A Segmented Memory Model for Symbolic Execution

Timotej Kapus
Imperial College London
United Kingdom

Cristian Cadar
Imperial College London
United Kingdom

ABSTRACT
Symbolic execution is an effective technique for exploring paths in a program and reasoning about all possible values on those paths. However, the technique still struggles with code that uses complex heap data structures, in which a pointer is allowed to refer to more than one memory object. In such cases, symbolic execution typically forks execution into multiple states, one for each object to which the pointer could refer.

In this paper, we propose a technique that avoids this expensive forking by using a segmented memory model. In this model, memory is split into segments, so that each symbolic pointer refers to objects in a single segment. The size of the segments are bound by a threshold, in order to avoid expensive constraints. This results in a memory model where forking due to symbolic pointer dereferences is significantly reduced, often completely.

We evaluate our segmented memory model on a mix of whole program benchmarks (such as m4 and make) and library benchmarks (such as SQLite), and observe significant decreases in execution time and memory usage.

CCS CONCEPTS
- Software and its engineering → Software testing and debugging.

KEYWORDS
Symbolic execution, memory models, pointer alias analysis, KLEE

ACM Reference Format:

1 INTRODUCTION
Symbolic execution has seen significant uptake recently in both research and industry, with applications across many different areas, such as test generation [17], bug finding [7], debugging [20], program repair [27] and vulnerability analysis [9].

In symbolic execution, the program under analysis is run on a symbolic input, i.e. an input which is initially allowed to have any value. As the program runs, the operations on symbolic values are evaluated as symbolic expressions. When the program branches on one of these symbolic expressions, symbolic execution explores both branches, if they are feasible, adding corresponding symbolic constraints to the respective path conditions. Upon path termination, symbolic execution can ask the solver for a solution to the current path conditions, thus obtaining a concrete test input that will follow the same path when executed concretely.

One of the main strengths of symbolic execution is that it can reason precisely about all possible values of each (control-flow) execution path it explores through the code under testing. This amplifies its ability of finding bugs and other corner cases in the code being analysed. However, symbolic execution still struggles to reason in this way about complex data structures that involve pointers that can refer to multiple memory objects at once.

To illustrate this problem, consider the C code in Figure 1, where we set \(N = 40 \). When \(\text{SINGLE}_\text{OBJ} \) is defined, the program allocates on line 3 a 2D matrix as a single object, for which all elements are initially zero. It then writes value 120 into \(\text{matrix}[0][0] \) on line 10. On lines 12 and 15, it declares two symbolic indexes \(i, j \) which are constrained to be in the range \([0, N) \). Finally, on line 15, it checks whether the element \(\text{matrix}[i][j] \) is positive.

The program has two paths: one on which \(\text{matrix}[i][j] \) is positive (which happens only when \(i \) and \(j \) are both zero), and the other in which it is not (which happens when either \(i \) or \(j \) are not zero). Unsurprisingly, a symbolic execution tool like KLEE [5] explores the two paths in a fraction of a second.

Now consider the program in the same figure, but without defining \(\text{SINGLE}_\text{OBJ} \). Now the matrix is allocated as multiple objects, one for each row in the matrix. In this case, KLEE will explore \(N + 1 \) paths, one for each row in the matrix, and an additional one for the first row in which both sides of the if statement are feasible. It will take KLEE significantly longer—12s instead of 0.3s in our experiments—to explore all 41 paths.

The reason is that KLEE, as well as other symbolic executors, use the concrete addresses of memory objects to determine to which objects a symbolic pointer could refer to. In our example, \(\text{matrix}[1] \) is a symbolic pointer formed by adding a concrete base address (the address of \(\text{matrix} \)) with a symbolic offset. When this pointer gets dereferenced on line 15, KLEE needs to know to which memory object it points. Therefore, KLEE scans all the memory objects and asks the solver if the symbolic pointer can be within its bounds. If that is true for more than one object, we are in what is called a multiple resolution case. This is the case in our example, where the pointer \(\text{matrix}[1] \) can point to \(N \) different objects, namely those corresponding to the \(N \) rows of the matrix. (Note that when
SINGLE_OBJ is defined this is not the case, as the compiler allocates a 2D array as a 1D array indexed by N+i+j. So KLEE forks one path for each of the N objects, constraining the pointer to refer to a single memory object in each case. For the case where matrix[i] refers to the first row of the matrix, KLEE explores two paths, one in which matrix[0][j] is greater than zero, and one where it is not. For the cases in which matrix[i] refers to one of the other rows, only the case where matrix[i][j] is not greater than zero is feasible. This gives us a total of N+1 paths.

This forking memory model for symbolic pointers has several important drawbacks. First, it leads to path explosion, as each time the code dereferences a symbolic pointer, the execution is forked into as many paths as there are objects to which the symbolic pointer could refer. Second, and related to the first point, it leads to memory exhaustion, as each additional path requires a certain amount of space in memory. Third, it enables the ability of symbolic execution to reason about all possible values on a certain control-flow program path.

In this paper, we propose a novel approach that uses pointer alias analysis to group memory objects that may alias each other into a memory segment. This avoids forking, because conservative alias analysis guarantees that a symbolic pointer can only point to objects within a single memory segment.

We describe our technique in detail in Section 2, present its implementation in Section 3, and evaluate it in Section 4. We then discuss its trade-offs in Section 5, present related work in Section 6 and conclude in Section 7.

2 PROPOSED MEMORY MODEL

Consider the program in Figure 1 (with SINGLE_OBJ not defined) for N = 3, with a memory layout shown on the left-hand side of Figure 2. matrix is an array of pointers allocated at 0x0100 that points to the rows of the matrix allocated at addresses 0x0200, 0x0300 and 0x0400. Suppose that libc also allocates two memory objects in the background, at addresses 0x0500 and 0x0600. There are also two symbolic pointers: matrix[i], which is constrained to point to one of the three matrix rows, and matrix[2][j], which is constrained to point to one of the entries of the last row.

Most symbolic executors reflect this memory layout in their internal memory model. They record the start and end addresses of each memory block and associate a corresponding array in the constraint solver. Therefore, they can handle symbolic pointers such as matrix[2][j] well, because their value resolves to a single memory object. The symbolic address then gets translated into a symbolic index into the solver array that is backing the memory object. Solvers can then solve the associated queries with the popular theory of arrays [15].

The problem arises when a symbolic pointer can point to multiple memory objects, as is the case for pointer matrix[i]. This pointer resolves to three different memory objects (the matrix rows), backed by three different solver arrays. The theory of arrays cannot be used here, because it cannot express such constraints.

2.1 Existing Memory Models

There are several memory models for handling multiple resolution that have been considered in the context of symbolic execution: single-object, forking, flat memory and merging. Each memory model aims to resolve a dereference of a symbolic pointer to an access into a solver array.

Single-object model. In this approach, the pointer is resolved to one possible object and the other possibilities are discarded. This is the model used by most concolic executors, such as CREST [11], where the single object considered is the one given by the concrete input used in the current round of concolic execution. This is also the model used by the dynamic symbolic executor EXE [7], where the pointer is concretised to one possible value. FuzzBall [26] employs a more general version of this model, in which the pointer is concretized to multiple values that are selected randomly.

This approach scales well, but is incomplete and may miss important execution paths. For instance, both CREST and FuzzBall usually finish running the multi-object version of the code in Figure 1 (when slightly adapted to use the CREST/FuzzBall APIs) without exploring the feasible path where “Found positive element” is printed, incorrectly giving the impression to the user that the statement is not reachable.
Algorithm 1 Forking model

1: function ForkingDereference(Pointer p)
2: foreach MemoryObject o do
3: ForkPath()
4: AddConstraint(o.start \leq p < o.end)
5: solverArray ← GetSolverArray(o)
6: return solverArray[p - o.start]
7: end foreach
8: end function

Forking model. In this approach, shown in Algorithm 1, execution is forked for each memory object to which the pointer can refer (line 3), and on each forked path the pointer is constrained to refer to that object only (line 4). AddConstraint terminates the path if the added constraint is provably false (in our case, if \(p \) cannot refer to that object on that path). Finally, the corresponding access into the solver array associated with that object is returned (line 6). As a detail, ForkPath uses the initial path for the last object (instead of forking). Also, for ease of exposition, in this algorithm and the following ones, we ignore out-of-bounds checking and assume dereferences of char* pointers.

Consider running Algorithm 1 on our running example from Figure 1 and the layout from Figure 2, with \(p \) being \(\text{matrix}[1] \). The loop will iterate six times, forking each of the six memory objects in the program. In the first iteration, the path will be immediately killed by AddConstraint, since \(p \) cannot point to object at 0x0100. In the second iteration, \(p \) will be constrained to point to the first object it can point to (0x0200), and then the corresponding access into the solver array associated with that object is returned, i.e. \(\text{solverArray}[0x0200][p - 0x0200] \). The remaining iterations are similar, resulting in three paths, one for each of the three objects at 0x0200, 0x0300 and 0x0400 that \(p \) can point to.

Figure 3 shows the behaviour of the forking model compared to other solutions. In particular, it shows the behaviour of KLEE and Symbolic PathFinder (SPF) [28], both of which implement the forking model. Figure 3a shows results for the code in Figure 1 (with SINGLE_OBJ not defined), while Figure 3b shows results for a variant of the code that performs two symbolic lookups into the matrix. These figures show that the forking model scales poorly. This is particularly clear when two symbolic accesses are performed, where the execution time increases exponentially with the dimension of the matrix. Note that SPF appears to have an efficient implementation of forking for a small number of paths, which explains its good performance on the single lookup example.

Merging model. This approach keeps a single path, and creates an or expression, with one disjunct for each possible object to which the pointer could refer.

For space reasons, we omit the formal algorithm and illustrate how it works on our running example. Suppose that the symbolic executor encounters the expression \(*p == 1 \), with \(p \) being again \(\text{matrix}[1] \). This will be translated into a disjunction, with one disjunct for each of the three memory objects to which \(p \) can refer. Each disjunct will express the fact that \(p \) points to that object and will replace the pointer with the associated solver array for that object. That is, the expression \(*p == 1 \) will be translated to the following disjunction, where \(sa \) stands for \(\text{solverArray} \):

\[
(0x0200 \leq p < 0x0200) \land sa_{0x0200}[p - 0x0200] = 1
\]
\[
\lor (0x0300 \leq p < 0x0300) \land sa_{0x0300}[p - 0x0300] = 1
\]
\[
\lor (0x0400 \leq p < 0x0400) \land sa_{0x0400}[p - 0x0400] = 1
\]

Approaches following this idea at a high level were proposed in the context of SAGE [13] and Angr [14]. As illustrated in Figures 3a and 3b, the scalability of this approach on the running example is similar or slightly better than that of forking. In practice (§4), its performance is benchmark dependent.

Flat memory model. This approach tackles the multiple resolution problem by treating the whole memory as a single object, backed by a single solver array. Therefore, a solver can reason about symbolic dereferences using the theory of arrays, because all queries are using a single flat array.

The algorithm for translating a dereference is straightforward and shown in Algorithm 2. Any pointer in the program is an offset in the large solver array \(\text{memorySolverArray} \). This approach is also illustrated in the top right of Figure 2.

We are not aware of any symbolic execution engine that implements this approach. However, we explored this approach in the past and found it not to scale in the context of the symbolic executor EXE [7], the constraint solver STP [15] and a 32-bit address space: "a straightforward remedy to this problem [of a symbolic pointer referring to multiple objects] would be to model memory as a single STP array indexed by 32-bit bitvectors, but this approach is currently too slow to be practical" [8].

As shown in Figures 3a and 3b, this approach achieves good scalability on our running example and the variant with two symbolic lookups. However, this is because these examples allocate little memory. In an additional experiment, we modify the example to perform an additional irrelevant allocation of 30KB, which is meant to simulate a real application in which most of the memory is not involved in any single dereference. The results in Figure 3c show that the flat memory model also scales poorly.

2.2 Segmented Memory Model

The key idea behind our approach is the realisation that memory can be divided into multiple segments, such that any symbolic pointer can only refer to memory objects in a single memory segment. We can then associate one solver array per memory segment, and translate the symbolic pointer to an offset into its associated memory segment. As long as the individual memory segments are small enough, the approach can scale while still handling the problem of symbolic pointers referring to multiple objects.

On our running example, Figure 3 shows this approach has the advantages of the flat memory model in the first two cases, while maintaining its good performance when irrelevant memory allocations are performed.

Computing memory segments. To divide memory objects into segments, we use a conservative points-to analysis [1, 18]. The
Algorithm 3 Computing and using memory segments

1: function ComputeMemorySegments()
2: perform PointsToAnalysis()
3: pts ← ∅
4: foreach pointer p do
5: ptSets ← ptSets ∪ PointsToSet(p)
6: endforeach
7: while ptSets changes do
8: foreach s ∈ ptSets do
9: if ∃ s′ ∈ ptSets. s′ ≠ s ∧ s ∩ s′ ≠ ∅ then
10: ptSets ← (ptSets \ {s, s'}) ∪ {s ∪ s'}
11: end if
12: endforeach
13: endwhile
14: foreach seg do
15: seg ← new MemorySegment()
16: AssocPTSet(seg) ← s
17: endforeach
18: return
19:
20: function GetMemorySegment(Pointer p)
21: pts ← PointsToSet(p)
22: foreach MemorySegment seg do
23: if pts ⊆ AssocPTSet(seg) then
24: return seg
25: end if
26: endforeach
27: return
28:
29: function HandleAlloc(Pointer p, Size sz)
30: seg ← GetMemorySegment(p)
31: return AllocateIn(seg, sz)
32: end function

result of a points-to analysis is a mapping between pointers and points-to sets. The points-to set of a pointer p is a set of pointers and abstract memory objects to which p may refer to during execution. An abstract memory object is identified by the static allocation point in the program. For instance, in Figure 1, there are two abstract memory objects, AO1, corresponding to the allocation at line 5, and AO2, corresponding to the allocation at line 7.

The function ComputeMemorySegments in Algorithm 3 shows the algorithm for computing memory segments. After running the points-to analysis (line 2), the set ptSets is initialised to contain all the points-to sets computed by the analysis (lines 3–6). Then, any two points-to sets s and s′ that overlap are merged until no such sets exist anymore (lines 7–13). Finally, for each of the resulting points-to sets a new memory segment is created (lines 14–15) in which all the objects associated with that points-to set will be allocated. The map AssocPTSets remembers the points-to set associated with each memory segment (line 16).

In our example from Figures 1 and 2, there are two pointers we consider: matrix and matrix[i]. Pointer analysis tells us the points-to set of matrix is a singleton set containing the abstract object AO1. Similarly, the points-to set of matrix[i] is a singleton set containing AO2. Continuing with Algorithm 3, we therefore initialise ptSets = [{AO1}, {AO2}] (lines 3–6). In this case there are no common elements in those sets, so lines 7–13 have no effect. Finally, we create two memory segments corresponding to the two elements in ptSets. AO1 corresponds to the memory segment starting at 0xa100 in Figure 2, where the array of pointers to the matrix rows will be allocated. AO2 corresponds to the memory segment starting at 0xd100, where the actual rows of the matrix will be allocated.

The function GetMemorySegment in Algorithm 3 returns the memory segment associated with a pointer p in the program. It does so by finding the memory segment whose associated points-to set contains the points-to set of p. (We note that an implementation could be optimised by keeping a reverse mapping from points-to sets to memory segments.)

GetMemorySegment is then used by HandleAlloc in Algorithm 3 to handle a heap allocation of the form p = malloc(sz) in C. The function allocates memory for the target pointer p in its associated memory segment. In our example, it returns the memory segment starting at 0xa100 when encountering the allocation for matrix on line 5. For the allocation on line 7 where row allocations are made, it returns the memory segment starting at 0xd100.

Finally, Algorithm 4 shows how a dereference of a pointer p is handled. We first obtain the memory segment associated with p (line 2), then we get the solver array associated with that segment (line 3), and return the corresponding solver array access (line 4).

Restricting segment size. The approach of Algorithm 4 scales as long as the size of each memory segment remains small. In practice, some segments may become very large, imposing significant

Figure 3: Runtime of different memory models on a family of 2D matrix benchmarks based on Figure 1 with SINGLE_OBJ undefined. All memory models are implemented in KLEE, except for the one explicitly mentioning Symbolic PathFinder.
Algorithm 4 Pure segmented memory model

1: function PureSegmentedDereference(Pointer p)
2: \[\text{ seg } \leftarrow \text{GetMemorySegment}(p) \]
3: \[\text{ solverArray } \leftarrow \text{GetSolverArray}(\text{seg}) \]
4: \[\text{ return solverArray}[p - \text{seg.start}] \]
5: end function

Algorithm 5 Segmented memory model

1: function SegmentedMemoryDereference(Pointer p)
2: \[\text{ foreach MemorySegment seg do} \]
3: \[\text{ ForkPath()} \]
4: \[\text{ AddConstraint}(\text{seg.start} \leq p < \text{seg.end}) \]
5: \[\text{ solverArray } \leftarrow \text{GetSolverArray}(\text{seg}) \]
6: \[\text{ return solverArray}[p - \text{seg.start}] \]
7: end foreach
8: end function
9:
10: function AllocateIn(MemorySegment seg, Size sz)
11: if \[\text{seg.size} \leq \text{Threshold} \] then
12: \[\text{ return Extend}(\text{seg}, sz) \]
13: else
14: \[\text{ sego } \leftarrow \text{ChooseSegment()} \]
15: \[\text{ return AllocateIn}(\text{sego}, sz) \]
16: end if
17: end function

In practice, the performance of the algorithm depends on the precision of the points-to analysis. If the analysis is extremely imprecise, it may put all pointers into a single points-to set, and our model would degenerate to the flat memory model. At the other extreme, if the threshold is too small (or the points-to analysis extremely buggy), our model would degenerate to the forking model.

3 IMPLEMENTATION

We implemented our approach on top of KLEE commit 0283175f, configured to use LLVM 7 and the STP constraint solver 2.1.2. Below we provide additional details about our implementation.

Points-to analysis. We use SVF [34], a scalable LLVM-based framework for value-flow construction and pointer analysis. In particular, we use whole-program wave propagation-based Andersen analysis [29], a fast flow-insensitive, context-insensitive inclusion-based points-to analysis. We found it to be significantly faster than the basic Andersen analysis [1] while maintaining precision. It terminated in under two minutes for all our benchmarks. Compared to the high runtime of symbolic execution, we found the analysis time to be insignificant.

Memory segment implementation. For each memory segment that needs to be created in Algorithm 3 (line 15) we reserve 200KB of address space using map. At this point the segment has size 0, but can hold an object of maximum size 200KB. We use map instead of malloc to save memory, as in practice many memory segments will be empty and will therefore not be mapped to physical memory.

The threshold size for the forking approach was set to 10KB, which was small enough for STP to be reasonabably performant, while still being large enough to significantly limit forking.

We write the size of each allocation just before the returned pointer to enable realloc and free. The realloc function is handled with an LLVM pass that runs before the execution and replaces all calls to realloc with malloc, memcp and free. We use the previously stored allocation size information to determine the size of the region to copy with memcpy.

The memory freed by calls to free is added to a list of free space in each memory segment. That list is then scanned before a memory segment is extended for allocation. We try to find the smallest gap that fits the requested size, and if such a gap is found, we perform the allocation there. We found this to be an important optimisation to keep the sizes of memory segments small.

Constants and local variables. A common performance optimisation in pointer alias analysis is to model all constant objects (such as constant strings) as single memory objects [19]. We similarly adopt a scheme in which constant objects are disregarded by the alias analysis and allocated in their own memory segments. We make the same choice for local memory objects, namely objects allocated on the stack. We found only one program where constant objects are involved in multiple resolution, but this was a case where the forking model would work well too, as the pointer could only refer to two different objects. We found no programs where local objects were involved in multiple resolution. Of course, the approach presented here is easily adapted to support these kind of objects, should a need for it arise.
Flat memory model. We found it easy to implement the flat memory model in KLEE, by making all allocations into a single memory segment backed by a single solver array.

Merging model. The merging model is implemented by leveraging KLEE’s ability to merge states. Upon hitting a multiple resolution, we let KLEE fork as usual and then immediately merge all the states thus creating the or expression of their path conditions. We note that this approach might not be optimal—however, KLEE spent most of the time in constraint solving activities in the merging runs in our evaluation. Therefore, we believe the threat to validity against this implementation choice is minimal.

4 EVALUATION

Symbolic pointer dereferences that trigger multiple resolutions often make existing symbolic execution tools unusable. However, only some types of programs trigger such dereferences, and we discovered that benchmark suites used in the past to evaluate symbolic execution, such as GNU Coreutils [16], do not trigger many multiple resolutions.

In general, benchmarks which are prone to trigger multiple resolutions are those where a symbolic input (e.g. coming from files, command-line arguments or environment variables) flows into a data structure indexed by that input. Hash tables are the prime example of such benchmarks, widely used in a variety of programs.

Therefore, we selected several large programs that use hash tables—m4, GNU make and SQLite—and used test harnesses that drive execution toward the parts of the code employing these hash tables. Essentially, our evaluation is meant to show that our model can make a big difference in such cases, while acknowledging that it is not relevant all the time. We further discuss this aspect in §5.

Ideally, we would like to compare the fraction of the search space explored in these programs under each memory model. Unfortunately, this is challenging to do, especially since the number of explored paths changes across models due to forking and merging. Therefore, we decided to build our test harnesses in such a way that programs terminate. Then, we can simply compare the time needed to finish the exploration under different memory models.

For one program where we didn’t manage to write such a driver, make, we measure how quickly each memory model reaches coverage saturation. As a sanity check, we made sure that terminating benchmarks reach the same coverage at the end under all memory models, and that the flat memory model and the two variants of the segmented memory model explore the same number of paths (recall that we didn’t see any forking in these benchmarks with the hybrid segmented memory model).

We also measure the memory consumption of KLEE under each memory model as a proxy for how many states KLEE has to keep in memory at each point and to illustrate a further tangible benefit of choosing the right memory model.

We observed that execution time and memory consumption can vary significantly with different search strategies. Therefore, we conducted our experiments using three different strategies: DFS and BFS representing extreme behaviors in terms of memory consumption, and KLEE’s default search heuristic representing a good general strategy. KLEE’s default heuristic interleaves random path selection with a heuristic that aims to maximize coverage [5].

Table 1: Impact of points-to analysis on our benchmarks and its runtime.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Total mem. (bytes)</th>
<th>Max. segment size (bytes)</th>
<th>Analysis runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>24,904</td>
<td>120</td>
<td>1.9</td>
</tr>
<tr>
<td>GNU m4</td>
<td>3,392</td>
<td>1,051</td>
<td>4.3</td>
</tr>
<tr>
<td>GNU make</td>
<td>17,663</td>
<td>664</td>
<td>4.7</td>
</tr>
<tr>
<td>SQLite</td>
<td>45,461</td>
<td>506</td>
<td>70.3</td>
</tr>
</tbody>
</table>

Figure 4: Symbolic input to m4, where ? denotes a symbolic character.

The experiments were run on an Intel(R) Core(TM) i7-6700 at 3.40GHz with 16GB of memory. We use a timeout of two hours in our experiments and a memory limit of 4GB.

4.1 Impact of Points-to Analysis

The performance of the segmented memory model is highly dependent on the size of the segments, which is directly related to the precision of the points-to analysis. In order to understand how much our results would be improved by a more precise points-to analysis, we decided to approximate a best-case points-to analysis.

To do so, we run the forking approach on our benchmarks until it hits the first multiple resolution, where we record the allocation sites with allocation context of all the objects involved in the multiple resolution and terminate the execution. We then restart the execution, placing all objects allocated at those allocation sites in the appropriate contexts into a segment. Should a new multiple resolution be encountered, we again record the allocation site and its context, create a new segment and merge any segments if needed, and repeat this process until no more multiple resolutions are encountered (within a certain timeout). In practice, we only needed fewer than five iterations for our benchmarks. Essentially, we group into segments only the objects actually involved in multiple resolutions in a given execution. This gives us results which are at least as good as the most precise points-to analysis possible.

Table 1 shows the impact of the pointer alias analysis on the benchmarks we use in our evaluation (and which will be described in detail in §4.2 to §4.5). The first column shows the total memory used by the dynamically-allocated memory objects in each program. This is the size of the flat memory segment.

The next two columns show the maximum segment sizes for both the SVF pointer analysis and our idealized analysis. For all benchmarks, the points-to analysis significantly reduces the largest segment size. The maximum segment size of the ideal analysis is significantly smaller than for the SVF analysis, suggesting there are important opportunities for improving the precision of SVF.
Using the SVF analysis, the APR and SQLite benchmarks reach the maximum threshold of 10KB for our segments and get split. Despite this split, we did not observe any forking in the segmented memory model for APR. For SQLite, we observed 2 forks into 2 paths each.

The last column of Table 1 shows the runtime of the SVF points-to analysis. For all benchmarks but SQLite, the analysis took less than 5 seconds, which is insignificant compared to the cost of symbolic execution. Even for complex programs like SQLite, the analysis took 70s, which is noticeable, but still little in a symbolic execution context.

4.2 GNU make

GNU make [25] is a popular implementation of the make macro processor included in most UNIX-based operating systems. It is a relatively small program consisting of about 8000 lines of code, which makes extensive use of hash tables to look up strings. In a nutshell, make operates by reading in the input text as a sequence of tokens. It then looks up each token in a hash table. If the token is found, it replaces it with the value in the hash table. Otherwise, it outputs the token and continues with the next one. That makes it a good candidate to benefit from the proposed memory model, as a significant part of make’s computation consists of hash table lookups which trigger forking due to multiple resolution.

To run make using symbolic execution, we need to make its input symbolic. To reach deeper parts of the code, where make operates as described in the paragraph above, we run make on a partially symbolic input. The outline of the input we used is shown in Figure 4. We define several concrete one-character macros, using the define keyword. Then we expand two macros, with the name of the macro being symbolic, which results in a symbolic lookup in the hash table. Finally, we expand two more macros inside ifelse constructs. The example is set in a way that illustrates the multiple dereference problem, but we believe it is quite representative of how make is used.

We ran KLEE on make for two hours under DFS, BFS and KLEE’s default strategy, with forking, merging, flat and segmented memory models. The segmented memory model is further broken down into two runs. The first one is using points-to information computed from SVF. The second one uses ideal points-to information, which was obtained with a pre-run as described in §4.1.

Figure 6 shows, for each search strategy, KLEE’s termination time and memory usage for each of the five memory models. The forking and flat memory models do not terminate before the 2-hour timeout. The segmented memory model using SVF terminates in around one hour, with the ideal version a few minutes earlier. In contrast to the segmented memory model, which is only mildly influenced by the search strategy, the performance of the merging model heavily depends on the search strategy: for DFS, it terminates in only 25 minutes, for BFS in 88 minutes, while with KLEE’s default strategy it times out after 2 hours.

Under DFS, the memory consumption is unsurprisingly low, as only a small number of states are kept in memory at one time (note that the y-axis has a different scale for DFS compared to BFS and the default KLEE strategy). The SVF segmented memory has slightly higher overall memory usage due to the fixed memory cost of keeping all points-to information. For BFS and the default search strategy, all memory models have low memory usage, except for the forking model, which quickly reaches the 4GB memory limit.

4.3 GNU make

GNU make [25] is a popular build system, used extensively in the open source community. It is a larger program, consisting of about 35,000 lines of code. It uses significantly more memory during runtime than make. To make execution easier for KLEE, we reduced the sizes of several caches in make.

Our evaluation focused on the variable expansion capabilities of make. Similarly to make, we made the makefiles only partially symbolic. Figure 5 illustrates the makefile we used as symbolic input in our experiments.

Figure 7 shows the memory consumption of the different memory models. This benchmark was the only one where none of the runs terminated before reaching the timeout. Unsurprisingly, the forking model’s memory consumption grows the quickest. The two segmented memory models behave similarly, with the SVF version consuming a constant amount of additional memory due to holding the whole points-to set.

The merging model appears to have the best memory consumption, but this is only because it executes two times fewer instructions than the next slowest approach (SVF segmented memory). When compared to make, the make runs are slower (execute fewer instructions per second), therefore the differences between the memory models are also smaller.

Since this benchmark is not terminating, we report the coverage. For DFS and BFS, the coverage was the same across all memory models at 21%. For the default heuristic, the forking and ideal segmented memory models had the highest coverage at 21.49%, followed by SVF segmented memory model at 18.75% and the flat memory model at 18.27%. Merging only achieved 15.44% coverage.

4.4 SQLite

SQLite [33] is a SQL database engine library written in C, which claims to be the most used database in the world. It has a big codebase with over 200,000 lines of code. We focused our evaluation on a part of SQLite that triggers multiple resolutions in symbolic execution.

In particular, SQLite uses a hash table to keep track of all triggers associated with a table. We create several triggers with concrete names and then try to create a trigger with symbolic name, which should involve a lookup of a symbolic key in the hash table of triggers.

We use an in-memory database, create a table with two int columns and add 15 triggers to this table. We need to create more than 10 triggers as the SQLite hash table is optimized to be just a linked-list when there are fewer than 10 elements. Choosing a

```perl
1 a := word1
2 b := word2
3 d := $?
4 e := $?
```

Figure 5: Symbolic input to GNU make, where ? denotes a symbolic character.
higher amount of triggers would tilt the results against the forking model, but we believe 15 triggers is a good trade-off between showcasing the multiple dereference issue and a realistic use of the library. Finally, we create two more triggers whose names are symbolic.

We thank David Trabish for his feedback while reproducing our experiments.

Figure 8 shows the results. The forking approach terminates in 12-16 minutes, the ideal segmented memory model terminates in

1These SQLite graphs have been amended to correct a mistake found after publication. We thank David Trabish for his feedback while reproducing our experiments.
We used the default hashing algorithm for the APR Apache Portable Runtime (APR) [2] is a C library that provides cross-platform functionality for memory allocation, file operations, containers, networking and threads, among others. It was initially used by Apache HTTP Server, but its use now extends to projects such as LibreOffice and Apache Subversion.

We focused our evaluation on APR’s hash table API. At a high level, we add 15 elements to a hash table and then do two symbolic lookups in this table. The number of keys and lookups was chosen to be the same as for SQLite. The skeleton code is shown in Figure 10. We used the default hashing algorithm for the int keys, which is the popular “times 33” algorithm, used by Perl for example.

Figure 9 shows the results. All runs terminate, except for merging under BFS and the default search strategy. Merging is also the slowest under DFS, taking 114 minutes to terminate. Forking terminates in 80-99 minutes, depending on the strategy. Flat memory performs well on this benchmark, terminating in 16-21 minutes. The segmented memory models (SVF) perform the best, terminating in 8-13 minutes. Memory consumption is small overall.

The most interesting observation about this benchmark is that the segmented memory model with ideal points-to analysis performs slightly worse than the one with SVF analysis. This is due to an interesting interaction with the solver. To understand why, we need to describe the relevant memory objects involved. These are a large 8.2KB memory object and several small objects, totalling about 120 bytes in size. The ideal points-to analysis groups the small objects into a single segment and puts the large 8.2KB object into a separate segment. The SVF analysis bundles both the 8.2KB object and the small objects into a single segment. During execution, there are queries involving arrays associated with both the 8.2KB object and the small objects.

5 DISCUSSION
Our experience shows that our segmented memory model can effectively deal with multiple resolutions that occur in the context of complex data structures such as hash tables. However, the model is only useful to the extent that the code triggers such symbolic dereferences.

To get an idea of how our model performs when there are no multiple resolutions, we performed an experiment on GNU Coreutils version 8.29 [16]. We first ran all 105 utilities for 60 minutes with KLEE under the (default) forking model using depth-first search strategy and recorded the number of instructions KLEE executed for each utility. Then we ran each utility again up to the number of recorded instructions, with both the forking model (as a sanity check) and our segmented memory model, using a larger timeout of 80 minutes. A total of 18 utilities timed out after 80 minutes with the segmented memory model. For the remaining utilities, the segmented memory model was between 70% slower and 20% faster, but on average 4% slower. GNU Coreutils are an unfavorable case for our memory model, because the lack of multiple resolutions means that the model incurs a cost without any benefits.

While for most utilities, the impact is not significant, for 18 utilities it is. The cost is due to the grouping of arrays into memory segments, which can significantly increase the difficulty of the constraints sent to the solver. Therefore, we believe that our approach should be enabled on demand: one would first run the forking approach, and only if that run reports several multiple resolution cases with large branching factors, switch to the segmented memory approach. In our experience, anything with more than 5 occurrences of multiple resolution with a branching factor of more

```c
1 apr_hash_t *ht = apr_hash_make();
2 for (int i = 0; i < 15; i++) {
3    int *key = malloc(sizeof(int);
4    *key = i;
5    apr_hash_set(ht, key, sizeof(int), "A_value");
6  
7  
8    int i, j = symbolic();
9    apr_hash_get(ht, &i, sizeof(int));
10   apr_hash_get(ht, &j, sizeof(int));
```
than 10 should be sufficient for our proposed model to become beneficial.

Furthermore, the approach is particularly useful when one is interested in reasoning about properties requiring all-value analysis for the paths explored. When forking is used, such reasoning is not possible, as individual control-flow paths are split. If only high coverage is of interest, the single object or forking models might sometimes be more appropriate. Our approach also provides a convenient way to trade off forking and all-value reasoning, by adjusting the threshold for the size of memory segments. We also note that the flat memory and merging approaches can also perform all-value analysis.

We found the merging approach to be a competitive alternative to segmented memory. However, in our experiments the merging approach performed worse overall (e.g. unlike the segmented memory approach, merging timed out for all three SQLite experiments and on two out of the three APR experiments) and was more sensitive to the search heuristic used. However, in some cases it performed better than the segmented approach (e.g. m4 with DFS). As a threat to validity, as mentioned before, we note that our implementation of merging might not be optimal, but we believe this threat to be small (see §3).

Our comparison between the two versions of the segmented memory model—one using SVF and the other an approximation of the ideal points-to sets—shows that the precision of the points-to analysis directly influences the performance of our approach. However, we found an interesting case where better precision slightly decreased performance, suggesting that in some cases merging arrays could be beneficial.

6 RELATED WORK

Symbolic execution has attracted a lot of attention recently, with different tools implemented for several different languages [5, 6, 11, 23, 26, 28]. These tools use different memory models, which influence both their power and scalability.

A recent idea paper [14] proposes a model that associates symbolic addresses with values, along with a time stamp and a condition. The symbolic memory is then represented as a list of these associations. When a read occurs, the most recent value matching the address and the condition is returned. ESBMC [10] uses a similar technique of chaining if-then-else expressions to model pointers that can point to multiple objects, in the context of model checking.

MAYHEM [9] creates a new memory object on each read operation, which is a subset of the whole memory that the read operation can alias. This approach is at a high-level similar to ours, but there are important differences. In particular, the approach does not handle writes via symbolic pointers that may refer to multiple objects—instead, these pointers are concretised as in the single-object model. Furthermore, the approach still involves solver queries, as in the forking model, to determine the objects to which the pointer may refer. Unfortunately, a direct comparison with Mayhem is not possible, as the code is closed-source, and the memory model is complex enough to make a reimplementation difficult.

David et al. [12] summarise the concretisation approaches, such as the ones employed by MAYHEM and EXE, by proposing a framework for specifying concretisation-symbolisation policies. While our approach strives to avoid the need for concretisation, it still uses concrete addresses to identify memory objects.

Trtík and Strejček [35] present a fully symbolic segment-offset-plane memory model. They split memory operations involving different types (such as ints or floats) into different planes, which resemble memory segments, but their solution may group together memory objects which would have been separated in our model.

Research on lazy initialisation for symbolic execution of Java code explores different ways of initialising symbolic memory object references and thus exploring different memory layouts [4, 21, 30]. By contrast, our work improves symbolic execution given a particular memory layout, notably it does not create new objects. We believe our work is complementary, and necessary to efficiently implement this work in symbolic executors for lower-level languages such as KLEE.

The idea of partitioning memory into segments is not new. Latner and Adve [22] used points-to analysis to partition the heap as in our work. However, they only considered uses in compiler optimisation, whereas the novelty of our work stems from employing it to improve symbolic execution.

Bouillaguet et al. [3] apply a similar idea of partitioning memory based on points-to analysis to deductive verification. They require the points-to analysis to be sound and context-sensitive, whereas our approach is more tolerant to errors and imprecision in the analysis. Their evaluation does not consider real programs and only focuses on verifying a small sort function.

7 CONCLUSION

Programs that use complex heap data structures, in which a pointer is allowed to refer to more than one memory object, often cause path explosion and memory exhaustion in symbolic execution. We present a novel segmented memory model for symbolic execution, which uses pointer alias analysis to group objects into memory segments. Our segmented memory model can significantly reduce forking due to symbolic dereferences, sometimes even completely eliminating the need for forking.

We evaluated our approach on GNU m4, GNU make, SQLite and Apache Portable Runtime, highlighting its advantages in terms of performance and memory consumption, as well as its inherent limitations.

ACKNOWLEDGEMENTS

We thank Frank Busse, Martin Nowack and the anonymous reviewers for feedback on the paper. This research was generously sponsored by the EPSRC through grants EP/N007166/1, EP/L002795/1 and a PhD studentship.
REFERENCES

