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ABSTRACT
In recent years, fuzz testing has benefited from increased com-
putational power and important algorithmic advances, leading to
systems that have discovered many critical bugs and vulnerabilities
in production software. Despite these successes, not all applications
can be fuzzed efficiently. In particular, stateful applications such as
network protocol implementations are constrained by a low fuzzing
throughput and the need to develop complex fuzzing harnesses
that involve custom time delays and clean-up scripts.

In this paper, we present SnapFuzz, a novel fuzzing framework
for network applications. SnapFuzz offers a robust architecture
that transforms slow asynchronous network communication into
fast synchronous communication, snapshots the target at the latest
point at which it is safe to do so, speeds up file operations by
redirecting them to a custom in-memory filesystem, and removes
the need for many fragile modifications, such as configuring time
delays or writing clean-up scripts.

Using SnapFuzz, we fuzzed five popular networking applications:
LightFTP, TinyDTLS, Dnsmasq, LIVE555 and Dcmqrscp. We report
impressive performance speedups of 62.8 x, 41.2 x, 30.6 x, 24.6 x, and
8.4 x, respectively, with significantly simpler fuzzing harnesses in
all cases. Due to its advantages, SnapFuzz has also found 12 extra
crashes compared to AFLNet in these applications.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Security and privacy→ Systems security.
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1 INTRODUCTION
Fuzzing is an effective technique for testing software systems, with
popular fuzzers such as AFL and LibFuzzer having found thousands
of bugs in both open-source and commercial software. For instance,
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Google has discovered over 25,000 bugs in their products and over
22,000 bugs in open-source code using greybox fuzzing [18].

Unfortunately, not all software can benefit from such fuzzing
campaigns. One important class of software, network protocol im-
plementations, is difficult to fuzz. There are two main difficulties:
the fact that in-depth testing of such applications needs to be aware
of the network protocol they implement (e.g., FTP, DICOM, SIP),
and the fact that they have side effects, such as writing data to the
file system or exchanging messages over the network.

There are two main approaches for testing such software in a
meaningful way. One approach, adopted by Google’s OSS-Fuzz, is
to write unit-level test drivers that interact with the software via
its API [21]. While such an approach can be effective, it requires
significant manual effort, and does not perform system-level testing
where an actual server instance interacts with actual clients.

A second approach, used by AFLNet [30], performs system-level
testing by starting actual server and client processes, and generat-
ing random message exchanges between them which nevertheless
follow the underlying network protocol. Furthermore, it does so
without needing a specification of the protocol, but rather by using
a corpus of real message exchanges between server and clients.
AFLNet’s approach has significant advantages, requiring less man-
ual effort and performing end-to-end testing at the protocol level.

While AFLNet makes important advances in terms of fuzzing
network protocols, it has two main limitations. First, it requires
users to add or configure various time delays in order to make sure
the protocol is followed, and to write clean-up scripts to reset the
state across fuzzing iterations. Second, it has poor fuzzing perfor-
mance, caused by asynchronous network communication, various
time delays, and expensive file system operations, among others.

SnapFuzz addresses both of these challenges thorough a robust
architecture that transforms slow asynchronous network commu-
nication into fast synchronous communication, speeds up file oper-
ations and removes the need for clean-up scripts via an in-memory
filesystem, and improves other aspects such as delaying and au-
tomating the forkserver placement, correctly handling signal prop-
agation and eliminating developer-added delays.

These improvements significantly simplify the construction of
fuzzing harnesses for network applications and dramatically im-
prove fuzzing throughput in the range of 8.4 x to 62.8 x (mean:
30.6 x) for a set of five popular server benchmarks.

2 FROM AFL TO AFLNET TO SNAPFUZZ
In this section, we first discuss how AFL and AFLNet work, focusing
on their internal architecture and performance implications, and
then provide an overview of SnapFuzz’s architecture and main
contributions.
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Figure 1: Architecture of AFL’s forkserver mode.

2.1 American Fuzzy Lop (AFL)
AFL [27] is a greybox fuzzer that uses an effective coverage-guided
genetic algorithm. AFL uses a modified form of edge coverage
to efficiently identify inputs that change the target application’s
control flow.

In a nutshell,AFL first loads user-provided initial seed inputs into
a queue, picks an input, and mutates it using a variety of strategies.
If a mutated input improves coverage, it is added to the queue and
the cycle is repeated.

At a systems level, AFL’s simplest mode (called dumb mode) is
to restart the target application from scratch by forking first and
then creating a fresh process via execve. When this happens, the
standard sequence of events to start a process is taking place, with
the OS loader first initialising the target application and its libraries
into memory. AFL then sends to the new process the fuzzed input
through a file descriptor that usually points to an actual file or
stdin. Lastly, AFL waits for the target to terminate, but kills it if a
predefined timeout is exceeded. These steps are repeated for every
input AFL wants to provide to the target application.

AFL’s dumb mode is rather slow as too much time is spent on
loading and initialising the target and its libraries (such as libc) for
every generated input. Ideally, the application would be restarted
after all these initialisation steps are done, as they are irrelevant to
the input provided by AFL. This is exactly what AFL’s forkserver
mode offers, as shown in Figure 1.

In this mode, AFL first creates a child server called the forkserver
(step 1 in Figure 1), which loads the target application via execve
and freezes it just before the main function is about to start.

Then, in each fuzzing iteration, the following steps take place
in a loop: AFL requests a new target instance from the forkserver
(step 2), the forkserver creates a new instance (step 3), AFL sends
fuzzed input to this new instance (step 4), and the forkserver checks
the target instance for crashes (step 5).

With this forkserver snapshotting mechanism, AFL replaces the
loading overhead by a much less expensive fork call, while guar-
anteeing that the application will be at its initial state for every
freshly generated input from AFL.

One additional optimisation that AFL offers is the deferred fork-
server mode. In this mode, the user can manually add in the target’s
source code a special call to an internal function of AFL in order to
instruct it to create the forkserver at a later stage in the execution
of the target application. This can provide significant performance
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Figure 2: Architecture of AFLNet.

benefits in the common case where the target application needs
to perform a long initialisation phase before it is able to consume
AFL’s input. Unfortunately though, this mode requires the user not
only to have access to the source code of the target application,
but also knowledge of its internals in order to place the deferred
call at the correct stage of execution. As we will explain in §3.4,
the forkserver placement has several restrictions (e.g., it cannot be
placed after file descriptors are created) and if these restrictions are
violated, the fuzzing campaign can waste a lot of time exploring
invalid executions.

2.2 AFLNet
AFL essentially targets applications that receive inputs via files
(with stdin a special file type). This means that it is not directly
applicable to network applications, as they expect inputs to arrive
through network sockets and follow an underlying network protocol.

AFLNet [30] extends AFL to work with network applications. Its
most important contribution is that it proposes a new algorithm
on how to generate inputs that follow the underlying network
protocol (e.g., the FTP, DNS or SIP protocols). More specifically,
AFLNet infers the underlying protocol via examples of recorded
message exchanges between a client and the server.

AFLNet also extends AFL by building the required infrastructure
to direct the generated inputs through a network socket to the
target application, as shown in Figure 2. More precisely, from a
systems perspective, AFLNet acts as the client application. After a
configurable delay waiting for the server under fuzzing to initialise,
it sends inputs to the server through TCP/IP or UDP/IP sockets,
with configurable delays between those deliveries (we describe the
various time delays needed by AFLNet in §3.2). AFLNet consumes
the replies from the server (or else the server might block) and also
sends to the server a SIGTERM signal after each exchange is deemed
complete, as usually network applications run in infinite loops.

As shown in Figure 2, the architecture of AFLNet is similar to
that of AFL’s deferred forkserver mode, except that communication
takes place over the network instead of via files.

Network applications like databases or FTP servers are often
stateful, keeping track of their state by storing information to vari-
ous files. This can create issues during a fuzzing campaign because
when AFLNet restarts the application, its state might be tainted
by information from a previous execution. To avoid this problem,
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Figure 3: Architecture of SnapFuzz.

AFLNet requires the user to write custom clean-up scripts that are
invoked to reset any filesystem state.

We use the term fuzzing harness to refer to all the code that users
need to write in order to be able to fuzz an application. In AFLNet,
this includes the client code, the various time delays that need to
be manually added, and the clean-up scripts. One important goal
of SnapFuzz is to simplify the creation of fuzzing harnesses for
network applications.

2.3 SnapFuzz
SnapFuzz is built on top of AFLNet by revamping its network com-
munication architecture as shown in Figure 3, without any modifi-
cations to AFLNet’s fuzzing algorithm.

SnapFuzz’s main objectives are (1) to improve the performance
(throughput) of fuzzing network applications, and (2) lower the
barrier for testing network applications by simplifying the con-
struction of fuzzing harnesses, in particular by eliminating the need
to add manually-specified time delays and to write clean-up scripts.

At a high level, SnapFuzz achieves its significant performance
gains by: optimising all network communications by eliminating
synchronisation delays (the SnapFuzz protocol); automatically in-
jecting AFL’s forkserver deeper into the application than otherwise
possible and without the user’s intervention (smart deferred fork-
server); performing binary rewriting-enabled optimisations which
eliminate additional delays and inefficiencies; automatically reset-
ting any filesystem state; and optimising filesystem accesses by
redirecting them into an in-memory filesystem.

SnapFuzz also makes fuzzing harness development easier and in
some cases trivial by completely removing the need for manual code
modifications. Such manual changes are often required to: reset
the state of either the target or its environment after each fuzzing
iteration; terminate the target, as usually servers run in infinite
loops; pin the CPU for threads and processes; and add deferred
forkserver support to the target.

Figure 3 shows the architecture of SnapFuzz.While at a high-level
it resembles that of AFLNet, there are several important changes.
First, SnapFuzz intercepts the external actions of the target applica-
tion using binary rewriting (§3.1). It then monitors the behaviour
of both the target application and the AFLNet client in order to

eliminate synchronisation delays using its SnapFuzz protocol (§3.2).
Second, a custom in-memory filesystem is added, to improve perfor-
mance and facilitate resetting the state after each fuzzing iteration
(§3.3). Third, the forkserver is replaced by a smart deferred fork-
server, which automates and optimizes the forkserver placement
(§3.4). We describe the main components of SnapFuzz in detail in
the next section.

3 DESIGN
SnapFuzz has twomain goals: significantly increase fuzzing through-
put, and simplify the construction of fuzzing harnesses. SnapFuzz
accomplishes these goals by intercepting all the communication be-
tween the target application and its environment via binary rewrit-
ing (§3.1). By controlling this communication, SnapFuzz can then:
(1) Implement an efficient network fuzzing protocol which notifies

the fuzzer when the target application is ready to accept a new
request or when a response is ready to be consumed (§3.2). This
improves fuzzing throughput and eliminates the need for all the
custom delays that AFLNet users need to insert in order to syn-
chronise the communication between the fuzzer and the target
application. SnapFuzz also replaces Internet sockets by UNIX
domain sockets, which improves performance, and implements
an efficient server termination strategy.

(2) Redirect all file operations to use an in-memory filesystem
(§3.3). This improves the performance of filesystem operations,
and obviates the need for user-provided clean-up scripts, as
SnapFuzz can automatically clean up after each fuzzing iteration
by simply discarding the in-memory state.

(3) Automatically place and defer the forkserver (“smart deferred
forkserver”) to the latest safe point (§3.4). This improves per-
formance and eliminates the need for manual annotations.

(4) Eliminate custom delays, unnecessary system calls and poten-
tially expensive clean-up routines that are part of the target
application, correctly propagate signals from child processes,
and better control CPU affinity (§3.5).

3.1 Binary Rewriting
SnapFuzz implements a load-time binary rewriting subsystem that
dynamically intercepts both the OS loader’s and the target’s func-
tionalities in order to monitor and modify all external behaviours
of the target application.

Applications interact with the external world via system calls,
such as read() and write() in Linux, which provide various OS
services. As an optimisation, Linux provides some services via vDSO
(virtual Dynamic Shared Object) calls. vDSO is essentially a small
shared library injected by the kernel in every application in order
to provide fast access to some services. For instance, gettimeofday()
is typically using a vDSO call on Linux.

The main goal of the binary rewriting component of SnapFuzz
is to intercept all the system calls and vDSO calls issued by the
application being fuzzed, and redirect them to a system call handler.
§4.1 presents the implementation details.

By intercepting the target application’s interactions with its
outside environment at this level of granularity, SnapFuzz can sig-
nificantly increase fuzzing throughput and eliminate the need for
custom delays and scripts, as we discuss in the next subsections.
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Figure 4: Messages exchanged for each recv and send.

3.2 SnapFuzz Network Fuzzing Protocol:
Eliminating Communication Delays

Network applications often implement multistep protocols with
multiple requests and replies per session. One of AFLNet’s main
contributions is to infer the network protocol starting from a set of
recorded message exchanges. However, AFLNet cannot guarantee
that during a certain fuzzing iteration the target will indeed respect
the protocol. Deviations might be possible for instance due to a
partly-incorrect protocol being inferred, bugs in the target applica-
tion, or most commonly due to the target not being ready to send
or receive a certain message.

Therefore, AFLNet performs several checks and adds several
user-specified delays to ensure communication is in sync with the
protocol. These communication delays, which can significantly
degrade the fuzzing throughput, are:
(1) A delay to allow the server to initialise before AFLNet attempts

to communicate.
(2) A delay specifying how long to wait before concluding that

no responses are forthcoming and instead try to send more
information, and

(3) A delay specifying how long to wait after each packet is sent
or received.
These delays are necessary, as otherwise the OS kernel will reject

packets that come too fast while the target is not ready, and AFLNet
will desynchronise from its state machine. But they cause a lot
of time to be wasted, essentially because AFLNet does not know
whether the target is ready to send or receive information.

SnapFuzz overcomes this challenge through a simple but effec-
tive network fuzzing protocol. The protocol keeps track of the next
action of the target, and notifies AFLNet about it. Figure 4 shows the
messages exchanged between SnapFuzz and AFLNet on each recv
(for receiving data) and send (for sending data) system calls. Essen-
tially, to avoid the need for the communication delays discussed
above, SnapFuzz informs AFLNet when the target is about to issue
a recv or a send. This is performed by introducing an additional
control socket (implemented via an efficient UNIX domain socket),
which is used as a send-only channel from the SnapFuzz plugin to
AFLNet.

The SnapFuzz network fuzzing protocol additionally implements
the following two optimisations:

UNIX Domain Sockets. The standard Internet sockets (TPC/IP
and UDP/IP) used by AFLNet to communicate to the target and send

it fuzzed inputs are unnecessarily slow. As observed before [45],
replacing them with UNIX domain sockets can lead to significant
performance speed-ups. We discuss how this is achieved in §4.3.

Efficient Server Termination. Network servers usually run in a
loop. This loop is terminated either via a special protocol-specific
keyword or an OS signal. Since AFLNet cannot guarantee that each
fuzzing iteration will finish via a termination keyword, if the target
does not terminate, it sends it a SIGTERM signal and waits for it to
terminate. Signal delivery is slow and also servers might take a
long time to properly terminate execution. In the context of fuzzing,
proper termination is not so important, while fuzzing throughput
is. SnapFuzz implements a simple mechanism to terminate the
server: when it receives an empty string, it infers that the fuzzer
has no more inputs to provide and the application is instantly killed.
This obviously has the downside that it could miss bugs in the
termination routines, but these could be tested separately.

In summary, the SnapFuzz network fuzzing protocol improves
fuzzing performance (significantly, as shown in the evaluation) and
simplifies fuzzing harness construction by eliminating the need to
manually specify three different communication delays.

3.3 Efficient State Reset
AFLNet users typically have to write a clean-up script to reset the
application state after each fuzzing iteration. For instance, LightFTP
under AFLNet requires a script that cleans up any directories or files
that have been created in the previous iteration. Under SnapFuzz,
there is no need for such a clean-up script, which simplifies the test
harness construction, and improves performance by avoiding the
invocation of the clean-up script.

SnapFuzz solves this challenge by employing an in-memory
filesystem. Using the in-memory filesystem tmpfs under UNIX is a
well-known optimisation in the context of fuzzing.1,2,3

SnapFuzz uses an in-memory filesystem both for efficiency and
for removing the need for clean-up scripts involving filesystem
state. However, we are not using tmpfs, but a custom in-memory
filesystem that uses the memfd_create system call for files and the
Libsqlfs library for directories (see §4.2 for details). This allows us
to quickly duplicate state after forking, as explained below.

In the simplest case where AFL snapshots the target application
before main, no filesystem modifications have happened at the
point where the forkserver is placed. So when a fuzzing iteration
has finished, the target application process just exits and the OS
discards its memory, which includes any in-memory filesystem
modifications made during fuzzing. Then, when the forkserver
spawns a new instance of the target application, the filesystem is
brought back to a state where all initial files are unmodified.

The situation is more complicated when the deferred forkserver
is placed after the target application has already created some files.
In our implementation, which is based on memfd_create, when
the forkserver creates a new instance to be fuzzed, the Linux ker-
nel shares the memory pages associated with the newly-created
in-memory files between the new instance and the forkserver. Note

1https://www.cipherdyne.org/blog/2014/12/ram-disks-and-saving-your-ssd-from-
afl-fuzzing.html
2https://medium.com/@dhiraj_mishra/fuzzing-vim-53d7cf9b5561
3https://www.cis.upenn.edu/~sga001/classes/cis331f19/hws/hw1.pdf
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https://www.cipherdyne.org/blog/2014/12/ram-disks-and-saving-your-ssd-from-afl-fuzzing.html
https://medium.com/@dhiraj_mishra/fuzzing-vim-53d7cf9b5561
https://www.cis.upenn.edu/~sga001/classes/cis331f19/hws/hw1.pdf
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that using tmpfs would not solve this issue—as far as we know,
there is no way to duplicate a tmpfs filesystem in a copy-on-write
way. This sharing of pages between the new instance and the fork-
server is problematic, as now any modifications to the in-memory
files by the fuzzed application instance will persist even after the
instance finishes execution. So in the next iteration, when the fork-
server creates a new instance, this new instance will inherit those
modifications too.

SnapFuzz solves this issue as follows. First, note that SnapFuzz
knows whether the application is executing before or after the fork-
server’s snapshot, as it intercepts all system calls, including fork.
While the target application executes before the forkserver’s snap-
shot, SnapFuzz allows all file interactions to be handled normally.
When a new instance is requested from the forkserver, SnapFuzz
recreates in the new instance all in-memory files registered in the
in-memory filesystem and copies all their contents by using the
efficient sendfile system call once per in-memory file.

3.4 Smart Deferred Forkserver
As discussed in §2.1, the deferred forkserver can offer great perfor-
mance benefits by avoiding initialisation overheads in the target.
Such overheads include loading the shared libraries used by the
target, parsing configuration files and cryptographic initialisation
routines. Unfortunately, for the deferred forkserver to be used, the
user needs to manually modify to source code of the target. Further-
more, the deferred forkserver cannot be used after the target has
created threads, child processes, temporary files, network sockets,
offset-sensitive file descriptors, or shared-state resources, so the
user has to carefully decide where to place it: do it too early and
optimisation opportunities are missed, do it too late and correctness
is affected.

SnapFuzz makes two important improvements to the deferred
forkserver: first, it makes it possible to defer it much further than
usually possible with AFL’s architecture, and second, it does so
automatically, without any need for manual source modifications.

The two components which enable SnapFuzz to place the fork-
server after many system calls which normally would have caused
problems are: (1) its custom network fuzzing protocol which allows
it to skip network setup calls such as socket and accept (§3.2) and
(2) its in-memory filesystem, which transforms filesystem opera-
tions into in-memory changes (§3.3).

Via binary rewriting, SnapFuzz intercepts each system call, and
places the forkserver just before it encounters either a system call
that spawns new threads (clone, fork), or one used to receive
input from a client. The reason SnapFuzz still has to stop before
the application spawns new threads is that the forkserver relies
on fork to spawn new instances to be fuzzed, and fork cannot
reconstruct existing threads—in Linux, forking a multi-threaded
application creates a process with a single thread [15]. As a pos-
sible mitigation, we tried to combine SnapFuzz and the pthsem
/ GNU pth library [33]—a green threading library that provides
non-preemptive priority-based scheduling, with the green threads
executing inside an event-driven framework—but the performance
overhead was too high.

In particular, we used pthsem with LightFTP, as this application
has to execute two clone system calls before it accepts input. With

pthsem support, SnapFuzz’s forkserver can skip these two clone
calls, as well as 37 additional system calls, as now SnapFuzz can
place the forkserver just before LightFTP is ready to accept input.
However, despite this gain, the overall performance was 10% lower
than in the version of SnapFuzzwithout pthsem, due to the overhead
of this library. Ideally, SnapFuzz should implement a lightweight
thread reconstruction mechanism to recreate all dead threads, but
this is left as future work.

3.5 Additional Binary Rewriting-enabled
Optimisations

In this section, we discuss several additional optimisations per-
formed by SnapFuzz, which are enabled by its binary rewriting-
based architecture. They concern developer-added delays, writes
to stdout/stderr, signal propagation, and CPU affinity, and high-
light the versatility of SnapFuzz’s approach in addressing a variety
of challenges and inefficiencies when fuzzing network applications.

3.5.1 Eliminating developer-added delays. Occasionally, network
applications add sleeps or timeouts in order to avoid high CPU
utilisation when they poll for new connections or data. SnapFuzz
removes these delays via binary rewriting, making those calls use
a more aggressive polling model.

We also noticed that in some cases application developers de-
liberately choose to add sleeps in order to wait for various events.
For example, LightFTP adds a one second sleep in order to wait
for all its threads to terminate. This might be fine in a production
environment, but during a fuzzing campaign such a delay is unnec-
essary and expensive. SnapFuzz completely skips such sleeps by
intercepting and then not issuing this family of system calls at all.

3.5.2 Avoiding stdout/stderr writes. By default, AFL redirects
stdout and stderr to /dev/null. This is much more performant
than actually writing to a file or any other medium, as the ker-
nel optimizes those operations aggressively. SnapFuzz goes one
step further and saves additional time by completely skipping any
system call that targets stdout or stderr.

3.5.3 Signal Propagation. Some applications use a multi-process
rather than a multi-threaded concurrency model. In this case, if a
subprocess crashes with a segfault, the signal might not be propa-
gated properly to the forkserver and the crash missed. We stumbled
upon this case with the Dcmqrscp server (§6.5) where a valid new
bug was manifesting, but AFLNet was unable to detect the issue as
the main process of Dcmqrscp never checked the exit status of its
child processes.

As SnapFuzz has full control of the system calls of the target,
whenever a process is about to exit, it checks the exit status of
its child processes too. If an error is detected, it is raised to the
forkserver.

3.5.4 Smart affinity. AFL is designed to work with single-threaded
applications that receive input via files, with the fuzzer creating
a file and then sending it to the target for processing. Therefore,
AFL pins the fuzzer and the target to the same CPU core. SnapFuzz
can detect when a new thread or process is about to be spawned
as both clone and fork system calls are intercepted. This creates
the opportunity for SnapFuzz to take control of thread scheduling
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by pinning threads and processes to available CPUs. SnapFuzz
implements a very simple algorithm that pins every newly created
thread or process to the next available CPU, and also places the
fuzzer on a separate CPU.

4 IMPLEMENTATION
SnapFuzz is implemented on top of AFLNet, and targets the Linux
platform. However, the ideas in SnapFuzz could be implemented
using other fuzzers and operating systems. Below, we provide imple-
mentation details related to binary rewriting (§3.1), our in-memory
filesystem (§4.2), and the use of UNIX domain sockets (§4.3).

4.1 Binary Rewriting
Binary rewriting in SnapFuzz employs two major components:
1) the rewriter module, which scans the code for specific functions,
vDSO and system call assembly opcodes, and redirects them to the
plugin module, and 2) the plugin module where SnapFuzz resides.

Rewriter. SnapFuzz is an ordinary dynamically linked executable
that is provided with a path to a target application together with
the arguments to invoke it with. When SnapFuzz is launched, the
expected sequence of events of a standard Linux operating system
are taking place, with the first step being the dynamic loader that
loads SnapFuzz and its dependencies in memory.

When SnapFuzz starts executing, it inspects the target’s ELF
binary to obtain information about its interpreter, which in our im-
plementation is always the standard Linux ld loader. SnapFuzz then
scans the loader code for system call assembly opcodes and some
special functions in order to instruct the loader to load the SnapFuzz
plugin. In particular, the rewriter: (1) intercepts the dynamic scan-
ning of the loader in order to append the SnapFuzz plugin shared
object as a dependency, and (2) intercepts the initialisation order
of the shared libraries in order to prepend the SnapFuzz plugin
initialisation code (in the .preinit_array).

After the SnapFuzz rewriter finishes rewriting the loader, exe-
cution is passed to the rewritten loader in order to load the target
application and its library dependencies. As the normal execution
of the loader progresses, SnapFuzz intercepts its mmap system calls
used to load libraries into memory, and scans these libraries in
order to recursively rewrite their system calls and redirect them
to the SnapFuzz plugin. The SnapFuzz rewriter is based on the
open-source load-time binary rewriter SaBRe [1].

Plugin.After the loader completes, execution is passed to the target
application, which will start by executing SnapFuzz’s initialisation
function. Per the ELF specification, execution starts from the func-
tion pointers of .preinit_array. This is a common ELF feature used
by LLVM sanitisers to initialise various internal data structures
early, such as the shadow memory [36, 38]. SnapFuzz is using the
same mechanism to initialise its subsystems like its in-memory
filesystem before the execution starts.

After the initialisation phase of the plugin, control is passed
back to the target and normal execution resumed. At this stage,
the SnapFuzz plugin is only executed when the target is about to
issue a system call or a vDSO call. When this happens, the plugin
checks if the call should be intercepted, and if so, it redirects it to
the appropriate handler, and then returns back control to the target.

4.2 In-memory Filesystem
As discussed in §3.3, SnapFuzz redirects all file operations to use a
custom in-memory filesystem. This reduces the overhead of reading
and writing from a storage medium, and eliminates the need for
manually-written clean-up scripts.

SnapFuzz implements a lightweight in-memory filesystem,which
uses two distinct mechanisms, one for files and the other for direc-
tories. For files, SnapFuzz’s in-memory filesystem uses the recent
memfd_create() system call, introduced in Linux in 2015 [26]. This
system call creates an anonymous file and returns a file descrip-
tor that refers to it. The file behaves like a regular file, but lives
in memory. Under this scheme, SnapFuzz only needs to specially
handle system calls that initiate interactions with a file through a
pathname (like the open and mmap system calls). All other system
calls that handle file descriptors are compatible by default with the
file descriptors returned by memfd_create.

When a target application opens a file, the default behavior of
SnapFuzz is to check if this file is a regular file (e.g. device files are
ignored), and if so, create an in-memory file descriptor and copy the
whole contents of the file in the memory address space of the target.
SnapFuzz keeps track of pathnames in order to avoid reloading
the same file twice. This is not only a performance optimisation
but also a correctness requirement, as the application might have
changed the contents of the file in memory.

For directories, SnapFuzz employs the Libsqlfs library [17], which
implements a POSIX-style file system on top of the SQLite database
and allows applications to have access to a full read/write filesystem
with its own file and directory hierarchy. Libsqlfs simplifies the
emulation of a real filesystem with directories and permissions.
SnapFuzz uses Libsqlfs for directories only, as we observed better
performance for files via memfd_create.

4.3 UNIX Domain Sockets
AFLNet uses the standard Internet sockets (TPC/IP and UDP/IP) to
communicate to the target and send it fuzzed inputs. The Internet
socket stack includes functionality—such as calculating checksums
of packets, inserting headers, routing—which is unnecessary when
fuzzing applications on a single machine.

To eliminate this overhead, similarly to prior work [45], SnapFuzz
replaces Internet sockets with UNIX domain sockets. More specifi-
cally, SnapFuzz uses Sequenced Packet sockets (SOCK_SEQPACKET).
This configuration offers performance benefits and also simplifies
the implementation. Sequenced Packets are quite similar to TCP,
providing a sequenced, reliable, two-way connection-based data
transmission path for datagrams. The difference is that Sequenced
Packets require the consumer (in our case the SnapFuzz plugin
running inside the target application) to read an entire packet with
each input system call. This atomicity of network communications
simplifies corner cases where the target application might read only
parts of the fuzzer’s input due to scheduling or other delays. By
contrast, AFLNet handles this issue by exposing manually defined
knobs for introducing delays between network communications.

Our modified version of AFLNet creates a socketpair of UNIX
domain sockets with the Sequenced Packet type, and passes one end
to the forkserver, which later passes it to the SnapFuzz plugin. The
SnapFuzz plugin initiates a handshake with the modified AFLNet,
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after whichAFLNet is ready to submit generated inputs to the target
or consume responses.

Translating network communication from Internet sockets to
UNIX domain sockets is not trivial, as SnapFuzz needs to support the
twomain IP families of TCP and UDPwhich have a slightly different
approach to how network communication is established. In addition,
SnapFuzz also needs to support different types of synchronous and
asynchronous communication such as (e)poll and select.

For the TCP family, the socket system call creates a TCP/IP
socket and returns a file descriptor which is then passed to bind,
listen and finally to accept, before the system is ready to send or
receive any data. SnapFuzz monitors this sequence of events on the
target and when the accept system call is detected, it returns the
UNIX domain socket file descriptor from the forkserver. SnapFuzz
doesn’t interfere with the socket system call and intentionally
allows its normal execution in order to avoid complications with
target applications that perform advanced configurations on the
base socket. This strategy is similar to the one used by the in-
memory file system via the memfd_create system call (§4.2) in
order to provide compatibility by default.

The UDP family is handled in a similar way, with the only differ-
ence that instead of monitoring for an accept system call to return
the UNIX domain socket of the forkserver, SnapFuzz is monitoring
for a bind system call.

5 LIMITATIONS
This section summarises the main limitations of SnapFuzz.

As discussed in §3.4, the smart deferred forkserver cannot be
placed after the application has spawned threads, because our im-
plementation relies on fork, and in Linux, forking a multi-threaded
application creates a process with a single thread [15]. To address
this, we envision a lightweight thread reconstruction mechanism
to recreate all dead threads, but this is not a trivial task and would
require understanding the performance tradeoffs involved.

The effectiveness of the smart forkserver is also inhibited by
early unimportant network communication, such as a handshake.
When during such early communication the target application is
the first to send some data, we take a snapshot after this completes;
unfortunately, we cannot do so once the fuzzer starts sending input.

SnapFuzz’s smart deferred forkserver is typically ideal for target
applications that retrieve data from files early in their execution,
just before network communication starts. In this way, the reads
have to be executed only once rather than on every fuzzing iteration.
However, if the files are large, performance can degrade. For every
new forked process spawned from the smart deferred forkserver,
SnapFuzz has to memory copy all the in-memory loaded files—as
memfd_create uses shared memory to store the in-memory files—
in order to avoid different forked processes to interfere with each
other. For large files, this might entail a significant overhead. In
future work, we plan to investigate approaches for better handling
such large files.

SnapFuzz might also subtly change the program behaviour. We
discuss three such instances: (1) SnapFuzz is emulating Internet
sockets with UNIX domain sockets, and the native filesystem with
an in-memory one. While we strive for maximum compatibility,
subtle differences might exist. For example network communication

in SnapFuzz uses Sequenced Packet sockets (SOCK_SEQPACKET, see
§4.3) that provide atomicity of sending and receiving, which can
be violated by Internet sockets. (2) If the snapshot taken by the
smart deferred forkserver contains time-sensitive state (such as a
certificate with a short time expiration), the state might become in-
valid when new processes are forked during later fuzzing iterations.
(3) The target application might rely on timed waits to explore
various corner cases, and with SnapFuzz removing all sleeps, these
corner cases might be missed. We have not directly observed such
issues in our experiments, but if they occur, they might lead to both
false positives and false negatives.

Finally, as discussed in §3.2, SnapFuzz instantly terminates the
application when the fuzzer has no more inputs to provide. While
this approach increases performance, it may miss bugs in the ter-
mination routines.

6 EVALUATION
We demonstrate the benefits of SnapFuzz using five popular servers
that were previously used in evaluating AFLNet [30]: LightFTP
(§6.4), Dcmqrscp (§6.5), Dnsmasq (§6.6), LIVE555 (§6.7) and Tiny-
DTLS (§6.8). Our experiments show that SnapFuzz significantly
improves fuzzing throughput, while at the same time reducing the
effort needed to create fuzzing harnesses. As a result of its signif-
icant performance benefit, SnapFuzz also found 12 extra crashes
compared to AFLNet in these applications.

6.1 Methodology
Our main performance metric is the number of fuzzing iterations
per second. Note that each fuzzing iteration may include multiple
message exchanges between the fuzzer and the target. A fuzzing
campaign consists of a given number of fuzzing iterations.

During a fuzzing campaign, the fuzzer’s speed may vary across
iterations, sometimes significantly, due to different code executed by
the target. To ensure a meaningful comparison between SnapFuzz
and AFLNet, rather than fixing a time budget and counting the
number of iterations performed by each, we instead fix the number
of iterations and measure the execution time of each system. We
monitored standard fuzzing metrics including bug count, coverage,
stability, path and cycles completed, to make sure that the SnapFuzz
and AFLNet campaigns have the same (or very similar) behaviour.

We chose to run each target for one million iterations to simulate
realistic AFLNet fuzzing campaigns (ranging from approximately
15 h to 36 h). We repeated the execution of each campaign 10 times.

6.2 Experimental Setup
All of our experiments were conducted on a 3.0 GHz AMD EPYC
7302P 16-Core CPU and 128 GB RAM running 64-bit Ubuntu 18.04
LTS (kernel version 4.15.0-162) with an SSD disk. Note that using
a slower HDD instead of an SSD disk would likely lead to larger
gains for SnapFuzz’s in-memory filesystem component.

SnapFuzz is built on top of AFLNet revision 0f51f9e from Janu-
ary 2021 and SaBRe revision 7a94f83. The servers tested and their
workloads were taken from the AFLNet paper and repository at the
revision mentioned above.

We used the default configurations proposed by AFLNet for all
benchmarks, with a couple of exceptions. For the Dcmqrscp server,
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Table 1: Average time in minutes, with standard deviation
in parenthesis, to complete one million fuzzing iterations
in AFLNet vs Snapfuzz, across 10 repetitions.

AFLNet SnapFuzz Speedup
Dcmqrscp 1055 (138) 127 (15) 8.4 x
Dnsmasq 917 (111) 30 (1) 30.6 x
TinyDTLS 1401 (297) 34 (11) 41.2 x
LightFTP 2135 (327) 34 (2) 62.8 x
LIVE555 1547 (218) 63 (2) 24.6 x

two changes were required: 1) we had to include a Bash clean-up
script to reset the state of a data directory of the server, and 2) we
had to add a wait time between requests of 5ms as we observed
AFLNet to desynchronise from its target. These changes further
emphasise the fact that the clean-up scripts and delays that users
need to specify when building a fuzzing harness are fragile and may
need adjustment when using different machines, thus SnapFuzz’s
ability to eliminate their need is important.

In TinyDTLS we decided to decrease the inter-request wait time
from 30ms to 2ms, as we noticed the AFLNet performance was
seriously suffering due to this large delay. Again, this shows that
choosing the right values for these time delays is difficult.

6.3 Summary of Results
Table 1 shows a summary of the results. In particular, it compares
the average time needed by AFLNet and by SnapFuzz to complete
one million iterations. AFLNet takes between 15 h 17min to 35 h
35min to complete these iterations, with SnapFuzz taking only a
fraction of that time, between 30min and 2 h 7min. The speedups
are impressive in each case, varying between 8.4 x for Dcmqrscp
and 62.8 x for LightFTP. In all cases, we observed identical coverage
statistics, bug counts, and stability numbers.

6.4 LightFTP
LightFTP [23] is a small multi-threaded server for file transfers
that implements the FTP protocol. The fuzzing harness instructs
LightFTP to log in a specific user, list the contents of the home
directory on the FTP server, create directories, and execute various
other commands for system information.

LightFTP exercises a large set of SnapFuzz’s subsystems. First, it
heavily utilises the filesystem, as the probability to create directories
is quite high on every iteration. Second, it has verbose logging and
writing to stdout. Third, it has a long initialisation phase, because
it parses a configuration file and then undergoes a heavyweight
process of initialising x509 certificates. And lastly, LightFTP has
a hardcoded sleep delay to make sure that all of its threads have
terminated gracefully.

SnapFuzz optimises all the above functionalities. First, it removes
all synchronisation and sleep delays. Second, all directory inter-
actions are translated into in-memory operations, thus avoiding
context switches and disk overheads. SnapFuzz’s smart deferred
forkserver snapshots the LightFTP server after its initialisation
phase and thus fuzzing under SnapFuzz pays the initialisation over-
head only once. Lastly, SnapFuzz cancels stdout and stderrwrites.

Note that SnapFuzz can place the forkserver later than it could
be placed manually. For the deferred forkserver to work properly,
recall that no file descriptor must be open before the forkserver
snapshots the target. This is because the underlying resource of
a file descriptor is retained after a fork happens. This limits the
area where the deferred forkserver can be placed manually. Snap-
Fuzz overcomes this challenge with its in-memory file system as
described in §4.2 and thus it is able to place the forkserver after the
whole initialisation process has finished.

The one million iterations for LightFTP take on average 35 h
35min under AFLNet, while only 34min under SnapFuzz, providing
a 62.8 x speedup.

6.5 Dcmqrscp
Dcmqrscp [12] is a multi-threaded DICOM image archive server
that manages a number of storage areas and allows images to be
stored and queried. The fuzzing harness instructs the DICOM server
to echo connection information back to the client, and to store, find
and retrieve specific images into and from its database.

Dcmqrscp heavily exercises SnapFuzz’s in-memory filesystem
as on every iteration the probability to read or create files is high.
Dcmqrscp also benefits from the smart deferred forkserver, as it has
a long initialisation phase in which the server dynamically loads
the libnss library and also parses multiple configuration files that
dictate the syntax and capabilities of the DICOM language.

Our signal propagation subsystem (§3.5.3) was able to expose
a bug in Dcmqrscp which was also triggered by AFLNet but was
missed because signals were not properly propagated.

The one million Dcmqrscp iterations take on average 17 h 35min
to execute under AFLNet, while only 2 h 7min under SnapFuzz,
providing a 8.4 x speedup.

6.6 Dnsmasq
Dnsmasq [13] is a single-threaded DNS proxy and DHCP server
designed to have a small footprint and be suitable for resource-
constrained routers and firewalls. The fuzzing harness instructs
Dnsmasq to query various bogus domain names from its configura-
tion file and then report results back to its client.

Dnsmasq is an in-memory database with very little interac-
tion with the filesystem. Therefore, it doesn’t benefit from the
in-memory filesystem, but it profits from the SnapFuzz protocol
and the optimisations of §3.5. Furthermore, it highly benefits from
the smart deferred forkserver, as it has a long initialisation process:
Dnsmasq performs approximately 1,200 system calls before it is
ready to accept input.

As for other benchmarks, a manually-placed forkserver under
AFLNet could not snapshot the application at the same depth as
SnapFuzz’s smart deferred forkserver. This is because Dnsmasq
needs to execute a sequence of system calls to establish a network
connection with AFLNet. This sequence includes creating a socket,
binding its file descriptor, calling listen, executing a select to
check for incoming connections, and finally accepting the connec-
tion. Therefore, under AFLNet, the latest possible placement of the
forkserver would be just before this sequence. Under SnapFuzz,
network communications are translated into UNIX domain socket
communications that don’t require any of the above, and thus the
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smart deferred forkserver can snapshot the target right before read-
ing the input from the fuzzer, saving a lot of initialisation time.

The one million Dnsmasq iterations take on average 15 h 17min
underAFLNet, while only 30min under SnapFuzz, providing a 30.6 x
speedup.

6.7 LIVE555
LIVE555 [24] is a single-threaded multimedia streaming server that
uses open standard protocols like RTP/RTCP, RTSP and SIP. The
fuzzing harness instructs the LIVE555 server to accept requests to
stream the content of a specific file, and the server replies to these
requests with information and the actual streaming data.

LIVE555 only reads files and thus no state reset script is required.
It has a relatively slim initialisation phase with the main overhead
coming from the many writes to stdout with welcoming messages
to users. LIVE555 benefits from the SnapFuzz protocol and the
elimination of stdout writes.

LIVE555 reads its files only after the forkserver performs its
snapshot. As a result, those files are not kept in the in-memory
filesystem of SnapFuzz, and are read from the actual filesystem in
each iteration. We leave as future work the optimisation of pre-
defining a set of files to be loaded in the in-memory file system
when the smart deferred forkserver kicks in, so the target could
read these files from memory rather the actual filesystem.

The one million LIVE555 iterations take on average 25 h 47min
underAFLNet, while only 63min under SnapFuzz, providing a 24.6 x
speedup.

6.8 TinyDTLS
TinyDTLS [40] is a DTLS 1.2 single-threaded UDP server target-
ing IoT devices. In the fuzzing harness, TinyDTLS accepts a new
connection and then the DTLS handshake is initiated in order for
communication to be established.

The protocol followed by AFLNet has several steps, and progress
to the next step is accomplished either by a successful network
action or after a timeout has expired. TinyDTLS supports two cipher
suites, one Elliptic Curve (EC)-based, the other Pre-Shared Keys
(PSK)-based. EC-based encryption is slow, requiring the use of a
large timeout between requests, which slows down fuzzing with
AFLNet considerably. In addition, AFLNet includes some hardcoded
delays between network interactions so that it doesn’t overwhelm
the target—without these delays, network packets might be dropped
and AFLNet’s state machine desynchronised. Due to TinyDTLS’s
processing delays, network buffers might fill up if AFLNet sends too
much data in a short time period. To deal with this, AFLNet checks
on every send and receive if all the bytes are sent, and retries if not.

SnapFuzz handles all these issues through its network fuzzing
protocol. (We also note that TinyDTLS exercises SnapFuzz’s UDP
translation capabilities, unlike the other servers which use TCP.)
The end result is that all these delays are eliminated:AFLNet doesn’t
need to guess the state of the target anymore, as SnapFuzz explicitly
informs AFLNet about the next action of the target. Similarly, the
issue of dropped packets disappears, as AFLNet is always informed
when it is the right time to sendmore data. Finally, SnapFuzz’s UNIX
domain sockets eliminate the need for send and receive retries, as
full buffer delivery from and to the target is guaranteed by the

domain socket protocol. TinyDTLS writes a lot of data to stdout,
so it also benefits from SnapFuzz’s ability to skip these system calls.

The one million TinyDTLS iterations take on average 23 h 21min
underAFLNet, while only 34min under SnapFuzz, providing a 41.2 x
speedup.

We remind the reader that in TinyDTLS we decided to decrease
the manually-added inter-request time delay from 30ms to 2ms, as
we noticed the performance of AFLNet was seriously affected by
it. Without this change, AFLNet would take significantly longer to
complete one million iterations.

6.9 Performance Breakdown
In §6.4–§6.8 we discuss which components of SnapFuzz are likely to
benefit each application the most. Those conclusions were reached
by investigating the system calls issued by the applications, using
the estimates provided by strace about how much each system call
takes in the kernel. To have a better understanding of the contribu-
tion of each components, we perform an ablation study in which
we run different versions of SnapFuzz for a short number of 10k
iterations. We chose a much smaller number of iterations because
running so many experiments with 1M iterations was prohibitive
on our computing infrastructure. This means that our speedups
sometimes differ from those achieved by 1M iterations. However,
the main goal of these experiments is to gain additional insights
into the impact of different components and their interaction.

Due to various dependencies among components, we start with a
version of SnapFuzz containing only the network fuzzing protocol,
and keep adding components one by one. However, it is important to
understand that the order in which we add components matters, as
their effect is often multiplicative. In particular, this means that the
additional impact of components added earlier can be significantly
diminished compared to the case where the same component is
added later. We give two examples:
(1) SnapFuzz protocol and smart affinity. The SnapFuzz proto-

col is a performant non-blocking protocol that polls the fuzzer
and the application for communication. Under the default re-
stricted CPU affinity ofAFLNet, the protocol is under-performing,
because the polling model requires independent CPU cores to
get the expected performance benefit. At the same time, the
smart CPU affinity component depends on whether the Snap-
Fuzz protocol is enabled or not, as the protocol changes what is
executed on the CPU.

(2) In-memoryfilesystemand smart deferred forkserver. The
smart deferred forkserver performs better when the in-memory
filesystem is enabled, because with an in-memory filesystem it
can delay the forkserver past filesystem operations. On the other
hand, the in-memory filesystem also performs better when the
smart deferred forkserver is enabled. This is because the in-
memory filesystem has a fixed overhead of loading and storing
the files the target is reading in the beginning of its execution.
This initial overhead might degrade performance, especially
for short executions. When the deferred forkserver is enabled,
this overhead is bypassed, as these files are loaded only once in
memory and consecutive operations will be only in-memory.
One option would be to try all possible orderings. However, the

full number is large (6! = 720) and some orderings are difficult to
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Table 2: Speedup achieved by SnapFuzz compared to AFLNet, when each SnapFuzz component is added one by one. Note that
the ordering has an impact on the speedup achieved by each component (see text).

Protocol + Affinity + No Sleeps + No StdOut + Defer + In-Mem FS
Dcmqrscp 1.30 x 3.85 x 1.00 x 1.00 x 1.94 x 1.55 x
Dnsmasq 1.90 x 3.47 x 1.00 x 1.00 x 4.79 x 1.00 x
TinyDTLS 3.40 x 12.21 x 1.00 x 1.00 x 1.09 x 1.09 x
LightFTP 1.90 x 1.79 x 2.76 x 1.00 x 2.39 x 2.23 x
LIVE555 3.00 x 5.93 x 1.04 x 1.04 x 1.25 x 1.18 x

run due to engineering limitations (e.g., the SnapFuzz protocol is
deeply embedded into SnapFuzz and disabling it would require a
major engineering overhaul). Nevertheless, we believe the ordering
we present here is still useful in providing insights into the impact
of each SnapFuzz component.

Table 2 shows our results. Note that all components have a signif-
icant impact on at least one benchmark. Furthermore, the SnapFuzz
protocol, the smart affinity, and the smart deferred forkserver al-
ways lead to gains, while eliminating developer-added delays (no
sleeps), avoiding stdout/stderr writes (no stdout) and the in-memory
file system make no difference in some benchmarks. Removing
writes to stdout/stderr is the least impactful component, benefiting
only LIVE555. Note that while the smart affinity has the highest
overall gains, these are partly due to the fact that the SnapFuzz
protocol is enabled. As explained above, the smart affinity makes
the polling model used by the SnapFuzz protocol work efficiently.

The reported numbers are largely consistent with our qualita-
tive observations of §6.4–§6.8. For instance, the main benefits of
LightFTP come from the SnapFuzz protocol (1.90 x) which removes
synchronisation and server termination delays; from smart affinity
(1.79 x), especially since LightFTP is multi-threaded; from remov-
ing developer-added delays, which are present in LightFTP (2.76 x);
from the smart deferred forkserver (2.39 x), as it has a long initialisa-
tion phase; and from the in-memory filesystem (2.23 x), as it makes
heavy use of the filesystem. While LightFTP has writes to stdout,
removing them does not make a noticeable difference.

The performance numbers for other benchmarks also largely
agree with our expectations. For instance, the in-memory filesystem
brings no benefits to Dnsmasq, which is an in-memory database
with little filesystem interaction; but it highly benefits from the
smart deferred server (4.79 x), given that it has a long initialisation
with over 1,200 system calls issued before it is able to accept input.

6.10 Reduced fuzzing harness effort
SnapFuzz significantly reduces the manual effort necessary to build
fuzzing harnesses.

A key advantage is that it eliminates the need for specifying
communication delays. More specifically, all benchmarks required
the three delays described in §3.2. Choosing values for these de-
lays can be difficult, and they might need to be readjusted across
platforms, as we have also discovered (see §6.2).

Two of the benchmarks, namely Dcmqrscp and LightFTP, require
clean-up scripts that delete various application files and directories.
While these scripts are small (2-3 commands each), they can be diffi-
cult to get right, requiring a good understanding of the benchmarks
and test harnesses.

Finally, all benchmarks required code modifications to add sup-
port for the deferred forkserver. As discussed in §3.4, locating the
optimal position in the target’s code can be difficult and error-prone.
By contrast, SnapFuzz places the smart deferred forkserver auto-
matically, and often at a later stage than it would have been possible
with AFLNet.

6.11 Detected Crashes
In addition to the experiments above, we have run both SnapFuzz
and AFLNet for 24 h on each benchmark, with three repetitions. We
then accumulated all discovered crashes in a single repository. To
deduplicate the crashes found, we recompiled all benchmarks under
ASan and UBSan, and then grouped the crashing inputs based on
the reports from the sanitisers.

SnapFuzz, as expected, was able to find all the crashes discovered
by AFLNet. Due to its advantages, it also found additional crashes
in 3 of the 5 benchmarks. More precisely, it found 4 crashes in
the Dcmqrscp benchmark while AFLNet was not able to find any.
In Dnsmasq, SnapFuzz found 7 crashes, while AFLNet found only
1, and in LIVE555 it found 4 crashes, while AFLNet only 2. Both
tools found 3 crashes in TinyDTLS. Overall, SnapFuzz found 18
deduplicated crashes, 12 more than AFLNet. (But note that with the
exception of the crash discussed in §3.5.3, we expect AFLNet to find
the other 11, but after a significantly longer time.)

The crashes are caused by heap overflows, stack overflows, use-
after-free bugs, and other types of undefined behaviours. Fortu-
nately, they seem to have been fixed in the latest versions of these
applications. We plan to rerun SnapFuzz on the latest versions.

7 RELATEDWORK
SnapFuzz focuses on creating an efficient fuzzing platform for net-
work applications and helps algorithmic research to be built on top
of a strong foundation.

SnapFuzz builds on top of AFLNet [30], and reuses its ability to
infer network protocols. However,AFLNet has various inefficiencies
and requires fragile manual delays and clean-up scripts in its fuzzing
harnesses. Our comprehensive evaluation against AFLNet shows
how SnapFuzz can address both problems, resulting in impressive
speedups in the range of 8.4 x-62.8 x.

BesidesAFLNet, a popular way of fuzzing network applications is
via the de-socketing functionality of Preeny [32]. Preeny intercepts
networking functions such as connect and accept andmakes them
return sockets that are synchronised with stdin and stdout, es-
sentially allowing AFL to continue to fuzz files and redirecting their
contents over network sockets, as expected by the network applica-
tions being tested. Synchronisation is done in a hacky way: Preeny
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implements a small server thread that is continuously polling AFL’s
generated input file and then forwards the read data to the appropri-
ate network calls through a UNIX domain socket to the target [31].
While a direct comparison with AFLNet and SnapFuzz is not easily
possible because a meaningful fuzzing campaign requires the net-
work protocol inferred by AFLNet, we expect a rewrite of AFLNet
on top of Preeny to be slower than vanilla AFLNet, due to the extra
overhead imposed by file-based fuzzing and the additional thread
server used by Preeny.

We are also aware of other tools for fuzzing network applications,
such as jdbirdwell/afl [19] and WinAFL [42]. These tools have not
been published, so trying to understand their operation by using
their documentation or reverse-engineering the code is difficult.
Nevertheless, by briefly doing so, our understanding is that they
use a similar architecture to AFLNet, based on Internet sockets
and custom delays. So we would expect their performance to be
comparable to that of AFLNet. Their documentation also confirms
our understanding of the code. For instance, WinAFL discusses
that: "this mode [network fuzzing] is considered as experimen-
tal since we have experienced some problems with stability and
performance." These performance problems are likely due to the
AFLNet-style architecture observed in the code. As a second exam-
ple, jdbirdwell/afl discusses that: "The user needs to experimentally
determine a timeout delay (in milliseconds) that produces a suffi-
ciently low percentage of hangs (exits forced by expiration of the
delay) while allowing the input to the target from afl-fuzz to be com-
pletely processed." This type of manual effort and experimentation
is one of the key problems that SnapFuzz solves.

Multifuzz [45] presents a more advanced de-socketing library
called Desockmulti, which is similar to Preeny, but optimised in
various ways, e.g., by removing the use of threads and adding the
ability to initiate multiple connections to the target. MultiFuzz is
specifically designed for publish/subscribe protocols and the evalu-
ation does not include the benchmarks used by AFLNet and us. For
the two benchmarks used, libcoap and Mosquitto, the paper reports
throughput increases of two to three orders of magnitude on top
of AFLNet. We expect SnapFuzz to perform even better due to its
network fuzzing protocol, smart deferred forkserver and its mem-
ory file system (MultiFuzz uses tmpfs, see §3.3) but unfortunately,
MultiFuzz is not available as open source (only its Desockmulti
library is available), so a direct comparison is not possible.

Nyx-Net [35] uses hypervisor-based snapshot fuzzing with selec-
tive emulation of network functionality to handle network traffic.
While Nyx-Net achieves impressive speedups similar to SnapFuzz,
its architecture is fundamentally different. Nyx-Net requires a cus-
tom kernel module, a modified version of QEMU and KVM, and
also a custom VM build in which the target applications are exe-
cuted. Nyx-Net also implements a custom networking layer that
emulates some POSIX network functionality which currently does
not support complex network targets. While Nyx-Net is able to
support more advanced fuzzing use cases like fuzzing hypervisors,
SnapFuzz’s user-mode approach avoids many layers of additional
complexity.

Xu et al. [43] propose new operating systems primitives for
fuzzing. These include, for instance, a new snapshot system call,
which aims to address the same goal as SnapFuzz with respect
to efficiently snapshotting the target. As for Nyx-Net, the main

disadvantage of this approach is that it requires kernel support; by
contrast, SnapFuzz runs in user mode, using an unmodified OS.

Most work on testing network protocol implementations has
targeted algorithmic rather than platform-level improvements, fo-
cusing in particular on inferring network protocol implementa-
tions [3, 8, 11, 30, 44]. This work is orthogonal to SnapFuzz and
could be combined with it, as we have done with AFLNet’s pro-
tocol inference algorithm. More broadly, greybox fuzzing is an
active area of research [5] with recent work on improving its ef-
fectiveness by directing exploration toward interesting program
parts [6, 7], combining it with symbolic execution [10, 29, 39], infer-
ring input grammars [2, 41] or specialising it to various application
domains [20, 22, 46].

Besides greybox fuzzing, other forms of fuzzing have been used
to test network applications, such as blackbox fuzzing [4, 14, 16],
fault injection [25, 28] and symbolic execution [9, 34, 37].

8 CONCLUSION
Fuzzing stateless applications has proven extremely successful, with
hundreds of bugs and security vulnerabilities being discovered. Re-
cently, in-depth fuzzing of stateful applications such as network
servers has become feasible, due to algorithmic advances that make
it possible to generate inputs that follow the application’s network
protocol. Unfortunately, fuzzing such applications requires clean-up
scripts and manually-configured time delays that are error-prone,
and suffers from low fuzzing throughput. SnapFuzz addresses these
challenges through a robust architecture, which combines a syn-
chronous communication protocol with an in-memory filesystem
and the ability to delay the forkserver to the latest safe point, as
well as other optimisations. As a result, SnapFuzz simplifies fuzzing
harness construction and improves the fuzzing throughput sig-
nificantly, between 8.4 x and 62.8 x on a set of popular network
applications, allowing it to find additional crashes.

SnapFuzz is made available to the community as open-source,
with the hope that it will help improve the security and reliability
of network applications and facilitate further research in this space:
https://srg.doc.ic.ac.uk/projects/snapfuzz/.
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