inconsistency Detection and Localization
	Performance

	Research questions

	A study of cross-reader inconsistencies
	Methods
	Inconsistencies are common
	Types of inconsistencies
	Performance issues
	Missing images
	Map bugs
	Colour inconsistencies
	Form inconsistencies
	Others
	Font inconsistencies
	Reader reliability
	Summary

	Automatic results
	Results for the random sample
	False positives
	False negatives

	Results for the entire set
	Error messages
	Crashes
	Inconsistency bugs
	Results of image comparison on the candidates
	Correlation with file producer
	Summary of inconsistencies and bugs detected in both experiments
	Bug reports
	Summary

	Inconsistency localization evaluation
	Summary

	Cross-OS inconsistencies
	PDF readers on windows
	Experiment details
	Results
	Are the inconsistency we detected OS specific?
	Can we use the files we detected as inconsistent on Linux to detect bugs in another OS and other PDF readers?

	Discussion and threats to validity
	Conclusion validity
	Internal validity
	Construct validity
	External validity
	Practical applicability

	Related work
	Conclusions and future work
	Acknowledgments
	Open Access
	References

