
A Segmented Memory Model
for Symbolic Execution

Timotej Kapus

Imperial College London

United Kingdom

Cristian Cadar

Imperial College London

United Kingdom

ABSTRACT
Symbolic execution is an effective technique for exploring paths in

a program and reasoning about all possible values on those paths.

However, the technique still struggles with code that uses complex

heap data structures, in which a pointer is allowed to refer to more

than onememory object. In such cases, symbolic execution typically

forks execution into multiple states, one for each object to which

the pointer could refer.

In this paper, we propose a technique that avoids this expensive

forking by using a segmented memory model. In this model, mem-

ory is split into segments, so that each symbolic pointer refers to

objects in a single segment. The size of the segments are bound by a

threshold, in order to avoid expensive constraints. This results in a

memory model where forking due to symbolic pointer dereferences

is significantly reduced, often completely.

We evaluate our segmented memory model on a mix of whole

program benchmarks (such as m4 and make) and library bench-

marks (such as SQLite), and observe significant decreases in execu-

tion time and memory usage.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Symbolic execution, memory models, pointer alias analysis, KLEE

ACM Reference Format:
Timotej Kapus and Cristian Cadar. 2019. A Segmented Memory Model for

Symbolic Execution. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338936

1 INTRODUCTION
Symbolic execution has seen significant uptake recently in both

research and industry, with applications across many different ar-

eas, such as test generation [17], bug finding [7], debugging [20],

program repair [27] and vulnerability analysis [9].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00

https://doi.org/10.1145/3338906.3338936

In symbolic execution, the program under analysis is run on a

symbolic input, i.e. an input which is initially allowed to have any

value. As the program runs, the operations on symbolic values are

evaluated as symbolic expressions. When the program branches

on one of these symbolic expressions, symbolic execution explores

both branches, if they are feasible, adding corresponding symbolic

constraints to the respective path conditions. Upon path termina-

tion, symbolic execution can ask the solver for a solution to the

current path conditions, thus obtaining a concrete test input that

will follow the same path when executed concretely.

One of the main strengths of symbolic execution is that it can

reason precisely about all possible values of each (control-flow)

execution path it explores through the code under testing. This

amplifies its ability of finding bugs and other corner cases in the

code being analysed. However, symbolic execution still struggles

to reason in this way about complex data structures that involve

pointers that can refer to multiple memory objects at once.

To illustrate this problem, consider the C code in Figure 1, where

we set N to 40. When SINGLE_OBJ is defined, the program allocates

on line 3 a 2D matrix as a single object, for which all elements are

initially zero. It then writes value 120 into matrix[0][0] on line 10.

On lines 12 and 13, it declares two symbolic indexes i,j which are

constrained to be in the range [0,N). Finally, on line 15, it checks

whether the element matrix[i][j] is positive.
The program has two paths: one on which matrix[i][j] is

positive (which happens only when i and j are both zero), and

the other in which it is not (which happens when either i or j are

not zero). Unsurprisingly, a symbolic execution tool like KLEE [5]

explores the two paths in a fraction of a second.

Now consider the program in the same figure, but without defin-

ing SINGLE_OBJ. Now the matrix is allocated as multiple objects,

one for each row in the matrix. In this case, KLEE will explore N +1
paths, one for each row in the matrix, and an additional one for

the first row in which both sides of the if statement are feasible.

It will take KLEE significantly longer—12s instead of 0.3s in our

experiments—to explore all 41 paths.

The reason is that KLEE, as well as other symbolic executors, use

the concrete addresses of memory objects to determine to which

objects a symbolic pointer could refer to. In our example, matrix[i]
is a symbolic pointer formed by adding a concrete base address (the

address of matrix) with a symbolic offset i. When this pointer gets

dereferenced on line 15, KLEE needs to know to which memory

object it points. Therefore, KLEE scans all the memory objects and

asks the solver if the symbolic pointer can be within its bounds.

If that is true for more than one object, we are in what is called

a multiple resolution case. This is the case in our example, where

the pointer matrix[i] can point to N different objects, namely

those corresponding to the N rows of the matrix. (Note that when

https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/3338906.3338936

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Timotej Kapus and Cristian Cadar

1 int main() {

2 #ifdef SINGLE_OBJ

3 int matrix[N][N] = { 0 };

4 #else
5 int **matrix = malloc(N * sizeof(int*));
6 for (int i = 0; i < N; i++)

7 matrix[i] = calloc(N, sizeof(int));
8 #endif
9

10 matrix[0][0] = 120;

11

12 int i = klee_range(0, N, "i");

13 int j = klee_range(0, N, "j");

14

15 if (matrix[i][j] > 0)

16 printf("Found␣positive␣element\n");

17 }

Figure 1: 2D matrix allocated as a single object when
SINGLE_OBJ is defined, and as multiple objects when it is not.

SINGLE_OBJ is defined this is not the case, as the compiler allocates

a 2D array as a 1D array indexed by N*i+j.) So KLEE forks one

path for each of the N objects, constraining the pointer to refer to a

single memory object in each case. For the case where matrix[i]
refers to the first row of the matrix, KLEE explores two paths, one

in which matrix[0][j] is greater than zero, and one where it is

not. For the cases in which matrix[i] refers to one of the other

rows, only the case where matrix[i][j] is not greater than zero

is feasible. This gives us a total of N+1 paths.
This forking memory model for symbolic pointers has several

important drawbacks. First, it leads to path explosion, as each time

the code dereferences a symbolic pointer, the execution is forked

into as many paths as there are objects to which the symbolic

pointer could refer. Second, and related to the first point, it leads

to memory exhaustion, as each additional path requires a certain

amount of space in memory. Third, it disables the ability of symbolic

execution to reason about all possible values on a certain control-

flow program path.

In this paper, we propose a novel approach that uses pointer

alias analysis to group memory objects that may alias each other

into a memory segment. This avoids forking, because conservative
alias analysis guarantees that a symbolic pointer can only point to

objects within a single memory segment.

We describe our technique in detail in Section 2, present its

implementation in Section 3, and evaluate it in Section 4. We then

discuss its trade-offs in Section 5, present related work in Section 6

and conclude in Section 7.

2 PROPOSED MEMORY MODEL
Consider the program in Figure 1 (with SINGLE_OBJ not defined) for
N = 3, with amemory layout shown on the left-hand side of Figure 2.

matrix is an array of pointers allocated at 0x0100 that points to
the rows of the matrix allocated at addresses 0x0200, 0x0300 and
0x0400. Suppose that libc also allocates two memory objects in the

background, at addresses 0x0500 and 0x0600. There are also two

symbolic pointers: matrix[i], which is constrained to point to one

Figure 2: A concrete memory layout for the program in Fig-
ure 1 when SINGLE_OBJ is not defined, illustrating the flat
and segmented memory models.

of the three matrix rows, and matrix[2][j], which is constrained

to point to one of the entries of the last row.

Most symbolic executors reflect this memory layout in their

internal memory model. They record the start and end addresses

of each memory block and associate a corresponding array in the

constraint solver. Therefore, they can handle symbolic pointers

such as matrix[2][j]well, because their value resolves to a single
memory object. The symbolic address then gets translated into a

symbolic index into the solver array that is backing the memory ob-

ject. Solvers can then solve the associated queries with the popular

theory of arrays [15].

The problem arises when a symbolic pointer can point tomultiple

memory objects, as is the case for pointer matrix[i]. This pointer
resolves to three different memory objects (the matrix rows), backed

by three different solver arrays. The theory of arrays cannot be

used here, because it cannot express such constraints.

2.1 Existing Memory Models
There are several memory models for handling multiple resolution

that have been considered in the context of symbolic execution:

single-object, forking, flat memory and merging. Each memory

model aims to resolve a dereference of a symbolic pointer to an

access into a solver array.

Single-object model. In this approach, the pointer is resolved

to one possible object and the other possibilities are discarded. This

is the model used by most concolic executors, such as CREST [11],

where the single object considered is the one given by the concrete

input used in the current round of concolic execution. This is also

the model used by the dynamic symbolic executor EXE [7], where

the pointer is concretised to one possible value. FuzzBall [26] em-

ploys a more general version of this model, in which the pointer is

concretized to multiple values that are selected randomly.

This approach scales well, but is incomplete and may miss impor-

tant execution paths. For instance, both CREST and FuzzBall usually

finish running themulti-object version of the code in Figure 1 (when

slightly adapted to use the CREST/FuzzBall APIs) without explor-

ing the feasible path where “Found positive element” is printed,

incorrectly giving the impression to the user that the statement is

not reachable.

A Segmented Memory Model for Symbolic Execution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 1 Forking model

1: function ForkingDereference(Pointer p)
2: foreachMemoryObject o do
3: ForkPath()

4: AddConstraint(o .star t ≤ p < o .end)
5: solverArray ← GetSolverArray(o)
6: return solverArray[p − o .star t]
7: end foreach
8: end function

Forking model. In this approach, shown in Algorithm 1, exe-

cution is forked for each memory object to which the pointer can

refer (line 3), and on each forked path the pointer is constrained

to refer to that object only (line 4). AddConstraint terminates

the path if the added constraint is provably false (in our case, if p
cannot refer to that object on that path). Finally, the corresponding

access into the solver array associated with that object is returned

(line 6). As a detail, ForkPath uses the initial path for the last object

(instead of forking). Also, for ease of exposition, in this algorithm

and the following ones, we ignore out-of-bounds checking and

assume dereferences of char* pointers.
Consider running Algorithm 1 on our running example from

Figure 1 and the layout from Figure 2, with p being matrix[i]. The
loopwill iterate six times, forking for each of the sixmemory objects

in the program. In the first iteration, the path will be immediately

killed by AddConstraint, since p cannot point to object at 0x0100.
In the second iteration, p will be constrained to point to the first

object it can point to (0x0200), and then the corresponding access

into the solver array associated with that object is returned, i.e.

solverArray0x0200[p−0x0200]. The remaining iterations are similar,

resulting in three paths, one for each of the three objects at 0x0200,
0x0300 and 0x0400 that p can point to.

Figure 3 shows the behaviour of the forking model compared

to other solutions. In particular, it shows the behaviour of KLEE

and Symbolic PathFinder (SPF) [28], both of which implement the

forking model. Figure 3a shows results for the code in Figure 1 (with

SINGLE_OBJ not defined), while Figure 3b shows results for a vari-

ant of the code that performs two symbolic lookups into the matrix.

These figures show that the forking model scales poorly. This is par-

ticularly clear when two symbolic accesses are performed, where

the execution time increases exponentially with the dimension of

the matrix. Note that SPF appears to have an efficient implemen-

tation of forking for a small number of paths, which explains its

good performance on the single lookup example.

Merging model. This approach keeps a single path, and creates

an or expression, with one disjunct for each possible object to which
the pointer could refer.

For space reasons, we omit the formal algorithm and illustrate

how it works on our running example. Suppose that the symbolic

executor encounters the expression ∗p == 1, with p being again

matrix[i]. This will be translated into a disjunction, with one dis-

junct for each of the three memory objects to which p can refer.

Each disjunct will express the fact that p points to that object and

will replace the pointer with the associated solver array for that

object. That is, the expression ∗p == 1 will be translated to the

following disjunction, where sa stands for solverArray:

Algorithm 2 Flat memory model

1: function NaiveFlatMemoryDereference(Pointer p)
2: returnmemorySolverArray[p]
3: end function

(0x0200 ≤ p < 0x020C ∧ sa0x0200[p − 0x0200] = 1)

∨ (0x0300 ≤ p < 0x030C ∧ sa0x0300[p − 0x0300] = 1)

∨ (0x0400 ≤ p < 0x040C ∧ sa0x0400[p − 0x0400] = 1)

Approaches following this idea at a high level were proposed in

the context of SAGE [13] and Angr [14].

As illustrated in Figures 3a and 3b, the scalability of this approach

on the running example is similar or slightly better than that of

forking. In practice (§4), its performance is benchmark dependent.

Flat memory model. This approach tackles the multiple reso-

lution problem by treating the whole memory as a single object,

backed by a single solver array. Therefore, a solver can reason

about symbolic dereferences using the theory of arrays, because all

queries are using a single flat array.

The algorithm for translating a dereference is straightforward

and shown in Algorithm 2. Any pointer in the program is an offset

in the large solver arraymemorySolverArray. This approach is also
illustrated in the top right of Figure 2.

We are not aware of any symbolic execution engine that imple-

ments this approach. However, we explored this approach in the

past and found it not to scale in the context of the symbolic ex-

ecutor EXE [7], the constraint solver STP [15] and a 32-bit address

space: “a straightforward remedy to this problem [of a symbolic

pointer referring to multiple objects] would be to model memory as

a single STP array indexed by 32-bit bitvectors, but this approach

is currently too slow to be practical” [8].

As shown in Figures 3a and 3b, this approach achieves good scal-

ability on our running example and the variant with two symbolic

lookups. However, this is because these examples allocate little

memory. In an additional experiment, we modify the example to

perform an additional irrelevant allocation of 30KB, which is meant

to simulate a real application in which most of the memory is not

involved in any single dereference. The results in Figure 3c show

that the flat memory model also scales poorly.

2.2 Segmented Memory Model
The key idea behind our approach is the realisation that memory

can be divided into multiple segments, such that any symbolic

pointer can only refer to memory objects in a single memory seg-

ment. We can then associate one solver array per memory segment,

and translate the symbolic pointer to an offset into its associated

memory segment. As long as the individual memory segments

are small enough, the approach can scale while still handling the

problem of symbolic pointers referring to multiple objects.

On our running example, Figure 3 shows this approach has

the advantages of the flat memory model in the first two cases,

while maintaining its good performance when irrelevant memory

allocations are performed.

Computing memory segments. To divide memory objects

into segments, we use a conservative points-to analysis [1, 18]. The

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Timotej Kapus and Cristian Cadar

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120

T
im

e
(s

ec
o
n
d
s)

N

Forking
Merging
Flat Memory
Segmented
Forking (SPF)

(a) 2D matrix with 1 symbolic lookup
(linear scale)

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50

T
im

e
(s

ec
o
n
d
s)

N

Forking
Merging
Flat Memory
Segmented
Forking (SPF)

(b) 2D matrix with 2 symbolic lookups
(log scale)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

T
im

e
(s

ec
o
n
d
s)

N

Forking
Merging
Flat Memory
Segmented
Forking (SPF)

(c) 2D matrix with 1 symbolic lookup
and extra allocation (linear scale)

Figure 3: Runtime of different memory models on a family of 2D matrix benchmarks based on Figure 1 with SINGLE_OBJ
undefined. All memory models are implemented in KLEE, except for the one explicitely mentioning Symbolic PathFinder.

Algorithm 3 Computing and using memory segments

1: function ComputeMemorySegments

2: PerformPointsToAnalysis()

3: ptSets ← ∅
4: foreach pointer p do
5: ptSets ← ptSets ∪ PointsToSet(p)
6: end foreach
7: while ptSets changes do
8: foreach s ∈ ptSets do
9: if ∃s′ ∈ ptSets . s′ , s ∧ s′ ∩ s , ∅ then
10: ptSets ← (ptSets \ {s, s′ }) ∪ {s ∪ s′ }
11: end if
12: end foreach
13: end while
14: foreach s ∈ ptSets do
15: seд ← new MemorySegment()

16: AssocPTSet(seд)← s
17: end foreach
18: end function
19:

20: function GetMemorySegment(Pointer p)
21: pts ← PointsToSet(p)
22: foreach MemorySegment seд do
23: if pts ⊆ AssocPTSet(seд) then
24: return seд
25: end if
26: end foreach
27: end function
28:

29: function HandleAlloc(Pointer p , Size sz)
30: seд ← GetMemorySegment(p)
31: return AllocateIn(seд, sz)
32: end function

result of a points-to analysis is a mapping between pointers and

points-to sets. The points-to set of a pointer p is a set of pointers and

abstract memory objects to which p may refer to during execution.

An abstract memory object is identified by the static allocation point

in the program. For instance, in Figure 1, there are two abstract

memory objects,AO1, corresponding to the allocation at line 5, and

AO2, corresponding to the allocation at line 7.

The function ComputeMemorySegments in Algorithm 3 shows

the algorithm for computing memory segments. After running the

points-to analysis (line 2), the set ptSets is initialised to contain all

the points-to sets computed by the analysis (lines 3–6). Then, any

two points-to sets s and s ′ that overlap are merged until no such sets

exist anymore (lines 7–13). Finally, for each of the resulting points-

to sets a new memory segment is created (lines 14–15) in which all

the objects associated with that points-to set will be allocated. The

map AssocPTSets remembers the points-to set associated with

each memory segment (line 16).

In our example from Figures 1 and 2, there are two pointers

we consider: matrix and matrix[i]. Pointer analysis tells us the
points-to set of matrix is a singleton set containing the abstract

object AO1. Similarly, the points-to set of matrix[i] is a singleton

set containing AO2. Continuing with Algorithm 3, we therefore

initialise ptSets = {{AO1}, {AO2}} (lines 3-6). In this case there are

no common elements in those sets, so lines 7-13 have no effect.

Finally, we create two memory segments corresponding to the

two elements in ptSets . AO1 corresponds to the memory segment

starting at 0xa100 in Figure 2, where the array of pointers to the

matrix rows will be allocated. AO2 corresponds to the memory

segment starting at 0xd100, where the actual rows of the matrix

will be allocated.

The function GetMemorySegment in Algorithm 3 returns the

memory segment associated with a pointer p in the program. It

does so by finding the memory segment whose associated points-to

set contains the points-to set of p. (We note that an implementation

could be optimised by keeping a reverse mapping from points-to

sets to memory segments.)

GetMemorySegment is then used by HandleAlloc in Algo-

rithm 3 to handle a heap allocation of the form p = malloc(sz)
in C. The function allocates memory for the target pointer p in its

associated memory segment. In our example, it returns the memory

segment starting at 0xa100 when encountering the allocation for

matrix on line 5. For the allocation on line 7 where row allocations

are made, it returns the memory segment starting at 0xd100.
Finally, Algorithm 4 shows how a dereference of a pointer p is

handled. We first obtain the memory segment associated with p
(line 2), then we get the solver array associated with that segment

(line 3), and return the corresponding solver array access (line 4).

Restricting segment size. The approach of Algorithm 4 scales

as long as the size of each memory segment remains small. In prac-

tice, some segments may become very large, imposing significant

A Segmented Memory Model for Symbolic Execution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 4 Pure segmented memory model

1: function PureSegmentedDereference(Pointer p)
2: seд ← GetMemorySegment(p)
3: solverArray ← GetSolverArray(seд)
4: return solverArray[p − seд .star t]
5: end function

Algorithm 5 Segmented memory model

1: function SegmentedMemoryDereference(Pointer p)
2: foreach MemorySegment seд do
3: ForkPath()

4: AddConstraint(seд .star t ≤ p < seд .end)
5: solverArray ← GetSolverArray(seд)
6: return solverArray[p − seд .star t]
7: end foreach
8: end function
9:

10: function AllocateIn(MemorySegment seд, Size sz)
11: if seд .size ≤ Threshold then
12: return Extend(seд, sz)
13: else
14: seд′ ← ChooseSegment()

15: return AllocateIn(seд′, sz)
16: end if
17: end function

overheads on the solver. To ensure segment sizes remain small,

we refine the technique by imposing a threshold on the maximum

segment size. If the program tries to allocate memory in a certain

segment and the current size of that segment already exceeds the

threshold, a new segment is used. When this happens, some point-

ers may now refer to several segments. In that case, dereferencing

a pointer forks execution for each memory segment. Essentially,

the model becomes a hybrid between the pure segmented memory

model of Algorithm 4 and the forking model of Algorithm 1.

Our finalised approach is illustrated in Algorithm 5, (together

with the previously discussed Algorithm 3). The dereference func-

tion, SegmentedMemoryDereference, is similar to that of the

forking model, only that now we iterate over all segments, trying

to find those to which p could refer. Remember that the AddCon-

straint function kills a path if the added constraint is false, that is
when the pointer cannot refer to that segment.

The other change is required in the allocation function. Instead

of simply allocating the required memory in the given segment, the

modifiedAllocateIn function works as follows. If the current size of

the segment is under the threshold, the allocation is performed in

that segment (lines 11–12). Otherwise, we choose another segment

(which could either be a new segment or an existing one) and we

try to allocate in there (14–15).

Another consequence of this hybrid model is that it is resilient

to bugs in pointer alias analysis. Should it incorrectly report two

pointers not aliasing each other, putting them in different memory

segments, the hybrid approach would simply fork for the two cases

without losing any precision. Conversely, this kind of bug would

cause the pure segmented memory model to miss paths.

In practice, the performance of the algorithm depends on the

precision of the points-to analysis. If the analysis is extremely im-

precise, it may put all pointers into a single points-to set, and our

model would degenerate to the flat memory model. At the other

extreme, if the threshold is too small (or the points-to analysis ex-

tremely buggy), our model would degenerate to the forking model.

3 IMPLEMENTATION
We implemented our approach on top of KLEE commit 0283175f,

configured to use LLVM 7 and the STP constraint solver 2.1.2. Below

we provide additional details about our implementation.

Points-to analysis. We use SVF [34], a scalable LLVM-based

framework for value-flow construction and pointer analysis. In par-

ticular, we use whole-program wave propagation-based Andersen

analysis [29], a fast flow-insensitive, context-insensitive inclusion-

based points-to analysis. We found it to be significantly faster than

the basic Andersen analysis [1] while maintaining precision. It ter-

minated in under two minutes for all our benchmarks. Compared

to the high runtime of symbolic execution, we found the analysis

time to be insignificant.

Memory segment implementation. For each memory seg-

ment that needs to be created in Algorithm 3 (line 15) we reserve

200KB of address space using mmap. At this point the segment has

size 0, but can hold an object of maximum size 200KB. We use

mmap instead of malloc to save memory, as in practice many mem-

ory segments will be empty and will therefore not be mapped to

physical memory.

The threshold size for the hybrid approach was set to 10KB,

which was small enough for STP to be reasonably performant,

while still being large enough to significantly limit forking.

We write the size of each allocation just before the returned

pointer to enable realloc and free. The realloc function is han-

dled with an LLVM pass that runs before the execution and replaces

all calls to realloc with malloc, memcpy and free. We use the pre-

viously stored allocation size information to determine the size of

the region to copy with memcpy.
The memory freed by calls to free is added to a list of free space

in each memory segment. That list is then scanned before a memory

segment is extended for allocation. We try to find the smallest gap

that fits the requested size, and if such a gap is found, we perform

the allocation there. We found this to be an important optimisation

to keep the sizes of memory segments small.

Constants and local variables. A common performance opti-

misation in pointer alias analysis is to model all constant objects

(such as constant strings) as single memory objects [19]. We sim-

ilarly adopt a scheme in which constant objects are disregarded

by the alias analysis and allocated in their own memory segments.

We make the same choice for local memory objects, namely ob-

jects allocated on the stack. We found only one program where

constant objects are involved in multiple resolution, but this was a

case where the forking model would work well too, as the pointer

could only refer to two different objects. We found no programs

where local objects were involved in multiple resolution. Of course,

the approach presented here is easily adapted to support these kind

of objects, should a need for it arise.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Timotej Kapus and Cristian Cadar

Flat memory model. We found it easy to implement the flat

memory model in KLEE, by making all allocations into a single

memory segment backed by a single solver array.

Merging model. The merging model is implemented by lever-

aging KLEE’s ability to merge states. Upon hitting a multiple res-

olution, we let KLEE fork as usual and then immediately merge

all the states thus creating the or expression of their path condi-

tions. We note that this approach might not be optimal—however,

KLEE spent most of the time in constraint solving activities in the

merging runs in our evaluation. Therefore, we believe the threat to

validity against this implementation choice is minimal.

4 EVALUATION
Symbolic pointer dereferences that trigger multiple resolutions

often make existing symbolic execution tools unusable. However,

only some types of programs trigger such dereferences, and we

discovered that benchmark suites used in the past to evaluate sym-

bolic execution, such as GNU Coreutils [16], do not trigger many

multiple resolutions.

In general, benchmarks which are prone to trigger multiple res-

olutions are those where a symbolic input (e.g. coming from files,

command-line arguments or environment variables) flows into a

data structure indexed by that input. Hash tables are the prime

example of such benchmarks, widely used in a variety of programs.

Therefore, we selected several large programs that use hash

tables—m4, make, APR and SQLite—and used test harnesses that

drive execution toward the parts of the code employing these hash

tables. Essentially, our evaluation is meant to show that our model

can make a big difference in such cases, while acknowledging that

it is not relevant all the time. We further discuss this aspect in §5.

Ideally, we would like to compare the fraction of the search space

explored in these programs under each memory model. Unfortu-

nately, this is challenging to do, especially since the number of

explored paths changes across models due to forking and merging.

Therefore, we decided to build our test harnesses in such a way

that programs terminate. Then, we can simply compare the time

needed to finish the exploration under different memory models.

For one program where we didn’t manage to write such a driver,

make, we measure how quickly each memory model reaches cover-

age saturation. As a sanity check, we made sure that terminating

benchmarks reach the same coverage at the end under all memory

models, and that the flat memory model and the two variants of

the segmented memory model explore the same number of paths

(recall that we didn’t see any forking in these benchmarks with the

hybrid segmented memory model).

We also measure the memory consumption of KLEE under each

memory model as a proxy for how many states KLEE has to keep

in memory at each point and to illustrate a further tangible benefit

of choosing the right memory model.

We observed that execution time and memory consumption can

vary significantly with different search strategies. Therefore, we

conducted our experiments using three different strategies: DFS

and BFS representing extreme behaviors in terms of memory con-

sumption, and KLEE’s default search heuristic representing a good

general strategy. KLEE’s default heuristic interleaves random path

selection with a heuristic that aims to maximize coverage [5].

Table 1: Impact of points-to analysis on our benchmarks and
its runtime.

Benchmark
Total mem.

(bytes)

Max. segment size

(bytes)

Analysis

runtime (s)

ideal SVF

APR 24,904 120 16,588 1.9

GNU m4 3,392 1,051 2,753 4.3

GNU make 17,663 664 7,936 4.7

SQLite 45,461 506 17,604 70.3

1 define(`A', `l')

2 define(`P', 2)

3 ?

4 ?

5 ifelse(?, `l', ifelse(?, P, eval(1 + n)) ,`failed')

Figure 4: Symbolic input to m4, where ? denotes a symbolic
character.

The experiments were run on an Intel(R) Core(TM) i7-6700 at

3.40GHz with 16GB of memory. We use a timeout of two hours in

our experiments and a memory limit of 4GB.

4.1 Impact of Points-to Analysis
The performance of the segmented memory model is highly depen-

dent on the size of the segments, which is directly related to the

precision of the points-to analysis. In order to understand by how

much our results would be improved by a more precise points-to

analysis, we decided to approximate a best-case points-to analysis.

To do so, we run the forking approach on our benchmarks until

it hits the first multiple resolution, where we record the alloca-

tion sites with allocation context of all the objects involved in the

multiple resolution and terminate the execution. We then restart

the execution, placing all objects allocated at those allocation sites

in the appropriate contexts into a segment. Should a new multi-

ple resolution be encountered, we again record the allocation site

and its context, create a new segment and merge any segments if

needed, and repeat this process until no more multiple resolutions

are encountered (within a certain timeout). In practice, we only

needed fewer than five iterations for our benchmarks. Essentially,

we group into segments only the objects actually involved in mul-

tiple resolutions in a given execution. This gives us results which

are at least as good as the most precise points-to analysis possible.

Table 1 shows the impact of the pointer alias analysis on the

benchmarks we use in our evaluation (and which will be described

in detail in §4.2 to §4.5). The first column shows the total memory

used by the dynamically-allocated memory objects in each program.

This is the size of the flat memory segment.

The next two columns show the maximum segment sizes for

both the SVF pointer analysis and our idealized analysis. For all

benchmarks, the points-to analysis significantly reduces the largest

segment size. The maximum segment size of the ideal analysis is

significantly smaller than for the SVF analysis, suggesting there are

important opportunities for improving the precision of SVF.

A Segmented Memory Model for Symbolic Execution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Using the SVF analysis, the APR and SQLite benchmarks reach

the maximum threshold of 10KB for our segments and get split.

Despite this split, we did not observe any forking in the segmented

memory model for APR. For SQLite, we observed 2 forks into 2

paths each.

The last column of Table 1 shows the runtime of the SVF points-to

analysis. For all benchmarks but SQLite, the analysis took less than

5 seconds, which is insignificant compared to the cost of symbolic

execution. Even for complex programs like SQLite, the analysis

took 70s, which is noticeable, but still little in a symbolic execution

context.

4.2 GNU m4
GNU m4 [24] is a popular implementation of the m4 macro proces-

sor included in most UNIX-based operating systems. It is a relatively

small program consisting of about 8000 lines of code, which makes

extensive use of hash tables to look up strings. In a nutshell, m4
operates by reading in the input text as a sequence of tokens. It then

looks up each token in a hash table. If the token is found, it replaces

it with the value in the hash table. Otherwise, it outputs the token

and continues with the next one. That makes it a good candidate

to benefit from the proposed memory model, as a significant part

of m4’s computation consists of hash table lookups which trigger

forking due to multiple resolution.

To run m4 using symbolic execution, we need to make its input

symbolic. To reach deeper parts of the code, where m4 operates as
described in the paragraph above, we runm4 on a partially symbolic

input. The outline of the input we used is shown in Figure 4. We

define several concrete one-character macros, using the define
keyword. Then we expand two macros, with the name of the macro

being symbolic, which results in a symbolic lookup in the hash table.

Finally, we expand two more macros inside ifelse constructs. The
example is set in a way that illustrates the multiple dereference

problem, but we believe it is quite representative of howm4 is used.
We ran KLEE on m4 for two hours under DFS, BFS and KLEE’s

default strategy, with forking, merging, flat and segmented memory

models. The segmented memory model is further broken down into

two runs. The first one is using points-to information computed

from SVF. The second one uses ideal points-to information, which

was obtained with a pre-run as described in §4.1.

Figure 6 shows, for each search strategy, KLEE’s termination

time and memory usage for each of the five memory models. The

forking and flat memory models do not terminate before the 2-hour

timeout. The segmented memory model using SVF terminates in

around one hour, with the ideal version a few minutes earlier. In

contrast to the segmented memory model, which is only mildly

influenced by the search strategy, the performance of the merging

model heavily depends on the search strategy: for DFS, it terminates

in only 25 minutes, for BFS in 88 minutes, while with KLEE’s default

strategy it times out after 2 hours.

Under DFS, the memory consumption is unsurprisingly low, as

only a small number of states are kept in memory at one time

(note that the y-axis has a different scale for DFS compared to BFS

and the default KLEE strategy). The SVF segmented memory has

slightly higher overall memory usage due to the fixed memory cost

of keeping all points-to information. For BFS and the default search

1 a := word1

2 b := word2

3 d := $?

4 e := $?

Figure 5: Symbolic input to GNU make, where ? denotes a
symbolic character.

strategy, all memory models have low memory usage, except for

the forking model, which quickly reaches the 4GB memory limit.

4.3 GNU make
GNU make [25] is a popular build system, used extensively in the

open source community. It is a larger program, consisting of about

35,000 lines of code. It uses significantly more memory during

runtime than m4. To make execution easier for KLEE, we reduced

the sizes of several caches in make.
Our evaluation focused on the variable expansion capabilities

of make. Similarly to m4, we made the makefiles only partially

symbolic. Figure 5 illustrates the makefile we used as symbolic

input in our experiments.

Figure 7 shows the memory consumption of the different mem-

ory models. This benchmark was the only one where none of the

runs terminated before reaching the timeout. Unsurprisingly, the

forking model’s memory consumption grows the quickest. The two

segmented memory models behave similarly, with the SVF version

consuming a constant amount of additional memory due to holding

the whole points-to set.

The merging model appears to have the best memory consump-

tion, but this is only because it executes two times fewer instructions

than the next slowest approach (SVF segmented memory). When

compared to m4, the make runs are slower (execute fewer instruc-
tions per second), therefore the differences between the memory

models are also smaller.

Since this benchmark is not terminating, we report the coverage.

For DFS and BFS, the coverage was the same across all memory

memory models at 21%. For the default heuristic, the forking and

ideal segmentedmemorymodels had the highest coverage at 21.49%,

followed by SVF segmented memory model at 18.75% and the flat

memory model at 18.27%. Merging only achieved 15.44% coverage.

4.4 SQLite
SQLite [33] is a SQL database engine library written in C, which

claims to be the most used database in the world. It has a big

codebase with over 200,000 lines of code. We focused our evaluation

on a part of SQLite that triggers multiple resolutions in symbolic

execution.

In particular, SQLite uses a hash table to keep track of all triggers

associated with a table. We create several triggers with concrete

names and then try to create a trigger with symbolic name, which

should involve a lookup of a symbolic key in the hash table of

triggers.

We use an in-memory database, create a table with two int
columns and add 15 triggers to this table. We need to create more

than 10 triggers as the SQLite hash table is optimized to be just

a linked-list when there are fewer than 10 elements. Choosing a

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Timotej Kapus and Cristian Cadar

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

59min

52min

25min

(a) DFS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

59min

53min

88min

(b) BFS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

63min

61min

(c) Default

Figure 6: Runtime and memory consumption of the different memory models for GNU m4 across different search strategies.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

(a) DFS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

(b) BFS

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

(c) Default

Figure 7: Memory consumption of the different memory models for GNU make across different search strategies.

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

21min

12min

(a) DFS

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

22min

16min

(b) BFS

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

22min

13min

(c) Default

Figure 8: Runtime and memory consumption of the different memory models for SQLite across different search strategies.1

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

9min

16min

12min

114min

99min

(a) DFS

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

8min

18min

11min

80min

(b) BFS

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0 20 40 60 80 100 120

M
em

o
ry

 (
G

B
)

Time (minutes)

Forking
Flat Memory

Merging
Segmented (SVF)

Segmented (ideal)

13min

21min

20min

83min

(c) Default

Figure 9: Runtime and memory consumption of the different memory models for APR across different search strategies.

higher amount of triggers would tilt the results against the fork-

ing model, but we believe 15 triggers is a good trade-off between

showcasing the multiple dereference issue and a realistic use of

the library. Finally, we create two more triggers whose names are

symbolic.

Figure 8 shows the results. The forking approach terminates in

12-16 minutes, the ideal segmented memory model terminates in

1
These SQLite graphs have been amended to correct a mistake found after publication.

We thank David Trabish for his feedback while reproducing our experiments.

A Segmented Memory Model for Symbolic Execution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 apr_hash_t *ht = apr_hash_make();

2 for (int i = 0; i < 15; i++) {

3 int *key = malloc(sizeof int);
4 *key = i;

5 apr_hash_set(ht, key, sizeof(int), "A␣value");

6 }

7

8 int i, j = symbolic();

9 apr_hash_get(ht, &i, sizeof(int));
10 apr_hash_get(ht, &j, sizeof(int));

Figure 10: Apache Portable Runtime baseline benchmark.

21-22 minutes, while the SVF segmented memory, flat memory and

merging models don’t terminate within the 2-hour time budget.

There are no significant differences in memory consumption

across search strategies. SVF segmented memory uses a constant

additional amount ofmemory since it needs to be holding the points-

to sets in memory. The flat memory model uses more memory due

to holding expressions over large arrays in memory.

This case study raises two interesting points. First, the precision

of the points-to analysis significantly impacts the performance

of the segmented memory model. As can be seen in Table 1, the

difference in the size of the computed segments between ideal

points-to analysis and SVF is huge. This is has an immediate impact

on the performance of the segmented memory model, as illustrated

in Figure 8. Therefore, improving the precision of the points-to

analysis is a promising future avenue for improving the segmented

memory model.

Second, the segmented memory model performs worse than

forking, when there is little or no forking in the program. This is

because grouping memory objects together increases the size of

solver arrays, which makes constraints harder. This is a price the

segmented memory approach has to pay regardless of whether the

program causes multiple resolutions. In this case, the constraints in

the forking model can be solved relatively fast, so forking can brute

force its way through multiple resolutions. We note that increasing

the number of triggers in the benchmarks would likely tilt results

against the forking model, but our choice of 15 triggers was so that

at least some runs finish within the 2-hour time budget.

4.5 Apache Portable Runtime
Apache Portable Runtime (APR) [2] is a C library that provides

cross-platform functionality for memory allocation, file operations,

containers, networking and threads, among others. It was initially

used by Apache HTTP Server, but its use now extends to projects

such as LibreOffice and Apache Subversion.

We focused our evaluation on APR’s hash table API. At a high

level, we add 15 elements to a hash table and then do two symbolic

lookups in this table. The number of keys and lookups was chosen

to be the same as for SQLite. The skeleton code is shown in Figure 10.
We used the default hashing algorithm for the int keys, which is

the popular "times 33" algorithm, used by Perl for example.

Figure 9 shows the results. All runs terminate, except for merg-

ing under BFS and the default search strategy. Merging is also the

slowest under DFS, taking 114 minutes to terminate. Forking ter-

minates in 80-99 minutes, depending on the strategy. Flat memory

performs well on this benchmark, terminating in 16-21 minutes.

The segmentedmemorymodels (SVF) perform the best, terminating

in 8-13 minutes. Memory consumption is small overall.

The most interesting observation about this benchmark is that

the segmented memory model with ideal points-to analysis per-

forms slightly worse than the one with SVF analysis. This is due to

an interesting interaction with the solver. To understand why, we

need to describe the relevant memory objects involved. These are

a large 8.2KB memory object and several small objects, totalling

about 120 bytes in size. The ideal points-to analysis groups the small

objects into a single segment and puts the large 8.2KB object into a

separate segment. The SVF analysis bundles both the 8.2KB object

and the small objects into a single segment. During execution, there

are queries involving arrays associated with both the 8.2KB object

and the small objects. The ideal segmented memory model gener-

ates constraints with two arrays, one with 120 bytes and one with

8.2KB. The SVF segmented memory model generates constraints

with only a single array. This gives better solver query caching for

SVF segmented memory model, which results in a quicker runtime.

However, we note that this was the only benchmark where such

a difference is observed, and a more precise points-to analysis is

otherwise associated with better runtime performance. However,

this case study suggest that there is future work in improving

caching in symbolic execution, which would have implications

beyond this memory model.

5 DISCUSSION
Our experience shows that our segmented memory model can

effectively deal with multiple resolutions that occur in the context

of complex data structures such as hash tables. However, the model

is only useful to the extent that the code triggers such symbolic

dereferences.

To get an idea of how our model performs when there are no

multiple resolutions, we performed an experiment onGNU Coreutils
version 8.29 [16]. We first ran all 105 utilities for 60 minutes with

KLEE under the (default) forking model using depth-first search

strategy and recorded the number of instructions KLEE executed

for each utility. Then we ran each utility again up to the number

of recorded instructions, with both the forking model (as a sanity

check) and our segmented memory model, using a larger timeout

of 80 minutes. A total of 18 utilities timed out after 80 minutes

with the segmented memory model. For the remaining utilities, the

segmented memory model was between 70% slower and 20% faster,

but on average 4% slower. GNU Coreutils are an unfavorable case

for our memory model, because the lack of multiple resolutions

means that the model incurs a cost without any benefits.

While for most utilities, the impact is not significant, for 18

utilities it is. The cost is due to the grouping of arrays into mem-

ory segments, which can significantly increase the difficulty of

the constraints sent to the solver. Therefore, we believe that our

approach should be enabled on demand: one would first run the

forking approach, and only if that run reports several multiple reso-

lution cases with large branching factors, switch to the segmented

memory approach. In our experience, anything with more than 5

occurrences of multiple resolution with a branching factor of more

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Timotej Kapus and Cristian Cadar

than 10 should be sufficient for our proposed model to become

beneficial.

Furthermore, the approach is particularly useful when one is

interested in reasoning about properties requiring all-value analy-

sis for the paths explored. When forking is used, such reasoning

is not possible, as individual control-flow paths are split. If only

high coverage is of interest, the single object or forking models

might sometimes be more appropriate. Our approach also provides

a convenient way to trade off forking and all-value reasoning, by

adjusting the threshold for the size of memory segments. We also

note that the flat memory andmerging approaches can also perform

all-value analysis.

We found themerging approach to be a competitive alternative to

segmented memory. However, in our experiments the merging ap-

proach performed worse overall (e.g. unlike the segmented memory

approach, merging timed out for all three SQLite experiments and

on two out of the three APR experiments) and was more sensitive

to the search heuristic used. However, in some cases it performed

better than the segmented approach (e.g. m4 with DFS). As a threat

to validity, as mentioned before, we note that our implementation

of merging might not be optimal, but we believe this threat to be

small (see §3).

Our comparison between the two versions of the segmented

memory model—one using SVF and the other an approximation of

the ideal points-to sets—shows that the precision of the points-to

analysis directly influences the performance of our approach. How-

ever, we found an interesting case where better precision slightly

decreased performance, suggesting that in some cases merging

arrays could be beneficial.

6 RELATEDWORK
Symbolic execution has attracted a lot of attention recently, with

different tools implemented for several different languages [5, 6,

11, 23, 26, 28]. These tools use different memory models, which

influence both their power and scalability.

CUTE [31] introduced a simple memory model, which only han-

dles equalities and inequalities for symbolic pointers. As discussed

in §2.1, EXE [7] and CREST [11] implement the single-memory

model, FuzzBALL [26] a generalisation of it, KLEE [5] the forking

model, and an extension of SAGE [13] and Angr [32] the merging

model.

A recent idea paper [14] proposes a model that associates sym-

bolic addresses with values, alongwith a time stamp and a condition.

The symbolic memory is then represented as a list of these asso-

ciations. When a read occurs, the most recent value matching the

address and the condition is returned. ESBMC [10] uses a similar

technique of chaining if-then-else expressions to model pointers

that can point to multiple objects, in the context of model checking.

MAYHEM [9] creates a new memory object on each read opera-

tion, which is a subset of the whole memory that the read operation

can alias. This approach is at a high-level similar to ours, but there

are important differences. In particular, the approach does not han-

dle writes via symbolic pointers that may refer to multiple objects—

instead, these pointers are concretised as in the single-object model.

Furthermore, the approach still involves solver queries, as in the

forking model, to determine the objects to which the pointer may

refer. Unfortunately, a direct comparison with Mayhem is not possi-

ble, as the code is closed-source, and the memory model is complex

enough to make a reimplementation difficult.

David et al. [12] summarise the concretisation approaches, such

as the ones employed by MAYHEM and EXE, by proposing a frame-

work for specifying concretization-symbolisation policies. While

our approach strives to avoid the need for concretisation, it still

uses concrete addresses to identify memory objects.

Trtík and Strejček [35] present a fully symbolic segment-offset-
plane memory model. They split memory operations involving

different types (such as ints or floats) into different planes, which

resemble memory segments, but their solution may group together

memory objects which would have been separated in our model.

Research on lazy initialisation for symbolic execution of Java

code explores different ways of initialising symbolic memory object

references and thus exploring different memory layouts [4, 21, 30].

By contrast, our work improves symbolic execution given a par-

ticular memory layout, notably it does not create new objects. We

believe our work is complementary, and necessary to efficiently im-

plement this work in symbolic executors for lower-level languages

such as KLEE.

The idea of partitioning memory into segments is not new. Lat-

tner and Adve [22] used points-to analysis to partition the heap as

in our work. However, they only considered uses in compiler opti-

misation, whereas the novelty of our work stems from employing

it to improve symbolic execution.

Bouillaguet et al. [3] apply a similar idea of partitioning memory

based on points-to analysis to deductive verification. They require

the points-to analysis to be sound and context-sensitive, whereas

our approach is more tolerant to errors and imprecision in the

analysis. Their evaluation does not consider real programs and only

focuses on verifying a small sort function.

7 CONCLUSION
Programs that use complex heap data structures, in which a pointer

is allowed to refer to more than one memory object, often cause

path explosion and memory exhaustion in symbolic execution. We

present a novel segmented memory model for symbolic execution,

which uses pointer alias analysis to group objects into memory

segments. Our segmented memory model can significantly reduce

forking due to symbolic dereferences, sometimes even completely

eliminating the need for forking.

We evaluated our approach on GNU m4, GNU make, SQLite
and Apache Portable Runtime, highlighting its advantages in terms

of performance and memory consumption, as well as its inherent

limitations.

ACKNOWLEDGEMENTS
We thank Frank Busse, Martin Nowack and the anonymous review-

ers for feedback on the paper. This research was generously spon-

sored by the EPSRC through grants EP/N007166/1, EP/L002795/1

and a PhD studentship.

A Segmented Memory Model for Symbolic Execution ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-

ming Language. Technical Report.
[2] APR. 2019. Apache Portable Runtime. https://apr.apache.org/.

[3] Quentin Bouillaguet, François Bobot, Mihaela Sighireanu, and Boris Yakobowski.

2019. Exploiting Pointer Analysis in Memory Models for Deductive Verifica-

tion. In Proc. of the International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI’19).

[4] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. 2017.

Combining Symbolic Execution and Search-based Testing for Programs with

Complex Heap Inputs. In Proc. of the International Symposium on Software Testing
and Analysis (ISSTA’17).

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems Pro-

grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08).

[6] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases: How to

Make Systems Code Crash Itself. In Proc. of the 12th International SPIN Workshop
on Model Checking of Software (SPIN’05).

[7] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

2006. EXE: Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security (CCS’06).

[8] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler.

2008. EXE: Automatically Generating Inputs of Death. ACM Transactions on
Information and System Security (TISSEC) 12, 2 (2008), 1–38. https://doi.org/10.

1145/1455518.1455522

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.

Unleashing Mayhem on Binary Code. In Proc. of the IEEE Symposium on Security
and Privacy (IEEE S&P’12).

[10] L. Cordeiro, B. Fischer, and J. Marques-Silva. 2012. SMT-Based Bounded Model

Checking for Embedded ANSI-C Software. IEEE Transactions on Software Engi-
neering (TSE) 38, 4 (July 2012), 957–974.

[11] CREST: Automatic Test Generation Tool for C [n.d.]. CREST: Automatic Test

Generation Tool for C. https://github.com/jburnim/crest.

[12] Robin David, Sébastien Bardin, Josselin Feist, LaurentMounier, Marie-Laure Potet,

Thanh Dinh Ta, and Jean-Yves Marion. 2016. Specification of Concretization

and Symbolization Policies in Symbolic Execution. In Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’16).

[13] Bassem Elkarablieh, Patrice Godefroid, andMichael Y. Levin. 2009. Precise Pointer

Reasoning for Dynamic Test Generation. In Proc. of the International Symposium
on Software Testing and Analysis (ISSTA’09).

[14] Camil Demetrescu Emilio Coppa, Daniele Cono D’Elia. 2017. Rethinking Pointer

Reasoning in Symbolic Execution. In Proc. of the 32nd IEEE International Confer-
ence on Automated Software Engineering (ASE’17).

[15] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-Vectors and

Arrays. In Proc. of the 19th International Conference on Computer-Aided Verification
(CAV’07).

[16] GNU. 2019. GNU Coreutils. https://www.gnu.org/software/coreutils/.

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-

mated Random Testing. In Proc. of the Conference on Programing Language Design
and Implementation (PLDI’05).

[18] Michael Hind. 2001. Pointer Analysis: Haven’t We Solved This Problem Yet?.

In Proc. of the 2nd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’01).

[19] Michael Hind and Anthony Pioli. 2001. Evaluating the effectiveness of pointer

alias analyses. Science of Computer Programming 39, 1 (2001), 31 – 55. Static

Program Analysis (SAS’98).

[20] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for

In-house Debugging. In Proc. of the 34th International Conference on Software
Engineering (ICSE’12).

[21] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. 2003. Generalized

symbolic execution for model checking and testing. In Proc. of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03).

[22] Chris Lattner and Vikram Adve. 2005. Automatic Pool Allocation: Improving

Performance by Controlling Data Structure Layout in the Heap. In Proc. of the
Conference on Programing Language Design and Implementation (PLDI’05).

[23] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011. KLOVER: a symbolic

execution and automatic test generation tool for C++ programs. In Proc. of the
23rd International Conference on Computer-Aided Verification (CAV’11).

[24] M4. 2019. GNU M4. https://www.gnu.org/software/m4/.

[25] Make. 2019. GNU Make. https://www.gnu.org/software/make/.

[26] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and

Petros Maniatis. 2012. Path-exploration Lifting: Hi-fi Tests for Lo-fi Emulators. In

Proc. of the 17th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’12).

[27] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proc. of the 35th
International Conference on Software Engineering (ICSE’13).

[28] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter

Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic

execution with model checking for Java bytecode analysis. Automated Software
Engineering 20, 3 (01 Sept. 2013), 391–425.

[29] Fernando Magno Quintao Pereira and Daniel Berlin. 2009. Wave Propagation and

Deep Propagation for Pointer Analysis. In Proc. of the 7th International Symposium
on Code Generation and Optimization (CGO’09).

[30] N. Rosner, J. Geldenhuys, N. M. Aguirre, W. Visser, and M. F. Frias. 2015. BLISS:

Improved Symbolic Execution by Bounded Lazy Initialization with SAT Support.

IEEE Transactions on Software Engineering (TSE) 41, 7 (July 2015), 639–660.

[31] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing

Engine for C. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’05).

[32] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In Proc. of the IEEE Symposium on Security and Privacy (IEEE
S&P’16).

[33] SQLite. 2019. SQLite Database Engine. https://www.sqlite.org/.

[34] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis

in LLVM. In Proc. of the 25th International Conference on Compiler Construction
(CC’16).

[35] Marek Trtík and Jan Strejček. 2014. Symbolic Memory with Pointers. In Auto-
mated Technology for Verification and Analysis (ATVA).

https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://github.com/jburnim/crest
https://www.gnu.org/software/coreutils/
https://www.sqlite.org/

	Abstract
	1 Introduction
	2 Proposed Memory Model
	2.1 Existing Memory Models
	2.2 Segmented Memory Model

	3 Implementation
	4 Evaluation
	4.1 Impact of Points-to Analysis
	4.2 GNU m4
	4.3 GNU make
	4.4 SQLite
	4.5 Apache Portable Runtime

	5 Discussion
	6 Related work
	7 Conclusion
	References

