Pending Constraints in Symbolic Execution for
Better Exploration and Seeding

Timotej Kapus
Imperial College London
United Kingdom
t.kapus@imperial.ac.uk

ABSTRACT

Symbolic execution is a well established technique for software
testing and analysis. However, scalability continues to be a chal-
lenge, both in terms of constraint solving cost and path explosion.
In this work, we present a novel approach for symbolic execution,
which can enhance its scalability by aggressively prioritising exe-
cution paths that are already known to be feasible, and deferring
all other paths. We evaluate our technique on nine applications, in-
cluding SQLite3, make and tcpdump and show it can achieve higher
coverage for both seeded and non-seeded exploration.

CCS CONCEPTS
« Software and its engineering — Software testing and de-

bugging.

KEYWORDS

Symbolic execution, KLEE

ACM Reference Format:

Timotej Kapus, Frank Busse, and Cristian Cadar. 2020. Pending Constraints
in Symbolic Execution for Better Exploration and Seeding. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE °20), Sep-
tember 21-25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3324884.3416589

1 INTRODUCTION

Symbolic execution is a dynamic program analysis technique that
has established itself as an effective approach for many software
engineering problems such as test case generation [4, 12], bug
finding [6, 13], equivalence checking [10, 11], vulnerability analy-
sis [8, 27] and debugging [14, 20].

Even with well-engineered tools like KLEE [4], symbolic exe-
cution still faces important scalability challenges. These fall into
two broad categories: constraint solving and path explosion. As
symbolic execution proceeds, the complexity of constraints and
the number of paths typically increase, often making it difficult to
make meaningful progress.

In this work, we propose a novel mechanism that aggressively
explores paths whose feasibility is known via caching or seeding.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE °20, September 21-25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09....$15.00
https://doi.org/10.1145/3324884.3416589

Frank Busse
Imperial College London
United Kingdom
f.busse@imperial.ac.uk

Cristian Cadar
Imperial College London
United Kingdom
c.cadar@imperial.ac.uk

Our approach tackles both scalability challenges of symbolic ex-
ecution. On the one hand, it enables more efficient use of solved
constraints, thus reducing the burden on the solver. And on the
other hand, it provides a meta-search heuristic that gives a way to
guide the exploration towards interesting parts of the program.

Before presenting our idea, we briefly summarise symbolic exe-
cution. We focus here on the EGT-style of dynamic symbolic execu-
tion [5], embodied in tools such as KLEE [4], which unlike concolic
execution tools [12, 24], store partially explored paths in memory.
Symbolic execution works by running the program on some sym-
bolic inputs, which means they can initially take any value, as they
are unconstrained. During execution, if a branch condition depends
on a symbolic value, symbolic execution queries an SMT solver for
the feasibility of each of the two branches (under the current path
condition which is initially empty). If both the then and the else
branches are feasible, it forks the execution exploring both paths
and adding the respective branch conditions to each path condition
(PC). After every fork, symbolic execution uses a search heuristic to
decide what path to explore next. Each path explored in symbolic
execution is encoded by a state which keeps all the information
necessary to resume execution of the associated path (PC, program
counter, stack contents, etc.).

The core of our idea revolves around inverting the forking pro-
cess. Instead of doing an (expensive) feasibility check first and
then forking the execution, we fork the execution first. The branch
condition is then added as a pending constraint, which means its
feasibility has not been checked yet. We refer to states (or paths)
with pending path constraints as pending states.

The responsibility for feasibility checking of pending path con-
straints is passed to the search heuristic. This gives the search
heuristic the capability to decide when and for which states it
wants to pay the price of constraint solving. For example, it could
solve pending states immediately, thus restoring the original algo-
rithm, or could take into account the (estimated) cost of constraint
solving in its decisions.

In our approach, we take advantage of an important characteris-
tic of symbolic execution runs: the feasibility of some paths/states
can be quickly determined without using a constraint solver. There
are two common cases. First, modern symbolic execution systems
like KLEE make intensive use of caching and many queries can
be solved without involving the constraints solver [1, 4, 26]. Sec-
ond, symbolic execution is often bootstrapped with a set of seeds
from which to start exploration: these can come from regression
test suites [18, 19] or greybox fuzzers in hybrid greybox/whitebox
fuzzing systems [9, 21, 25]. By aggressively following paths for
which feasibility can be quickly determined without using a con-
straint solver, our approach can minimise the constraint solving

https://doi.org/10.1145/3324884.3416589
https://doi.org/10.1145/3324884.3416589

ASE ’20, September 21-25, 2020, Virtual Event, Australia

Timotej Kapus, Frank Busse, and Cristian Cadar

Algorithm 1 Standard symbolic execution.

Algorithm 2 Symbolic execution with pending constraints.

: Set states

1

2:

3: function Fork(State s, SymExpr condition)
4 if IsSAT(s.pc A condition) A ISSAT(s.pc A ~condition) then
5: falseState « s

6 falseState.pc « s.pc A —condition
7 s.pc < s.pc A condition

8 SEARCHERADD(S, falseState)

9 end if

10: end function

11:

12: function SEARCHERADD(State s1, State s2)

13: states « states U {s1, s2}

14: end function

15:

16: function SEARCHERSELECT()

17: return SEARCHHEURISTIC(states)

18: end function

costs as well as provide an effective exploration of the program
search space.

The rest of the paper is organised as follows. In §2 we present
in detail the design of our technique. Then in §3 we give further
implementation-specific details in the context of building our tech-
nique in KLEE. We finally evaluate our approach in §4, discuss
related work in §5 and conclude in §6.

2 ALGORITHM

Algorithm 1 presents, in simplified form, the forking and search
heuristics components of the standard symbolic execution algo-
rithm. The symbolic executor is exploring program paths encoded
as a set of states (line 1). As discussed before, a state keeps track of
all the information necessary to resume execution of the associated
path (program counter, stack contents, etc.) and particularly its
path condition pc. When a symbolic state s encounters a symbolic
branch condition, the Fork function is called (line 3).

Fork first checks if the condition can be both true and false under
the current path condition (line 4). If so, the state is duplicated into a
falseState (line 5), which will be the state representing the execution
of the false branch. The path conditions of the two states are then
updated accordingly (lines 6 and 7) and the new state is added to the
set of states of the search heuristic by calling SEARCHERADD (line 8).
If the condition cannot be both true and false, the path condition is
not updated and s continues to execute the only feasible side of the
branch (the updates to the program counter are omitted for ease of
exposition).

After each instruction, the symbolic executor calls SEARCHERSE-
LECT (lines 16—18) to select the state to be executed next. In the case
of standard symbolic execution, SEARCHERSELECT simply forwards
calls to the SEARCHHEURISTIC. For instance, the search heuristic
might choose states according to depth or breadth-first strategies
or randomly pick a state. Below, we introduce the three search
heuristics which we explore in this project:

Depth-first search is a standard graph traversal algorithm that
explores states as deep as possible before backtracking.

: Set feasibleStates, pendingStates

1
2:
3: function Fork(State s, SymExpr condition)

4 feasibleStates « feasibleStates \ {s}

5: s.pendingCondition « condition

6 falseState « s

7 falseState.pendingCondition « —condition
8 SEARCHERADD(s, falseState)

9: end function

10:

1: function SEARCHERADD(State s1, State s2)

12: foreach State s € {s1, s2} do

—_

13: if FASTISSAT(s, s.pc A s.pendingCondition) then
14: s.pc « s.pc As.pendingCondition

15: s.pendingCondition « 0

16: feasibleStates « feasibleStates U {s}

17: else

18: pendingStates < pendingStates U {s}

19: end if

20: end foreach

21: end function

22:

23: function SEARCHERSELECT()
24: while feasibleStates =0 do

25: s « SEARCHHEURISTIC(pendingStates)

26: if IsSAT(s.pc A s.pendingCondition) then
27: s.pc « s.pc As.pendingCondition

28: s.pendingCondition « 0

29: feasibleStates « feasibleStates U {s}
30: end if

31: pendingStates « pendingStates \ {s}

32: end while

33: return SEARCHHEURISTIC(feasibleStates)

34: end function

Random path search, introduced in the original KLEE paper [4],
works by randomly selecting a path through the execution tree of
explored states. The algorithm starts at the root of the tree and with
50% probability follows the left-hand subtree and 50% probability
the right-hand one. The process repeats until a leaf state is reached,
which is selected for further exploration. By design, this search
heuristic favours states closer to the root of the execution tree.

Depth-biased search is a form of non-uniform random search
provided by KLEE. It works by randomly selecting states weighted
by their depth—the higher the depth of a state, the more likely for it
to be selected. By design, this search heuristic favours states deeper
in the execution tree.

2.1 Pending Constraints Algorithm

Note that the calls to ISSAT in standard symbolic execution are
potentially very expensive and thus are the optimisation target of
our proposed approach.

Algorithm 2 shows the same three functions in the pending
constraints version of symbolic execution. In this version, we main-
tain two disjoint sets of states: feasibleStates, which stores regular
states which we know are feasible; and pendingStates, which stores
pending states for which feasibility is still unknown (line 1).

Pending Constraints

Algorithm 3 Fast satisfiability checking.

1: function FAsTIsSAT(State s, SymExpr condition)
2 assignments < GETASSIGNMENTSFORSTATE(s)
3 foreach Assignment a € assignments do

4 if SUBSTITUTE(a, condition) = true then

5: return true

6 end if

7 end foreach

8 return false

9: end function

In our version of FoRK, the IsSAT feasibility checks are skipped
and execution is forked unconditionally. First, we remove the cur-
rent state s from the list of feasibleStates (line 4), and assign the
condition to a special pending condition field associated with s
(line 5). Second, we duplicate s into a new state falseState (line 6)
and assign the negation of condition to its pending condition field
(line 7). When a state becomes pending, as s and falseState here, it
means that it should not continue execution until its pending con-
dition is checked for feasibility. We call the process of checking the
pending condition and adding it to the path condition as reviving
the state.

Finally, we call SEARCHERADD (line 8) to let the searcher decide
what to do with the newly created pending states. For each of the
two states, SEARCHERADD checks whether the pending condition
is feasible using a fast satisfiability checker (line 13). If so, the
pending condition is added to the path condition (line 14), the
pendingCondition field is reset (line 15) and the state is added to
the set of feasibleStates (line 16). If the fast satisfiability check is
unsuccessful, the state is added to the set of pendingStates (line 18).
The fast satisfiability solver is discussed in §2.2.

The SEARCHERSELECT function operates as in standard symbolic
execution as long as there are feasible states available (line 33).
However, when all the feasible states have been exhausted, it keeps
picking a pending state (line 25) until it finds one that can be re-
vived successfully. This is done by asking the solver whether the
pending condition is feasible (line 26) and if so, by adding the pend-
ing condition to the state’s path condition (line 27), clearing the
pendingCondition field (line 28), and adding the state to the set of
feasibleStates (line 29).

2.2 Fast Satisfiability Checking

As discussed in the introduction, the fast satisfiability checker relies
on the fact that we often have existing assignments (solutions) to
symbolic constraints. There are two common scenarios that occur
in practice: first, modern symbolic execution engines use a smart
form of caching to speed up constraint solving (§2.2.1) and second,
symbolic exploration often starts with a set of seeds (§2.2.2).
Algorithm 3 shows the fast satisfiability checking algorithm.
More formally, an assignment is a mapping from symbolic variables
to concrete values, e.g. {x < 2,y < 3}. The SUBSTITUTE function
takes a symbolic condition and an assignment and evaluates the
condition under the assignment (line 4). That is, it substitutes all
the symbolic variables in the condition with the values specified
in the assignment. If all the symbolic variables in the expression

ASE °20, September 21-25, 2020, Virtual Event, Australia

are mapped by the assignment, SUBSTITUTE will return a concrete
value (either true or false). Otherwise it will return false.

FAsTISSAT first gets all the assignments associated with the given
state using the GETASSIGNMENTSFORSTATE function (line 2); we will
discuss how this function works below. The condition is then evalu-
ated on every assignment returned by GETASSIGNMENTSFORSTATE
and if the evaluation results in true, FASTISSAT returns successfully
(line 5). If none of the returned assignments satisfy the condition,
then FASTISSAT returns unsuccessfully (line 8).

2.2.1 Caching. When issuing satisfiability queries to the solver,
modern symbolic execution engines typically also ask for a sat-
isfying assignment when the query is satisfiable. This is because
caching these assignments can be highly effective [1, 4, 26]. In
this work, we similarly use cached assignments to implement our
fast satisfiability checks. Substituting all assignments that were
returned by the core solver at any previous point in the execution
can be expensive and here we want to ensure the check is fast. So
instead, we use the same mechanism used by assignment caching
in KLEE, and have GETAsSIGNMENTSFORSTATE (line 2) return only
the assignments associated with a subset of the path condition of
state s.

The idea behind the pending constraints approach is to use
existing assignments as long as it is possible, and only ask for
expensive new solutions when absolutely necessary. As a result,
the search goes deep into the execution tree, because it explores the
solutions it has to completion. Therefore, combining this strategy
with a search heuristic that goes wide when picking a pending
state can be really effective. Note that the search heuristics that
often perform best, such as random path search, tend to behave
like this [4]. Another way of understanding our approach is as a
meta-searcher that enhances a given search heuristic, enabling it to
explore deeper parts of the program. Intuitively, this is achieved by
picking a path and sticking to it, while normally the same searcher
would keep changing between paths. Importantly, the path it sticks
to issues no additional queries to the SMT solver and therefore
completes quickly.

To make things more concrete, consider the program in Figure 1
with DFS_FRIENDLY undefined. It has two symbolic variables: a
boolean isSpace and a string str. It first branches on isSpace
on line 14 and writes space as the first character of str on the
then branch or a zero on the else branch. The two loops between
lines 21-23 then introduce a large number of symbolic branches.
After these loops, it computes the fifteenth Fibonacci number using
an inefficient recursion. This represents some large concrete work-
load. Finally, we assert isSpace is false. Note that reaching this
assertion failure only depends on the first branch and is completely
independent of the large number of paths spawned in the loops.

Vanilla KLEE executes around 4 million instructions, taking
around 10 seconds to reach the assertion failure using the ran-
dom path search strategy. By contrast, the pending constraints
approach executes only around 67k instructions, taking less than a
second. The reason is that vanilla KLEE needs to compute a large
number of solutions to the symbolic branches in the loops, which
are not needed to find the assertion failure. Whereas the pending
constraints approach only needs one solver solution for str. Be-
cause random path search is the underlying search strategy, it is

ASE ’20, September 21-25, 2020, Virtual Event, Australia

unsigned fib(unsigned n) {

if (n == @) return 0;

if (n == 1) return 1;

return fib(n - 1) + fib(n - 2);

int main() {

bool isSpace;

klee_make_symbolic(&isSpace, sizeof(isSpace), "isSpace");
10 char str[6];

11 klee_make_symbolic(str, sizeof(str), "str");
12

13 #ifndef DFS_FRIENDLY

14 if (isSpace) str[e] = '_';

15 else str[0] = '\o';

16 #else

17 if (isSpace == @) str[0] = '\0';

18 else str[0] = '_';

1
2
3
4
5%
6
7
8
9

19 #endif

20

21 for (int i = 1; i < 6; i++)

22 for (char j = 0; j < str[il; j++)
23 strli-1]++;

24

25 fib(15);

26 assert(!isSpace);
27 return 0;
28 }

Figure 1: An example program where pending constraints
find the failing assertion faster.

also more likely to pick the pending states produced by the branch
on line 14 as it is closer to the root of the process tree.

Note that DFS reaches our one-hour timeout in this case. How-
ever, it performs similarly to the pending states if the order of
branches on line 14 is swapped (by defining DFS_FRIENDLY). With
DFS_FRIENDLY defined, both pending states and upstream KLEE
find the assertion in about 33k instructions. This shows that while
DFS can be as efficient, it is highly dependent on the order of
branches, unlike the pending constraints approach.

2.2.2 Seeding. A seed is a concrete input to a program which is
given to symbolic execution to bootstrap exploration. A seed can
make symbolic execution of the program easier for two reasons.
First, it is used to guide symbolic execution toward parts of the
program that are executed by real inputs. Second, it provides a
solution for complex path constraints, therefore removing the need
for expensive constraint solving. Seeding has been shown to be
effective when symbolic execution is combined with regression test
suites [18, 19, 22] as well as when it is integrated with a greybox
fuzzer [9, 21, 25].

Our pending constraints approach can be easily extended to
support seeding. In FASTISSAT, we modify the GETASSIGNMENTS-
ForSTATE function to return the seeds as assignments (line 2). As a
result, only the states that satisfy the seeds are followed first, and
there are no calls to the SMT solver until all the paths followed by
the seeds are explored. In this use case, pending states represent
the possible divergences from the seeds, from where we can pick
up exploration once the seeding is completed.

Timotej Kapus, Frank Busse, and Cristian Cadar

When seeds are available, random path search is unlikely to be
the most effective strategy. Once the paths followed by the seeds
are completed, random path search would pick a state very close
to the start of the program, as the probability of picking a state
halves at every symbolic branch. This means that the exploration
will behave similarly as to when no seeds are available.

On the other hand, depth-biased search would most likely pick a
state toward the end of the path executed by the seeds, meaning it
will start to explore paths that are very hard to reach from the start
of the application. In other words, it benefits from the seed and can
start exploring code out of reach of normal symbolic execution.

However, there are two limitations to this search heuristic. First,
by design, this strategy misses code that is easy to reach from the
start of the program. Therefore, it is best combined with a more
wide-reaching strategy such as random path search. Second, this
heuristic is more likely to select pending states that are infeasible,
as the path conditions for those states have more constraints and
thus the pending condition is more likely to be infeasible in that
state.

3 IMPLEMENTATION

We implemented our approach in KLEE [4], a state-of-the-art sym-
bolic execution system that operates on LLVM bitcode [16]. Our
prototype is based on KLEE commit 8fd707b and is configured to
use LLVM 7 and STP 2.3.3. We discuss below some of the most
important implementation aspects.

We make our prototype and associated artefact available at https:
//srg.doc.ic.ac.uk/projects/pending-constraints and https://doi.org/
10.6084/m9.figshare.12865973.

3.1 Fast Satisfiability Solver

KLEE’s constraint solving chain consists of a series of caches and
other partial solvers, finally delegating the query to an external
SMT solver. For our fast solver we simply used this solver chain
without the final, potentially expensive, call to STP.

Seeding is easily implemented with KLEE’s counterexample (as-
signment) cache, as we simply add the seed to the cache as an
additional assignment at the start of execution. Note that this is
different from how vanilla KLEE implements seeding. However,
to make the comparison between vanilla KLEE and pending con-
straints fair, we also added the seed to the cache in vanilla KLEE.

3.2 Error Checks

During execution, KLEE performs various checks to find errors.
Examples include checks for division by zero and out-of-bounds
memory accesses. One option would be to treat these checks as
we treat regular branches and create pending states. However, that
would mean that errors wouldn’t be caught as soon as that code is
covered, as in vanilla KLEE (and in fact they might never be caught
if those pending states are killed later on due to memory pressure).
Therefore, we treat these checks specially by always performing
them instead of creating pending states.

However, if higher coverage is more important than bug finding,
deferring these checks to pending states might make more sense.
Therefore, we also run our benchmarks without these checks in a

https://srg.doc.ic.ac.uk/projects/pending-constraints
https://srg.doc.ic.ac.uk/projects/pending-constraints
https://doi.org/10.6084/m9.figshare.12865973
https://doi.org/10.6084/m9.figshare.12865973

Pending Constraints

version that we call pending constraints with relaxed checks. We
explore this version in §4.5 and observe significant coverage gains.

3.3 Branching without a Branch Instruction

In KLEE there are several cases where forking happens without
a branch instruction. For instance, in the default configuration, a
switch instruction is handled as a branch with multiple targets. This
fits less neatly in our model therefore we simply configure KLEE to
lower all switch instructions to a series of if-else statements.

When a symbolic pointer is encountered, KLEE scans the address
space to find all memory objects to which it can point. If multiple
objects are found, it forks execution for each object, adding appro-
priate constraints [4, 15]. In the default version of our approach,
we don’t create pending states in this case; instead we eagerly fork
as necessary, as in vanilla KLEE. However, with relaxed checks, for
each memory object to which the pointer can refer, the state gets
forked into two pending states: one in-bounds of the object and the
other one out-of-bounds. This second pending state encompasses
all other resolutions of the symbolic pointer.

3.4 Releasing Memory Pressure

KLEE often hits the memory limit for large programs due to the vast
size of the search space and generally broad search heuristics [3].
When exceeding the memory limit, KLEE terminates a number of
randomly-chosen states to get back below the memory limit. We
could follow the same approach with pending constraints, but this
could delete both feasible and infeasible pending states. Feasible
pending states potentially represent large parts of the search space
and we should avoid their termination. By reviving pending states,
we can select and terminate infeasible pending states. But this
comes at a price, as reviving states requires expensive constraint
solving. In our implementation, we decided to stop reviving states
when the remaining number of pending states equals the number
of states we still need to terminate to fall below the memory limit.
At that point, we start to randomly choose states to terminate as in
vanilla KLEE.

4 EVALUATION

Our evaluation is structured as follows. We present our benchmarks
in §4.1 and explain why we evaluated them on internal coverage in
§4.2. We evaluate pending constraints on their ability to enhance
symbolic execution in a non-seeding context in §4.3 and then in a
seeding context in §4.4. We also evaluate the version with relaxed
checks in §4.5. Finally, we discuss our approach in further detail in
§4.6, via a case study on SQLite3.

We run all experiments in a Docker container on a cluster of
18 identical machines with Intel i7-4790 @ 3.60GHz CPU, 16GiB
of RAM and Ubuntu 18.04 as operating system. We repeat our
experiments three times and where possible plot the average and
the minimum and maximum as an interval. In cases where we
combine experiments, there are no intervals shown as we merge
all the repetitions.

ASE °20, September 21-25, 2020, Virtual Event, Australia

4.1 Benchmarks

Our aim is to demonstrate the capability of pending constraints to
increase the exploration potential of symbolic execution. Therefore,
we chose benchmarks that are challenging for symbolic execution.

SQLite3! is one of the most popular SQL database systems. We
used version 3.30.1 via its default shell interface with symbolic
input and without custom drivers. However, we adjusted some
compile-time flags, such as simplifying the allocation model, to
make it easier for symbolic execution.

magick?® is a command-line utility for performing various oper-
ations on images. We used version 7.0.8-68 in two configurations,
converting (symbolic) jpeg images to png images and back, which
makes use of libjpeg® and libpng*.

tepdump® is used for capturing and printing network packets.
We used version 4.10.0 to print information from a symbolic capture
file.

GNU m4°® is a macro processor. We used version 1.4.18 to process
a symbolic file.

GNU make’ is a widely-used build system. We used version 4.2
on a symbolic makefile.

oggenc® is a tool from the Ogg Vorbis audio compression for-
mat reference implementation. We used version 1.4.0 to convert a
symbolic .wav file to the .ogg format.

GNU b¢ is an arbitrary precision calculator. We used version 1.07
on symbolic standard input.

GNU datamash® is a tool for performing command-line calcula-
tions on tabular data. We used version 1.5 both with symbolic input
and symbolic arguments.

Table 1 gives a more detailed overview of the benchmarks, show-
ing their size, arguments we used and a brief description of the
seeds. The program size is measured in terms of LLVM instructions
as reported by KLEE. The third column shows the arguments we
used to run the benchmarks. The arguments prefixed with —-sym are
replaced with symbolic data. For example, -sym-arg 3 is replaced
with a three-character symbolic argument, -sym-stdin 20 is a 20-
byte symbolic standard input stream, and -sym-file 100 creates a
file named A with 100 bytes of symbolic content.

The last two columns of Table 1 give an overview of the seeds
we used. Where possible, we give the exact data used as in the
case of bc. However, in the case of magick and similar utilities that
would not be too informative, so we give instead a brief description
of the seed. We took the smallest valid files from https://github.
com/mathiasbynens/small. Some seeds were padded with zeroes
as necessary to make the seed size match the number of symbolic
bytes as specified by the arguments.

Figure 2 shows the percentage of time spent in the solver by
vanilla KLEE on our benchmarks, on 2-hour runs, using different

Uhttps://www.sqlite.org/
Zhttps://imagemagick.org/
Shttp://libjpeg.sourceforge.net/
*http://www.libpng.org/
Shttps://www.tcpdump.org/
Chttps://www.gnu.org/software/md/
"https://www.gnu.org/software/make/
8https://xiph.org/vorbis/
https://www.gnu.org/software/bc/
Ohttps://www.gnu.org/software/datamash/

https://github.com/mathiasbynens/small
https://github.com/mathiasbynens/small
https://www.sqlite.org/
https://imagemagick.org/
http://libjpeg.sourceforge.net/
http://www.libpng.org/
https://www.tcpdump.org/
https://www.gnu.org/software/m4/
https://www.gnu.org/software/make/
https://xiph.org/vorbis/
https://www.gnu.org/software/bc/
https://www.gnu.org/software/datamash/

ASE ’20, September 21-25, 2020, Virtual Event, Australia

Timotej Kapus, Frank Busse, and Cristian Cadar

Table 1: Overview of (symbolic) arguments and used seeds for our benchmarks. The benchmark size is given as number of

LLVM instructions in the bitcode file.

Benchmark Size Arguments Seed set 1 (s1) Seed set 2 (s2)

be 34311 -sym-stdin 20 435 / 4 + 6 - 3421 x=6 sqrt(2 * x + 5)

datamash 63,405 -sym-arg 3 -sym-arg 1 -sym-arg 4 -sym-arg 1 -sym-stdin 20 sum 1 mean 3 on a3 X 3 matrix md5 1 shal 2 on 2 X 3 matrix

m4 93,169 -G -H37 -sym-arg 2 -sym-arg 5 -sym-stdin 20 -G -DM=6 withM is M also M is B -G -DM=6 with ifdef(‘M’, ha, nah)
magickjp; 1,368,912 jpeg:fd:@ png:fd:1 -sym-stdin 285 smallest valid JPEG file 1 X 1 JPEG image created with GIMP
magickpn; 1,368,912 png:fd:@ jpg:fd:1 -sym-stdin 70 smallest valid PNG file 1 X 1 PNG image created with GIMP

make 80,790 -n -f A -sym-arg 2 -sym-arg 5 -sym-file 20 -n -Bfds with $(info $$helo ther) -n -Bfds with a:=4 $(info $a)
oggenc 87,142 A -sym-file 100 smallest valid WAV file sine wave WAV file created by SciPy
SQLite3 283,020 -sym-stdin 20 SELECT * FROM t; CREATE TABLE t (i);
tepdump 353,196 -r A -K -n -sym-file 100 100 byte captured packet another 100 byte captured packet
‘ ‘ ‘ ‘ ‘ 90000 : , , : ———— 4500
AP Depth e DS + Internal coverage x o
\ magickpng
100% 3 - % 1 80000 - * GCov coverage magickipg . "2 4000
= -y _._ +
. y 70000 [magickjpg 4 3500
80% oI : N . -
- 2 .
B 2 60000 [~ L’ 4 3000 s
[S ’ <
" 60% . . . _ 2 50000 p 1 2500 2
&) 3 s xsqlite3 g
& S S 40000 4 2000 §
q>) 8 t(piump/ —
2 - e . 5
< 40% : P 2) N ¢ 30000 [Fsales 4 1500 &
g 9 . ’ 8 -
mA] .7
X X 0 9 | i 20000 _datamafh,:make -4 1000
20% - . . 9 1 oggeric Xma
J 10000 -, ’1;2* x datamash -4 500
> Fl % x09genc x tepdump
- be
W o o o v X oC @B q® 0 500 1000 1500 2000 2500 3000
\) CHRP (K™ @ o \ AU
e «\aq\ «\ag\) LN Unique Faults Found

Figure 2: Relative time spent in the SMT solver (STP) by
vanilla KLEE in our non-seeded experiments with the ran-
dom path (RP), depth-biased (Depth) and DFS strategies.

search strategies. As can be seen, most of our benchmarks are solver-
bound, meaning they spent a very high proportion of time in the
solver, for example bc and make. datamash is the only benchmark
that is not solver-bound in any search strategy considered, meaning
KLEE spends very little time constraint solving. SQLite3 is only
solver-bound with the DFS search strategy.

4.2 Internal Coverage vs. GCov Coverage

When measuring the coverage achieved by vanilla KLEE and our
pending constraints extension, we can use either the internal cov-
erage reported by KLEE or the coverage reported by GCov!! when
running the test inputs generated by KLEE.

The internal coverage reported by KLEE includes the lines of
code that KLEE executed symbolically, at the LLVM bitcode level.
By contrast, the GCov coverage is the coverage reported by GCov
at the source code level, when rerunning the test inputs generated
by KLEE on a version of the program compiled with GCov instru-
mentation. Both approaches have advantages and disadvantages.

"https://gcc.gnu.org/onlinedocs/gec/Geov.html

Figure 3: Dual-axis scatter plot of internal coverage (left y-
axis) and GCov coverage (right y-axis) against the number of
injected faults found.

On the one hand, GCov coverage has the advantage of being dis-
connected from KLEE and LLVM; often developers just want a tool
like KLEE to generate a high-coverage test suite and assess this
coverage independently, at the source code level. On the other hand,
GCov coverage includes parts of the program that KLEE did not
execute symbolically; these parts of code were not error-checked
by KLEE, and thus bugs could be missed. It is important to note
here that when KLEE performs an error check, it finds a bug if there
are any values that can trigger it on that path. By contrast, a test
case that covers the buggy path might not necessarily reveal the
bug. Therefore, if KLEE is used primarily to reveal bugs, internal
coverage is more appropriate.

To illustrate this issue, we injected a division-by-zero error in
every basic block of some of our benchmarks. These division-by-
zero errors are triggered by a different value in each basic block.
We then run vanilla KLEE for two hours on these fault-injected
programs and measure both internal and GCov coverage.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Pending Constraints

ASE °20, September 21-25, 2020, Virtual Event, Australia

T T T

Vanilla 225742

Pending 7271
Combined

T T T
| Vanilla ==z i L
70 Pending 771 70
Combined

60 - E b 60 -
50 1 50 |
a0 . 40 -
30+ 30+

20 20

Covered Instructions x 1000
<~ <
Covered Instructions x 1000

T T T
| 70 b Vanilla =272 i
Pending 771

Combined

50 5 8
40 | B

30 - b

N

S
I

20

Covered Instructions x 1000

S5 <
E=XX==xa,
N N

I

ladll ﬁ%g /

(Y e C wed]
O 0 e (@a¥ 4ot e oo
“\aq\c“\\ag\c O 00007 gl 2

(a) Random Path

A\ 3 e ¢ we? Q
OF L 09, Ao (¥ o™ X8y
“\ag\cm\ag\c O 0@ (90% o @9‘5"

(b) Depth-Biased

i) s

A\ 3 e ¢ we? Q
90 o (@ (et @ e
o “\ag‘°m\a9‘° P g9 o

(c) DFS

Figure 4: Instructions covered by vanilla KLEE and pending constraints alongside their combination in 2h non-seeded runs.

Figure 3 shows a dual-axis scatter plot of both internal coverage
on the left y-axis and GCov coverage on the right y-axis against
the number of unique injected faults found.

As can be seen, internal coverage seems to highly correlate
with unique faults found, whereas GCov coverage shows no such
correlation. We discuss this in more detail in a blog post [7].

In our work, we observed that pending constraints do not neces-
sarily improve GCov coverage, but significantly improve internal
coverage. Therefore, while accepting the former, we show in our
experiments that it can improve the latter, and thus report internal
coverage in our experiments.

4.3 Non-seeded Experiments

To evaluate pending constraints in a setting without seeds, we ran
each of our benchmarks for 2 hours with the random path, DFS and
depth-biased strategies. The results are shown in Figure 4. For some
benchmarks, such as bc and make, pending constraints consistently
cover more instructions for all search strategies. For others, such
as m4 and tcpdump, the relative performance is dependent on the
search strategy.

If we look at the combined coverage of vanilla KLEE and pend-
ing constraints, we see that there is some complementarity to the
approaches. For instance, while vanilla KLEE obtains better cover-
age for m4 with the depth-biased search, the pending constraints
reach code that is not covered by vanilla KLEE. Overall, pending
constraints reached 35%, 24% and 34% more instructions across our
benchmarks with random path, DFS and depth-biased search respec-
tively. These results show that pending constraints can significantly
increase the power of symbolic execution on some benchmarks by
themselves and/or cover different parts of the code when compared
to vanilla KLEE. Therefore they seem to be an effective tool for
non-seeded exploration in symbolic execution.

Comparing the search strategies for pending constraints, we
observe that for these experiments DFS performs best overall, cov-
ering 11% more instructions than random path, which in turns
covers 14% more instructions than depth-biased search.

One advantage of the pending constraints approach is that it
usually spends less time solving queries that turn out to be infeasible.
Figure 5 shows the time spent constraint solving queries that turn

90%

Vanilla ©E==]
Pending 77

80% K . E
g70% |-] 1
-': Y
Esoo/
> o - 7 1
3 - i o
(2]
fal
©50% o B
g 4 %

@ %
240% | E
®
(] /|
= 30%
6 b |
[
_; /|
o /
220% p E
/|
10% I /| E
/|
K
0% C AN} 0 — e C] Q
S 29 N R0 o C\n X\ e s
da@«\ “\aq\c \&g\c 0 @@ o I\ ‘go““

Figure 5: Relative time spent solving queries that were infea-
sible, averaged across all three search strategies.

out to be infeasible relative to total constraint solving time. We
averaged across all search strategies for brevity and clarity. For
most benchmarks, pending constraints spend significantly less time
constraint solving queries that are infeasible. The only exception is
SQLite3, where the absolute time spent solving infeasible queries is
still lower for pending constraints across all three search strategies.

4.4 Seeded Experiments

To evaluate our approach in the context of seeding, we ran both
vanilla KLEE and pending constraints for 2 hours with each seed
from Table 1. Both versions are given the seeds—vanilla KLEE as
assignment in the (counter-example) cache and additionally as
concrete input.

Figure 6 shows the coverage achieved by vanilla KLEE and pend-
ing constraints, for each search strategy. Coverage results for the
two seeds are merged in each configuration.

ASE ’20, September 21-25, 2020, Virtual Event, Australia

50

50

Timotej Kapus, Frank Busse, and Cristian Cadar

T T T T T T
Vanilla 22572 Vanilla 225742
45 | Pending 271 v 4 45 | Pending 771
Combined Combined

40 g 8 40
35 | b 35 |
30 - . b 30 |
25 p 4 8
20 -) . 20 -

15

Covered Instructions x 1000
Covered Instructions x 1000
N
G
T

10

5| ﬁ | I B
0 % A {

50

T T T
Vanilla 225742
B 45 | Pending 271 i
Combined
4 o 40F 4
o
o
§ LR 1
x o
1 2 30 A 1
§ S /
¥ i S 25t A]
7 @
A A £ 2 / —
4 o
o g .
54 I / 8 g 15[y g |
d I % 3 A %
4 y 7 B O 10} 7
& I d B j] 2
1 B A 1 50 o 1] 1
A 4] A] d %
4 0 § <

e o™

e ot
@

(Y e C wed]
O 0 e (@a¥ 4ot e oo
“\aq\c“\\ag\c O 00007 gl 2

(a) Random Path

& e C wed Q C a0 & e C we? Q
OF L 0 o ¥ (e e P 2 R0 ot (¥ e e et
“\ag\cm\ag\cv 2 o gq\\@d“ (o “\aq\c‘(\\aq\cv W2 o 5&\@6*

(b) Depth-Biased

8%

(c) DFS

Figure 6: Covered instructions by vanilla KLEE and pending constraints alongside their combination in seeded runs on our
benchmarks. Each seed set is run for 2 hours in each configuration and the coverage results for the two seeds are then merged.

For some benchmarks, such as magickyng, SQLite3 and tcpdump,
pending constraints significantly outperform vanilla KLEE for all
search strategies. For others, such as datamash and make, there
does not seem to be a large difference. Finally, for m4, pending
constraints perform slightly worse than vanilla KLEE. This is due
to dereferences of symbolic pointers being very common in m4,
which do not benefit from pending constraints.

From the combined coverage bars, we can observe there is very
little complementarity between the two approaches, with the ex-
ception of tepdump under DFS, where the combined coverage is
significantly higher. In this case, both runs explore the seed, but
pending constraints go deeper in the exploration. We discuss in
more detail the advantages provided by pending constraints with
seeding in the SQLite3 case study of §4.6.

Overall, pending constraints cover 25% more instructions with
random path search, 30% more with depth-biased search, and 23%
more with DFS. In the pending constraints experiments, depth-
biased search covered 2% more instructions overall when compared
to random path search, which in turn covered 3.5% more than DFS.

Figure 7 shows the coverage achieved with only seed set 1 be-
tween our pending constraints approach and vanilla KLEE with
the random path search strategy. For most utilities, we can draw
similar conclusions as for the experiments of Figure 6 where the
coverage for the two seed sets is merged. oggenc is an exception as
it shows no coverage improvement on only seed set 1.

4.5 Pending Constraints with Relaxed Checks

Figure 7 also shows the coverage achieved with relaxed checks for
critical instructions (Section 3.2). As can be seen for some tools like
bc or SQLite3, relaxing these checks can lead to large increases in
number of covered lines. In the case of bc the instruction coverage
more than doubles. For most other utilities the increase is smaller,
but not insignificant, with oggenc, magickpng and tcpdump being
the notable exceptions showing no or small decreases in coverage.

These results show that pending constraints with relaxed checks
can be used to effectively reach deeper into the program, but with
the downside of errors being missed during exploration.

50 T T T T T T T T
Vanilla E=7=2 Pending [~ Relaxed Pending
45 - M R
/}
40 | j g
o
S 35 = _ B
— A /1
X
w 30 q i
5 pilg /
2)i
S 25 K R
b= A %
g Y
g 20 p. P B
g %
8 15+ j]
7 1 04!
10 | A A 4
A / % g
5 | y; A i
p 1 A /1
o e e O qet© > P
@9 o o S (o

Figure 7: Covered instructions on seed set 1 of vanilla KLEE
against pending constraints with both strong and relaxed
checks with the Random Path search strategy.

4.6 Case Study: SQLite3

To provide more insight into our approach, we now discuss one of
our benchmarks, SQLite3, in more detail. In particular, we look at the
evolution of coverage on long-running experiments and examine
various pairwise combinations of configurations to uncover how
different seeding approaches and search strategies complement
each other.

4.6.1 24-hour Non-seeded Runs. We first performed 24-hour ex-
periments with SQLite3 without seeding, with each of the three
considered search strategies. Each experiment was repeated 3 times
to account for the randomness of the depth-biased and random
path strategies. The results are shown in Figure 8a.

DFS performs surprisingly well for this benchmark. However,
with vanilla KLEE, it achieves no additional coverage after the first

Pending Constraints

Pending DFS —— Vanilla DFS —---—
Pending Depth —— Vanilla Depth —-—-—
Pending RP ——— Vanilla RP —-—-~

Covered Instructions x 1000

10 oo 1

0 I I I I
0 5 10 15 20

Time (hours)

(a) Non-Seeded

Covered Instructions x 1000

ASE °20, September 21-25, 2020, Virtual Event, Australia

Pending DFS —— Vanilla DFS ----- Relaxed Depth
Pending Depth —— Vanilla Depth —---—
Pending RP ——— VanillaRP —-—-—
80 T T T T
70 I r—j—‘—/—

Time (hours)

(b) Seeded

Figure 8: Coverage of SQLite3 over a 24-hour run. The experiments were repeated 3 times, represented as lines of the same

type. Both non-seeded and seeded runs are shown.

hour. By contrast, pending constraints with DFS continue to make
progress and end up achieving the highest coverage overall.

We inspected the test inputs generated using DFS to understand
why it performs so well. Vanilla KLEE with DFS appears to be lucky,
as it manages to find two short keywords, such as AS and BY, which
seem to be located close to the edge of the search space. These two
keywords are not found by vanilla KLEE using the other two search
strategies. Pending constraints with DFS does not find these short
keywords, but instead finds longer ones such as INSERT, FILTER,
VACUUM and WINDOW. This is not surprising, as the search space of
pending constraints with DFS is often quite different from that of
regular DFS.

Pending constraints with random path gain coverage quickly
due to its broader exploration, but makes limited progress in the last
10 hours. Pending constraints with the depth-biased strategy make
little progress for a long time, but gain a lot of coverage towards the
end of the run, achieving coverage similar to that of random path.
Vanilla KLEE makes steady progress with both search strategies,
but does not overtake pending constraints.

4.6.2 24-hour Seeded Runs. We also performed 24-hour experi-
ments with SQLite3 with seed set 1, with each of the three con-
sidered search strategies. In addition, we also run in this setting
pending constraints with relaxed checks, using the depth biased
strategy. As in the non-seeded runs, each experiment was repeated
3 times.

Figure 8b shows the results. The seed covers 37.2k instructions.
Vanilla KLEE performs similarly across the three search strategies
(all the lines for the vanilla KLEE runs are at the bottom of Figure 8b)
and never manages to complete the seeded path, stalling around
13k covered instructions. It makes very slow progress, covering less
than 500 new instructions in the final 20 hours of its run. This is

due to KLEE’s eager feasibility checks, with large constraints that
take a long time to solve.

Our pending constraints approach manages to cover all instruc-
tions on the seeded path. With error checks in place, it takes up to 3
hours to complete the seeded path, whereas with relaxed checks it
only takes 4 minutes. There are about 303 memory bounds checks
on the seeded path and solving the associated constraints accounts
for the majority of the time difference between the configuration
without and with relaxed checks. Note that 4 minutes is still signif-
icantly slower than the pure interpretation time of KLEE on this
input. Our approach still performs some solving activities such
as computing independent sets and substituting the seed in the
constraints.

There is no difference between search strategies in the initial
seeding phase as the exploration is guided by the seed. After pend-
ing constraints finish with the seeding, they make little progress
for up to several hours. During this time they are attempting to
revive pending states, most of which are infeasible and therefore
killed, thus giving no additional coverage. Finally, depending on the
search strategy, a feasible state is revived, leading to the execution
of a different path, potentially giving large coverage gains.

The depth-biased search, which picks good states to revive in 2
out of 3 of our runs, achieves significant new coverage. However,
random path search outperforms the depth-biased search in all of
the 3 runs and seems to generally achieve higher coverage. Due to
determinism of DFS, there is no difference between its runs. They
all achieve coverage in-between the random path and depth biased
search strategies.

We inspected the generated test inputs for the depth-biased, DFS
and random path runs. The test inputs generated by the depth-
biased runs were mostly very similar to the seed, with only a small

ASE ’20, September 21-25, 2020, Virtual Event, Australia

depth depth51 depthsl - rpsr rps2

depth

depth A depths;

depths; depths;

depths;
Uy ps1
Ps2

Ps1

Ps2

depth gepthss gepths2 e rpst rps2

Figure 9: Heatmaps of coverage combination pairs for
vanilla KLEE (lower triangle) and pending constraints (up-
per triangle) for SQLite3.

number of characters changed (e.g. SELECT * TEMp ;. . in-
stead of the seed SELECT * FROM t;).1? Even when it manages to
find new keywords, such as FILTER, HAVING, UPDATE, VACUUM, and
WINDOW, the test input is close to the initial seed (e.g. UPdATE * FROM
t;....). Similarly, DFS-generated test inputs are almost identical
to the seed, with only the last 2 characters changing in a depth-first
fashion. The random path search strategy, on the other hand, also
finds several more new keywords, such as BEFORE, HAVING, INSERT,
FILTER, and VACCUM, but diverges early from the seed and finds
additional keywords by exercising different code in the parser (e.g.
./.c....;expLain....). This difference between the generated
test inputs across the three search strategies is expected, as depth-
biased search and DFS pick states towards the end of the path,
where the seed has a greater impact.

4.6.3 Pairwise Coverage Combinations. Finally, we wanted to ex-
plore how the different combinations (non-seeded, seeded with
seed sets 1 and 2, and different search strategies) complement each
other. Therefore, we looked at the pairwise combinations of cov-
erage for 2-hour runs of each configuration. We decided to omit
showing the DFS runs in this case to illustrate the complemen-
tary aspects of seeding versus non-seeding runs more clearly. As
shown in Figure 4c, DFS is really effective in SQLite3 without seeds.
The union of non-seeded DFS and other approaches cover only
10-100 more instructions than DFS by itself. However, we note that
DFS is not always the best-performing strategy, as shown by other
benchmarks.

2Inputs shorter than the specified symbolic input size are padded with \@ and newlines
(\n, \r) are shown as .’

Timotej Kapus, Frank Busse, and Cristian Cadar

Analysing this amount of data is hard, so we devised the visuali-
sation in Figure 9, which shows pairwise comparisons of combined
coverage across the 6 different configurations for SQLite3. The la-
bels indicate the search strategy used and the seed set is indicated
in the subscript. Un-subscripted labels indicate non-seeding runs.

The figure consists of three different heatmaps. The upper right
triangle (red) shows the coverage achieved by pending constraints.
The lower left triangle (green) shows the coverage achieved by
vanilla KLEE. The diagonal (blue) shows the ratio between pending
states and vanilla for non-combined runs. The data in the two
triangles is normalised with respect to their upper-left corner, that
is the 2h depth-biased run without seeds. The hypotenuses of the
triangles therefore show the non-combined coverage.

As this graphic is dense with information, we will walk through
a couple of examples. Looking at the top-left corner of our triangles,
we see that both pending and vanilla KLEE with depth-biased strat-
egy have the value of 1.00—this is because everything is normalised
to this value. However, the blue 1.82 value tells us that our pending
constraints approach covered 82% more instructions than vanilla
KLEE with depth-biased search strategy.

Now focusing on two configurations from the lower green tri-
angle: depth-biased without seeds and depth-biased with seeds for
vanilla KLEE. The coverage of the run with a seed from set 1 is 9%
(1.09) higher than that of the non-seeded run, while the combined
coverage of both achieve 36% (1.36) more coverage. This indicates
that there is complementarity between the coverage achieved with
and without a seed.

Looking at the same 2 combinations in the upper red triangle, we
can see that with pending constraints, seeding with set 1 achieves
61% (1.61) more coverage than the non-seeding run. Furthermore,
their combination achieves 97% (1.97) more coverage than solely the
non-seeding run. That indicates again that there is complementarity
between seeding and non-seeding runs as with vanilla KLEE.

The random path search strategy without seeding achieves more
than twice the coverage of the depth-biased search strategy in both
vanilla KLEE (2.47) and with pending constraints (3.11). However,
pending constraints cover 129% (2.29) more lines than vanilla KLEE.

There is also some complementarity of coverage between depth-
biased search and random path with pending constraints. Their
union covers 217% (3.17) more instructions than just depth-biased
as opposed to 211% (3.11) achieved by random path. Vanilla KLEE
behaves similarly.

Finally, looking at the union of coverage between non-seeded
and seeded runs, we can see that for pending constraints seeding
complements well with depth-biased exploration, achieving over
30% points (1.61 to 1.97 and 1.65 to 2.00) more coverage when com-
bined. With random path, we don’t see any such complementarity
(3.11). Vanilla KLEE follows a similar pattern.

4.7 ZESTI

ZESTI [18] is a promising extension of KLEE that combines EGT-
style symbolic execution with seeding via regression test suites.
Unfortunately, its original implementation was never upstreamed,
partly because it is quite large and intrusive. In this section we
show that pending constraints can be used to build a lightweight
and effective version of ZESTI.

Pending Constraints

ZESTI consists of several parts. The two most important ones
are the ability to use a variety of inputs as seeds and the so called
ZESTI searcher, whose purpose is to explore paths around sensitive
instructions. The idea of the ZESTI searcher is to take a single seed
and execute it to completion, while recording sensitive instructions
and divergence points. A divergence point is a symbolic branch
where the path not taken by the seed is feasible. ZESTI then starts
bounded symbolic execution from the divergence point closest to a
sensitive instruction. It then moves to the next closest divergence
point and so on.

Re-implementing ZESTI on top of pending constraints is straight-
forward. Consider a symbolic execution run with pending con-
straints after a single seed has been executed to completion. There
are no normal states and many pending states representing the
divergence points described above. The ZESTI searcher is imple-
mented by considering pending and normal states separately. We
prioritise normal states, but only if their depth does not exceed the
depth of the last revived pending state plus some bound. Pending
states are revived in the order of distance to sensitive instructions.
This is equivalent to the ZESTI searcher and is easy to implement.
For simplicity, our implementation currently considers only mem-
ory accesses as sensitive instructions.

We found the benchmarks used for evaluation to be too hard for
ZESTIL For example, as seen in §4.6.2 it takes 3 hours to execute
a simple seed with SQLite3. Thus running the whole test suite of
SQLite3 and exploring a significant amount of paths around a seed is
impractical. Therefore, we chose three tools that KLEE can execute
more comfortably: dwarfdump'®, readelf'* and tar'®. These are
inspired by the original ZESTI paper [18], where we replaced GNU
Coreutils with tar as recent modifications in the Coreutils build
system make it harder to use with ZESTL

To capture the seeds, we replaced each binary with a script and
ran the application test suite. We then removed large seeds of over
8.1MiB to keep the execution time associated with an individual
seed short. This resulted in 1273, 313 and 5 seeds for dwarfdump,
tar and readelf respectively. Since we wanted to run each seed for
30 minutes as per the original ZESTI paper and keep the overall
time under 12 hours, we ran at most 200 seeds per benchmark.

These experiments found one bug in dwarfdump'® and one in
tar'” which have already been confirmed and fixed by the develop-
ers. Both of these bugs were found by the ZESTI searcher and were
not triggered by the original seed. Vanilla KLEE seeded with the
seed ZESTI mutated was not able to find these bugs with a 2-hour
timeout.

5 RELATED WORK

Concolic executors such as CREST [2], DART [12] or SAGE [13]
also drive each test input to completion, which is similar to the
behaviour of pending constraints. However, these tools suffer from
the disadvantages of concolic executors such as re-executing path
prefixes and exploring a single path at a time. Our approach brings

Bhttps://www.prevanders.net/dwarf.html
Yhttps://www.gnu.org/software/binutils/
Bhttps://www.gnu.org/software/tar/
1Shttps://www.prevanders.net/dwarf.html (28 June 2020 update)
http://git.savannah.gnu.org/cgit/tar.git/commit/?id=
dd1a6bd37a0d57eb4f002f01f49c51fa5c6bb104

ASE °20, September 21-25, 2020, Virtual Event, Australia

some of the strengths of concolic execution to EGT-style tools like
KLEE while maintaining their advantages.

KLEE [4] has an existing seeding mechanism, which is also used
by ZESTI [18] and KATCH [19]. However, when following a seed,
KLEE eagerly performs feasibility checks at every symbolic branch,
unlike pending constraints which defer these checks for when a
pending state is revived. This in turn can have a big impact on
coverage, as we have shown in §4.4.

KLUZZER [17], a whitebox fuzzer based on KLEE, implements
a similar idea of delaying the satisfiability checks by only follow-
ing the currently satisfied branch given by a seed. However, their
approach goes further by trading off the benefits of EGT-style sym-
bolic execution completely and reverting to concolic execution.

UC-KLEE [23] introduces lazy constraints. Here, the executor
continues exploring paths although the underlying constraint solver
can’t determine the feasibility in a given amount of time. The cor-
responding expensive constraint is added as lazy constraint to the
respective path condition and only evaluated when some goal is
satisfied, e.g. a bug is found, to suppress false positives. This leads
to more states in memory and thus to more solver queries but can
also reduce the overall solver time as the additional constraints
along such paths narrow down the solution space for the constraint
solver. Our approach explores a different design point, which al-
ways favours states that are known to be feasible, either via caching
or seeding, and when just pending states are left, they are only ex-
plored further if they are determined to be feasible.

Hybrid fuzzing approaches such as Driller [25], QSYM [28] or
SAVIOR [9] pass concrete inputs between a greybox fuzzer and a
symbolic executor. These approaches could directly benefit from
pending constraints to achieve a tighter integration between fuzzing
and symbolic execution.

6 CONCLUSION

We have presented pending constraints, a strategy that achieves a
more efficient use of constraint solving and a deeper exploration
of programs with symbolic execution. The key idea is to aggres-
sively follow paths that are known to be feasible either via caching
or seeding, while deferring all other paths by storing states with
pending constraints. We implemented this approach in KLEE and
evaluated it on nine hard benchmarks, including make, SQLite3
and tcpdump. Our evaluation shows that pending constraints can
significantly increase the coverage achieved by symbolic execution
in both seeded and non-seeded exploration.

ACKNOWLEDGEMENTS

We thank Martin Nowack, Jordy Ruiz and the anonymous reviewers
for their helpful feedback on the paper. This research has received
funding from the EPSRC UK via a DTA studentship, the DSO Na-
tional Laboratories, Singapore, and from European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 819141).

https://www.prevanders.net/dwarf.html
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/tar/
https://www.prevanders.net/dwarf.html
http://git.savannah.gnu.org/cgit/tar.git/commit/?id=dd1a6bd37a0d57eb4f002f01f49c51fa5c6bb104
http://git.savannah.gnu.org/cgit/tar.git/commit/?id=dd1a6bd37a0d57eb4f002f01f49c51fa5c6bb104

ASE ’20, September 21-25, 2020, Virtual Event, Australia

REFERENCES

(1]

(2]

[3

[10]

[11

[12]

(13

[14

[15]

Andrea Aquino, Giovanni Denaro, and Mauro Pezze. 2017. Heuristically Matching
Solution Spaces of Arithmetic Formulas to Efficiently Reuse Solutions. In Proc. of
the 39th International Conference on Software Engineering (ICSE’17).

Jacob Burnim. 2020. CREST: A Concolic Test Generation Tool for C. https:
//www.burn.im/crest/

Frank Busse, Martin Nowack, and Cristian Cadar. 2020. Running Symbolic
Execution Forever. In Proc. of the International Symposium on Software Testing
and Analysis (ISSTA’20).

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08).

Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases: How to
Make Systems Code Crash Itself. In Proc. of the 12th International SPIN Workshop
on Model Checking of Software (SPIN05).

Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.
2006. EXE: Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06).

Cristian Cadar and Timotej Kapus. 2020. Measuring the coverage
achieved by symbolic execution. https://ccadar.blogspot.com/2020/07/
measuring-coverage-achieved-by-symbolic.html.

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proc. of the IEEE Symposium on Security
and Privacy (IEEE S&P’12).

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Taowei, and Long Lu. 2019. SAVIOR: Towards Bug-Driven Hybrid Testing.
arXiv:cs.SE/1906.07327

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Cross-
checking of Floating-Point and SIMD Code. In Proc. of the 6th European Conference
on Computer Systems (EuroSys’11).

Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Testing
of OpenCL Code. In Proc. of the Haifa Verification Conference (HVC’11).

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proc. of the Conference on Programing Language Design
and Implementation (PLDI'05).

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proc. of the 15th Network and Distributed System
Security Symposium (NDSS 08).

Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for
In-house Debugging. In Proc. of the 34th International Conference on Software
Engineering (ICSE’12).

Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for Sym-
bolic Execution. In Proc. of the joint meeting of the European Software Engineering

Timotej Kapus, Frank Busse, and Cristian Cadar

Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’19).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04).

Hoang M. Le. 2019. KLUZZER: Whitebox Fuzzing on Top of LLVM. In Automated
Technology for Verification and Analysis (ATVA).

Paul Dan Marinescu and Cristian Cadar. 2012. make test-zesti: A Symbolic Execu-
tion Solution for Improving Regression Testing. In Proc. of the 34th International
Conference on Software Engineering (ICSE’12).

Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing of
Software Patches. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’13).

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proc. of the 35th
International Conference on Software Engineering (ICSE’13).

Saahil Ognawala, Thomas Hutzelmann, Eirini Psallida, and Alexander Pretschner.
2018. Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed
Symbolic Execution Approach. (April 2018).

Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a
Doubt: Testing for Divergences Between Software Versions. In Proc. of the 38th
International Conference on Software Engineering (ICSE’16).

David A. Ramos and Dawson Engler. 2015. Under-constrained Symbolic Execu-
tion: Correctness Checking for Real Code. In Proc. of the 24th USENIX Security
Symposium (USENIX Security’15).

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’05).

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: AL}\%menting Fuzzing Through Selective Symbolic Execution. In
Proc. of the 23rd Network and Distributed System Security Symposium (NDSS’16).

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: reduc-
ing, reusing and recycling constraints in program analysis. In Proc. of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE’12).
Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. 2006.
Automatically generating malicious disks using symbolic execution. In Proc. of
the IEEE Symposium on Security and Privacy (IEEE S&P’06).

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proc. of the
27th USENIX Security Symposium (USENIX Security’18).

https://www.burn.im/crest/
https://www.burn.im/crest/
https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
http://arxiv.org/abs/cs.SE/1906.07327

