
Sparse Symbolic Loop Execution (Registered Report)
Frank Busse

Imperial College London
United Kingdom

f.busse@imperial.ac.uk

Martin Nowack
Imperial College London

United Kingdom
m.nowack@imperial.ac.uk

Cristian Cadar
Imperial College London

United Kingdom
c.cadar@imperial.ac.uk

Abstract

Dynamic symbolic execution is a powerful program analysis tech-
nique but is often limited by the path-explosion problem, particu-
larly in the presence of heavily branching loops. In this paper, we
introduce sparse symbolic loop execution (SSLE), a novel approach
aimed at mitigating this issue. SSLE observes the edge patterns of
sibling states, spawned from the same loop, at program branches up
to a pre-computed loop-impact barrier. States that exhibit unique
patterns of taken edges are selected for further exploration, while
others are postponed.

We implemented SSLE in a prototype called SparKLE and evalu-
ated it on a set of eight benchmarks against the popular symbolic
execution engine KLEE. SSLE shows promising results and could
increase line coverage by up to 55% in 1 h runs using a depth-first-
search heuristic. In other cases, up to 99.997% of states could be
postponed without any loss in coverage. Our planned evaluation
will include a diverse set of 50 real-world benchmarks and will
aim to better understand the effectiveness of SparKLE in handling
symbolic loops, and how it compares with less complex approaches.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

symbolic execution, loops, KLEE

ACM Reference Format:

Frank Busse, Martin Nowack, and Cristian Cadar. 2024. Sparse Symbolic
Loop Execution (Registered Report). In Proceedings of the 3rd ACM Interna-
tional Fuzzing Workshop (FUZZING ’24), September 16, 2024, Vienna, Austria.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3678722.3685535

1 Introduction

Dynamic symbolic execution (DSE) [6] is a well-established pro-
gram analysis technique with applications in many areas, including
automatic test generation, bug finding, program repair, reverse
engineering, and program verification. It aims to explore all pro-
gram paths by introducing symbolic input variables, collecting
constraints along execution paths, and using a satisfiability mod-
ulo theory (SMT) solver to determine path feasibility, check safety
properties, and generate concrete inputs for the explored paths.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FUZZING ’24, September 16, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1112-1/24/09
https://doi.org/10.1145/3678722.3685535

In practice, the analysis of real-world applications is often lim-
ited by two factors: the inherent constraint-solving overhead and
path explosion. Most applications simply contain too many program
paths to explore exhaustively. In the past, several techniques were
developed to cope with path explosion, e.g. chopped symbolic exe-
cution [23] skips heavily-branching functions and only recovers rel-
evant paths later if necessary, compositional symbolic execution [7]
computes and combines function summaries, memoisation [2, 27]
stores paths efficiently to disk to recover them later in case the sym-
bolic execution engine runs out of memory, RWSet [1] prunes paths
that have an identical suffix with an already explored path, and
state merging [12] combines multiple paths into a single one with a
more complex (disjunctive) constraint set. Each of these approaches
has drawbacks as they rely on trade-offs between path-explosion
and constraint-solving complexity, runtime overhead or utilised
disk space. For that reason, the most common approach to deal
with path explosion is to give up the illusion of being able to cover
all paths and solely prioritise interesting ones with sophisticated
search heuristics [16].

Significant contributors to path explosion are heavily-branching
loops with symbolic loop conditions. For instance, when a path with
an unconstrained input buffer of length n reaches a strlen(input)
function from the C standard library to compute the length of a
string in this buffer, a symbolic execution engine would spawn n
new paths, each having the terminating 0 character in a different
position. This means the engine would effectively execute the pro-
gram under test for all possible lengths of input strings. Evidently,
this is in most cases wasted effort and one should restrain the exe-
cution to some interesting paths. Interesting candidates for strlen
are e.g. the empty string, the string lacking 0-termination, in which
case the engine would report an out-of-bounds read, and very few
paths in between.

DSE engines come in two flavours: concolic engines [8, 18], that
are driven by concrete inputs and usually follow single program
paths to completion, and EGT-style [4, 5] engines, that keep all
active paths in memory. We only consider EGT-style engines in
this work. Since EGT-style engines explore many execution paths
simultaneously and inspect their properties on the fly, the apparent
solution to the above problem seems to be to count loop itera-
tions and terminate or postpone paths whose iteration count is
considered uninteresting. At a high level, modern greybox fuzzers
use a similar approach when tracking edge coverage. Using a buck-
eting mechanism [29], fuzzers categorise paths with similar edge
counts into the same bucket (e.g. 1, 2, 3-4, 5-8, . . . , 32-127, 128+),
considering them equally interesting. But whereas greybox fuzzers
usually rank completed paths and hence can take all coverage in-
formation into account, EGT-style DSE engines work with path
prefixes and have to look ahead to select promising paths via search
heuristics. However, selecting paths just by their iteration count

https://orcid.org/0000-0003-1661-0439
https://orcid.org/0000-0002-1177-0233
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.1145/3678722.3685535
https://doi.org/10.1145/3678722.3685535

FUZZING ’24, September 16, 2024, Vienna, Austria Frank Busse, Martin Nowack, and Cristian Cadar

1 int strcmp(const char *l, const char *r) {

2 for (; *l==*r && *l; l++, r++);

3 return *(unsigned char *)l - *(unsigned char *)r;

4 }

5

6 int main(void) {

7 char input[5];

8 make_symbolic(input, 5); // make "input" symbolic

9

10 if (!strcmp(input, "loop")) // decision point

11 puts("loop");

12 if (!strcmp(input, "look")) // decision point

13 puts("look");

14

15 puts("done");

16 }

Figure 1: A sample program with a symbolic input buffer of

length 5, two decision points, and one loop inside strcmp.

falls short when later in the control-flow path decision points (such
as if and switch statements) depend on specific values altered by a
loop. This work aims to mitigate path explosion caused by symbolic
loops by prioritising a small subset of paths that effectively exercise
all possible behaviours at loop-dependent decision points.

To illustrate the technique, consider the example in Figure 1
where an unconstrained symbolic input buffer of length 5 is com-
pared against two concrete strings, ‘loop’ and ‘look’. This code
demonstrates a common scenario in which decision points (Lines 10
and 12) depend on values calculated inside a loop (Line 2).

The loop in strcmp compares strings character by character, and
since the input buffer is unconstrained, a DSE engine forks the
execution on every comparison. Figure 2 shows all paths and their
constraints. The subtree of the second strcmp call is shown in grey.

Only a single path that leaves the first strcmp is able to branch
in the second strcmp and match ‘look’. After three iterations it has
a matching prefix (loo) and the constraints on the characters in the
fourth (not p) and fifth position (unconstrained) permit a match
with ‘look’. In contrast, a bucketing mechanism that focuses only
on certain loop iteration counts (e.g. 0, 1, 2, 4, . . . iterations) will
miss this match entirely.

We propose sparse symbolic loop execution (SSLE) that aims to
find a sweet spot between path explosion and overly aggressive
filtering for loop paths, as illustrated by the example above. SSLE
distinguishes two types of loops: simple loops that do not affect any
decision points, and DP loops (‘DP’ for decision point) that affect
the outcome of decision points by either modifying variables or
adding constraints to symbolic variables.

Paths through symbolic loops classified as simple loops are filtered
solely by their iteration count: those that do not match 0, 1, 2, 4, 8,
16, . . . , 𝑛 iterations are postponed.

The handling ofDP loops is more complex. For all paths that leave
a symbolic loop, SSLE counts the edges that are taken at affected
decision points, for instance, the true and false branches at an if

0,1,0,1 l␣␣␣␣

0,1,0,1 lo␣␣␣

0,1,0,1 loo␣␣

0,1,0,1 loo[pk]␣

0,1,0,1 look0

0,1,1,0 look0 (match)

0,1,0,1 loop0

1,0,0,1 loop0 (match)

loop␣

edge counts

Figure 2: Execution tree for Figure 1. At the end of the execu-

tion, each byte in the input buffer is either concrete (blue),
constrained to exclude certain characters (red) or uncon-

strained (). The edge counts represent the branches taken

in the two decision points ⟨𝐿10𝑡 ,𝐿10𝑓 ,𝐿12𝑡 ,𝐿12𝑓 ⟩.

statement. Then, when a path reaches a pre-computed loop-impact
barrier, a code location where no relevant decision points can be
reached anymore, SSLE compares the taken branches since the path
has left the loop with the paths that branched in the same loop but
have reached a barrier earlier. If the edge count vector has not been
seen before, SSLE keeps exploring that path, otherwise it postpones
the exploration of the path. The decision process for postponement
can be random or e.g. follow a similar pattern as for the simple
loops.

For the program in Figure 1, an impact barrier could be on Line 15
as the if statements (decision points) above cannot be reached
anymore. The edge count vectors for the individual paths are shown
in Figure 2. Only two paths, the matching strings, are able to take
one of the true branches at the decision points (edge count vectors
⟨0, 1, 1, 0⟩ and ⟨1, 0, 0, 1⟩), whereas the six others always take both
false branches (⟨0, 1, 0, 1⟩). In its strictest configuration, SSLE would
continue the exploration of the two paths with full matches, select
only one of the other paths and hence print ‘done’ only three times—
a path reduction by 62.5% without loss of coverage.

In the remainder of this paper, we describe our approach in §2,
discuss our prototype in §3, present preliminary results in §4 and
an evaluation plan in §5, before we discuss related work in §6 and
conclude in §7.

2 Sparse Symbolic Loop Execution

Sparse symbolic loop execution (SSLE) aims to mitigate path explo-
sion induced by heavily branching symbolic loops. Many of these
paths exhibit similar program behaviour and can be deferred or
excluded from exploration without diminishing the effectiveness
of symbolic execution.

During symbolic execution, an execution path is represented
by a state, which contains essential runtime information such as
a program counter, the call stack, and the set of path constraints.
SSLE observes the behaviour of all states leaving a symbolic loop
at relevant decision points, e.g. if or switch statements whose
conditions depend on the loop’s outcome. States that exhibit similar
behaviour by following the same branches are ranked less relevant,
postponed from further exploration, and prioritised for termination
when a DSE engine runs out of memory.

Sparse Symbolic Loop Execution (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

As already discussed, we distinguish two types of loops: simple
loops, which do not impact decision points, and DP loops that do
influence decision points. Since simple loops are merely a special
case of DP loops with an empty set of decision points, we explain
the handling of DP loops first in §2.1 and then simple loops in §2.2.

2.1 Loops Affecting Decision Points (DP loops)

As discussed in §1, states should not simply be postponed based on
their iteration count when the computation inside a loop affects
the outcome of decision points. Edges in the follow-up control
flow could be missed, resulting in uncovered code sections. To still
be able to postpone a significant amount of states, SSLE observes
their behaviour at relevant decision points up to specific loop-
impact barriers and ranks them according to the uniqueness of
their behaviour.

SSLE does this by tracking the traversed decision point edges
for an execution state until it hits a loop-impact barrier. As the
barrier is reached, the state is categorised using the edge behaviour,
with only a few witness states per category selected for further
exploration and others postponed.

In the following, we will discuss our approach in more detail
using the example shown in Figure 3. The program computes the
length (Line 23) of a symbolic string buffer of maximum length
10. Depending on the length of the input, the program will either
output odd, even, 2 or empty.

During symbolic execution, the initial program state reaches
the loop inside strlen (Line 13), which compares each character
in the input buffer against the 0-termination character. Since the
input buffer is unconstrained, the DSE engine spawns ten new
states, each representing a different number of iterations through
the loop and thereby different lengths of the input string. The state
representing the last iteration lacks the 0-termination character,
causes an out-of-bounds read, which the DSE engine reports, and
gets terminated immediately. For all other states, and depending
on the returned length (len), the function pointer print gets ini-
tialised with different printing functions (Lines 28, 30 and 32), and
called (Line 34), before the program terminates with the message
‘done’ (Line 35). The printing functions output ‘empty’, ‘odd’ and
‘even’ (Lines 1, 2 and 8) unless the length equals 2, in which case
print_even outputs ‘2’ (Line 6).

2.1.1 Identifying Decision Points. Since strlen is a state-spawning
symbolic loop, SSLE first identifies decision points by tainting all
values and memory locations that might be affected by that loop.
In our example, the if statements in Lines 5, 25 and 27 would be
identified as decision points since len, is_odd and lwill get tainted
starting from the loop in strlen.

The tainting process is initiated when a state leaves a specific
symbolic loop for the first time. It starts with the loop and taints all
values and memory objects within the loop. The process continues
to recursively taint all values and memory objects that are affected
by tainted values in the function containing the loop. Only code
paths that either reach or are reachable from the loop are considered.
Notably, the algorithm considers only data dependencies and not
control dependencies.

It then proceeds to inspect the call stack of the current state
and walks up the stack frames along the call sites continuing the

1 void print_empty(size_t l) { puts("empty"); }

2 void print_odd(size_t l) { puts("odd"); }

3

4 void print_even(size_t l) {

5 if (l == 2) // DP 3

6 puts("2"); // barrier 2

7 else

8 puts("even"); // barrier 3

9 }

10

11 size_t strlen(const char *s) {

12 const char *a = s;

13 for (; *s; ++s); // loop exit triggers analysis

14 size_t result = s - a;

15 return result;

16 }

17

18 int main(void) {

19 void (*print)(size_t) = NULL;

20 char input[10];

21 make_symbolic(input, 10); // symbolic input

22

23 size_t len = strlen(input); // [0-9] + OOB

24

25 if (len) { // DP 1

26 bool is_odd = len % 2;

27 if (is_odd) // DP 2

28 print = print_odd;

29 else

30 print = print_even;

31 } else

32 print = print_empty;

33

34 print(len);

35 puts("done"); // barrier 1

36 }

Figure 3: A programwith a symbolic input buffer of length 10.

The state entering the strlen function spawns ten children

for different string lengths and one out-of-bounds read for

the last iteration lacking the terminating 0 character.

tainting process. However, tainting only along the call stack is
often not sufficient. For instance, in our example, SSLE would not
observe the special behaviour for ‘2’ in print_even. To address
this issue, SSLE also continues tainting within called functions. The
tainting continues until it reaches a fixed-point set of tainted values.
Although computationally expensive, computing a fixed-point set
enables tainted values to propagate back into their calling functions
and vice versa, enabling SSLE to identify more decision points and
differentiate more loop states.

FUZZING ’24, September 16, 2024, Vienna, Austria Frank Busse, Martin Nowack, and Cristian Cadar

Table 1: The edge counts for Figure 3. Only four states (greyed

out) have unique edge count vectors. The out-of-bounds

(OOB) state gets terminated immediately.

State
(by string length)

Edge counts

DP1𝑡 DP1𝑓 DP2𝑡 DP2𝑓 DP3𝑡 DP3𝑓
0 0 1 0 0 - -
1 1 0 1 0 - -
2 1 0 0 1 1 0
3 1 0 1 0 - -
4 1 0 0 1 0 1
5 1 0 1 0 - -
6 1 0 0 1 0 1
7 1 0 1 0 - -
8 1 0 0 1 0 1
9 1 0 1 0 - -

OOB 0 0 0 0 - -

SSLE utilises configurable thresholds for both the stack traversal
(callsite depth) and the call chain traversal (call depth) during taint-
ing. An unrestricted analysis would not only significantly increase
the analysis time but also detect more affected decision points and,
hence, barriers further away from the loop, thus delaying the post-
ponement of states. With thresholds, we aim to find a sweet spot
between postponing too many states (and losing coverage) and
path explosion.

2.1.2 Identifying Loop-impact Barriers. Next, SSLE computes the
set of loop-impact barriers. Barriers are the first instructions along a
code path after a (call to a) decision point that cannot reach another
(call to a) decision point. For the program outlined in Figure 3,
three barriers are computed. If print points to print_even, the
barriers are located in Lines 6 and 8. Otherwise, the barrier is
in Line 35. Our current implementation’s barrier computation is
less precise in this case and assumes that the print call could still
reach decision point 3 (Line 5) via a function pointer (print_even).
A more precise, context-sensitive implementation would place two
barriers in Lines 28 and 32 instead.

2.1.3 Edge Tracking. The core idea of sparse symbolic loop execu-
tion is to categorise states that branched in the same loop via their
behaviour at decision points and select only a few representatives
from each category. SSLE observes their behaviour by counting
how often a state traverses the edges of affected decision points.
In our example, there are only four different edge count patterns
(or vectors) for all states as shown in Table 1. For instance, state 0,
representing the empty string, is the only state that takes the false
branch (DP1𝑓) of the first decision point (Line 31) and is therefore
considered an interesting state.

2.1.4 Postponing States. SSLE is search heuristic-agnostic and does
not influence the state selection process. However, whenever a state
reaches a loop-impact barrier, its edge count pattern is compared
against those of its forked states from the same loop entry that have
previously reached a loop-impact barrier. If its edge count pattern
is unique, the state is retained; otherwise, it may be postponed.

Loop
Ranking

State
Selection

Active
States

Postponed
States

select()

state

Figure 4: SSLE’s state selection strategy.

Various strategies can be applied when postponing states. The
strictest strategywould keep only one representative per edge count
pattern occurrence, while other strategies could select randomly
from a pattern group or, for example, keep the 0, 1, 2, 4, 8, and so
on states per group.

Figure 4 shows the state selection strategy of SSLE. The loop rank-
ing module is responsible for the different postponement strategies
(e.g. keep only one witness state for each edge count vector) and
marks states for postponement. In contrast, the state selection mod-
ule implements the actual state selection. All states are divided into
a pool of active states and a pool of postponed states. The state
selection module chooses active states with a high probability and
postponed states with a low probability (in both cases according
to the underlying search strategy used by the symbolic execution
engine).

One possible strategy is to set the probability of selecting post-
poned states to zero, i.e. to discard postponed states. Such a strategy
can be useful to reduce memory pressure. DSE engines often suffer
from memory exhaustion due to the significant number of states
generated and may resort to randomly selecting states for early ter-
mination [2]. Thus, by terminating postponed states immediately,
SSLE can reduce memory pressure.

2.2 Simple Loops

Simple loops are a special case of DP loops with an empty set of
relevant decision points. They are rare in practice and can often
be attributed to imprecise taint analysis. Since there are no de-
cision points to observe, they are solely ranked by their number
of iterations in a loop. Once more, several filter strategies could
be implemented, from random selection to employing a bucketing
scheme similar to modern greybox fuzzers.

3 Implementation

We have implemented sparse symbolic loop execution (SSLE) on
top of KLEE [4], a state-of-the-art dynamic symbolic execution
engine, and named our prototype SparKLE. SparKLE operates on
LLVM [13] bitcode and employs SVF’s [21] Andersen-Wave points-
to analysis for the tainting stage.

We tried to interfere as little as possible with KLEE’s core com-
ponents andmainly addedmore statistics and hooks to its execution
engine to call our loop handler. The loop handler monitors loop
entries and exits, initiates tainting, counts iterations and tracks
edges at reached decision points. Besides that, we added the mod-
ules of Figure 4 to KLEE’s chain of search heuristics.

In the following sections, we describe some implementation
details regarding state batching (§3.1), tainting (§3.2), DP loops
(§3.3) and simple loops (§3.4).

Sparse Symbolic Loop Execution (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

3.1 State Batching

KLEE provides a batching searcher, which sits in front of the ac-
tual searcher and prioritises the same state for a fixed number of
instructions or a given amount of time before the actual searcher
is called. Its goal is to reduce the computational overhead of some
search heuristics if called for every executed instruction as they
require tree traversals or distance computations.

We extended the default batching to additionally query the un-
derlying search heuristic when the currently explored state just
branched, left a simple loop, reached a barrier or got postponed.

3.2 Tainting

When SparKLE counts the depth of call sites or call chains to
limit tainting, it does not count ‘trivial’ functions that consist of
only a single basic block. Based on our initial experiments, some
tested applications use this typical software pattern to provide a
public API interface that simply forwards to internal functions for
encapsulation.

A decision we faced during development was whether to increase
the precision of SVF’s points-to analysis by integrating it with
KLEE. At runtime, KLEE collects constraints along paths, including
those related to memory objects, which would allow us to reduce
the points-to sets of SVF’s analysis to the values that are feasible
along the current path (similar in spirit to past-sensitive pointer
analysis [22]). Fewer tainted values can result in fewer affected
decision points and, therefore, barriers closer to loops. However,
since we use memoisation heavily, we would need to recompute
the analysis when constraints change. We decided against it and in
favour of a simpler implementation, but this trade-off needs to be
evaluated in the future.

3.3 DP loops

A noteworthy implementation detail where SparKLE differs from
SSLE is that it does not store edge count vectors for every state
but only uses cumulative hashes of tracked edges. This reduces the
memory footprint of SparKLE but has the disadvantage that the
edge tracking in comparison to SSLE is order-dependent.1 There
might be cases, especially with nested loops, where this approach
distinguishes more states than necessary.

3.4 Simple Loops

Simple loops are postponed solely by their iteration count. In its
default mode, SparKLE keeps states with iteration counts of 0, 1, 2,
8, . . . and the last iteration and postpones all others.

Keeping the state with the highest iteration count in dynamic
symbolic execution is non-trivial. States might spawn new children
due to conditional branch instructions inside the loop body such
that states with different or even the same iteration counts can
exist at any time. Since search heuristics can select arbitrary states
and SparKLE cannot predict what state would create the deepest
execution subtree, we implemented the ranking of the ‘last’ iteration
on a best-effort basis: only when there is no state in the loop with
the same iteration count and no other state associated with that
1hash(A, hash(B)) ≠ hash(B, hash(A)) whereas the edge count vector ⟨1, 1⟩𝐴,𝐵

remains identical for two edges 𝐴 and 𝐵, regardless of the order in which they are
traversed.

Table 2: Loop statistics for several benchmarks (1 h DFS, 3/3).

App Total Reached Symbolic Branches

basename 113 56 7 1,550,793
cat 121 59 7 282
cxxfilt 218 61 14 106,705
date 241 100 33 11,144
factor 244 58 16 125
raw2tiff 450 77 12 348,072
sum 122 73 11 13,811
uniq 122 68 20 330,262

Table 3: Covered bitcode lines for different thresholds (1 h

DFS). Best-performing configurations are shown in bold.

Tainting thresholds
App Baseline 2/2 3/3 4/4

basename 5,285 5,285 5,285 5,285

cat 5,767 5,767 5,767 5,767

cxxfilt 6,481 6,769 6,481 6,481
date 10,454 11,656 10,901 10,888
factor 4,154 6,440 4,169 4,154
raw2tiff 9,398 9,405 9,354 9,347
sum 7,522 7,872 7,872 7,522
uniq 7,676 8,280 8,286 8,196

loop entry had a higher or equal iteration count before, the state is
kept and otherwise postponed.

Evidently, a similar issue occurs when one wants to keep the
second to last iteration, which is currently not supported by SparKLE.
However, it could be helpful in cases where the last iteration leads
to an out-of-bounds access.

4 Preliminary Results

For experiments with our early SparKLE prototype, we have se-
lected eight benchmarks: cxxfilt from GNU Binutils, raw2tiff from
LibTIFF, and basename, cat, date, factor, sum and uniq from GNU
Coreutils.

We run each benchmark for 1 h, using the depth-first search
(DFS) heuristic. SparKLE’s tainting was limited to three call sites
along the stack and three calls down from every stack level. (We
denote these thresholds using the notation call stack depth / call
depth, in this case 3/3.)

Table 2 presents loop statistics for these runs that show that
loops play a significant role in symbolic execution. The bitcode
files2 contain between 113 and 450 total loops, and between 56
and 100 are reached. In the case of basename, as few as seven loops
spawn new states (symbolic), but this is enough to create as many
as 1,550,793 new states in loop basic blocks (branches).

Table 3 presents the results for different thresholds, showing
that SparKLE is effective and outperforms the baseline. The 2/2

2KLEE operates at the level of LLVM bitcode [13].

FUZZING ’24, September 16, 2024, Vienna, Austria Frank Busse, Martin Nowack, and Cristian Cadar

Figure 5: Baseline progresses to explore the execution tree

with DFS while SSLE overtakes it at the highlighted node (•).

Table 4: Analysis times in seconds for 1 h DFS runs (rounded

to whole seconds).

Tainting thresholds
App SVF 2/2 3/3 4/4

basename 0 0 2 6
cat 0 1 3 12
cxxfilt 1 2 15 235
date 1 29 357 2,572
factor 1 1 4 18
raw2tiff 1 2 7 22
sum 0 1 5 12
uniq 0 3 32 174

threshold obtains the best results overall, achieving the highest cov-
erage in all cases except for uniq, where it loses by only a few lines.
In some cases, such as for factor and date, the gain is significant.

However, although the 2/2 threshold shows the best results
coverage-wise, it lacks precision, which means it postponed paths
and consequently missed code sections that were covered with the
baseline. A straightforward method to measure precision for DFS
runs is to compare the execution trees of SparKLE with those of
the baseline execution. For this purpose, SparKLE annotates execu-
tion trees with timestamps and coverage information, and stores
them to disk. Due to heavy pruning, SparKLE should be able to
‘overtake’ the baseline execution at a specific node and create a
wider, but shallower, tree. Figure 5 illustrates graphically how the
exploration space of SparKLE compares to the baseline. SparKLE
prunes a large part of the execution tree, and from the highlighted
node starts to overtake the DFS exploration of the baseline. If the
pruning is precise, no coverage is lost, but thresholds can introduce
imprecision.

For instance, with 2/2 thresholds, SparKLE overtakes the 1 h
baseline run of cxxfilt in less than a second by pruning large sub-
trees but has only covered 2720 lines at that point. The tainting is
therefore imprecise and misses code lines that would be coverable
along such paths. However, in the remaining time, it covers all
missed lines plus 288 additional ones, a 4.4% increase. The 3/3 and
4/4 thresholds create too much overhead and too long distances to
loop-impact barriers in this case: 3/3 overtakes baseline with the
current prototype only 1min before the 1 h timeout whereas 4/4 is
several minutes behind.

Table 5: Ratio of terminated states in percent.

Simple DP-loops
App 2/2 3/3 4/4 2/2 3/3 4/4

basename 0 0 0 99.997 99.997 99.996
cat 0 0 0 48.465 48.330 48.330
cxxfilt 0 0 0 99.948 99.942 99.935
date 0 0 0 97.885 96.696 95.703
factor 0 0 0 38.130 16.822 17.143
raw2tiff 0 0 0 99.923 99.915 99.838
sum 0.387 0.301 0 98.524 54.294 0.079
uniq 4.661 12.499 0.537 94.378 85.907 99.364

Table 4 shows the analysis times of SparKLE for different thres-
holds. With the exception of date, the analysis times are small
relative to the 1 h time budget. date is an outlier that we need to
investigate further—but even for threshold 4/4 where SparKLE
spends most of its run time tainting (43min), it still manages to
cover more lines than baseline KLEE.

All experiments above use the strictest filtering mechanism for
DP loops that retains only a single state per edge pattern. Table 5
shows the ratio of terminated states for different thresholds. The
number of terminated states is significant; however, with high
thresholds, the barriers are closer to the program exit of a path and
SSLE is less effective.

Simple loops are rare, and the decrease in filtered states with
higher thresholds suggests that such loops only occur due to impre-
cise tainting. As a result, decision points that are not present in the
direct parent functions are therefore missed, causing the respective
loops to be treated as simple loops.

5 Planned Evaluation

In the following, we describe the experiments we intend to conduct
to evaluate the efficacy of SSLE. We first outline the research ques-
tions we aim to answer in §5.1, then describe the benchmark set
in §5.2 and finally explain the proposed experiments and evaluation
metrics in §5.3.

5.1 Research Questions

The evaluation aims to address two key research questions:
RQ1 Is SSLE an effective approach to postpone or filter states,

thereby reducing path explosion?
RQ2 How does SSLE compare to less complex approaches?

We propose two alternative approaches: a) treating all loops
as simple loops and b) postponing states based on a fixed
number of decision points without tainting.

The comparison with alternative approaches in the second re-
search question is supposed to address the fundamental question:
whether SSLE’s complexity is truly necessary or if similar results
can be achieved with less complex approaches.

5.2 Benchmarks

We plan to select a diverse set of 50 real-world benchmarks from
different tool suites and libraries, such as GNU Awk, GNU bc, GNU

Sparse Symbolic Loop Execution (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

Table 6: RQ1 experiment sets.

Tainting thresholds DP filter Revival

I 1/1 2/0 2/1 2/2 3/1 3/2 3/3 4/2 4/3 one 0%
II 1/1 2/0 2/1 2/2 3/1 3/2 3/3 4/2 4/3 binary 0%
III 1/1 2/0 2/1 2/2 one 10%
IV 1/1 2/0 2/1 2/2 one 20%

Binutils, GNU Coreutils, GNU Grep, libsndfile, LibTIFF and libxml.
To understand the impact of loops on these applications, we are
going to report several statistics of SparKLE:

• detected loops in a bitcode file,
• covered loops,
• reached pre-headers across all paths,
• reached loops containing symbolic branches and
• branches in loop basic blocks

5.3 Experiments

5.3.1 RQ1: Efficacy. To evaluate SSLE’s efficacy, we need to evalu-
ate various combinations of SparKLE’s configuration options. The
three most important configuration options are:

(1) Tainting thresholds (call stack depth / call depth): Higher
thresholds result in a more precise decision point and bar-
rier computation, but also move barriers further away from
the respective loop. Consequently, more code needs to be
executed before a state gets postponed. However, this makes
it less likely that uncovered code is missed due to an early
cut-off of a subtree in the execution tree.

(2) State revival probability: The possibility of reviving post-
poned states (e.g. every 10th state gets selected from the
postponed set).

(3) Filter strategies: how many and what states are selected for
each DP pattern (e.g. only one, every 1, 2, 8, . . .).

Table 6 shows the different SparKLE configurations that we plan
to run. All configurations, plus KLEE as a baseline, will be run for
1 h with the DFS search heuristic. DFS is highly deterministic and
tends to fully explore loops further down the execution paths.

Experiment sets I and II shown in Table 6 use different thresholds
for the tainting phase and compare two filtering strategies for
DP loops: selecting one witness state per DP pattern, and a less
aggressive version that selects every 1, 2, 8, 16, 32, . . . state reaching
a barrier with a specific edge pattern (binary).

Experiment sets III and IV assume that lower thresholds with
a more aggressive filtering strategy miss uncovered lines (in com-
parison to baseline KLEE) due to heavy path pruning. In these
experiments, we aim to evaluate if state revival can mitigate this
issue by selecting 10% and 20% of states from the postponed set,
respectively.

We use the line coverage information provided by KLEE as our
primary metric. Of course, the higher the coverage the better. How-
ever, even with higher coverage, SSLE might miss lines that are
covered by baseline KLEE. To make a comparison more meaningful,
we additionally store the execution trees of all runs on disk and
compare them with baseline KLEE. With DFS, it is straightforward

to determine a node where one run overtakes another, as discussed
in §4. At this node, we will compare timestamps and coverage in-
formation to assess the precision of SSLE. If the coverage is lower
at that node, SSLE has been imprecise. If the coverage is the same
but the node was reached much earlier, SSLE was effective. We are
aware that changes in the environment can lead to divergences [2]
that would render tree comparisons meaningless, for instance, be-
cause a subtree got removed due to memory exhaustion rather than
SSLE. If such divergences affect too many benchmarks, we report
precision based on the set differences of covered lines between
baseline and SparKLE.

Due to its exhaustiveness, DFS is not the best search heuristic for
quickly covering large portions of code. Therefore, KLEE alternates
between a random-path traversal and a distance-based (to uncovered
code) selection of states in its default mode. While effective, this
heuristic has several shortcomings when used as a baseline:

(1) It is highly non-deterministic when used correctly with dif-
ferent input seeds for KLEE’s random-number generator
across runs.

(2) It creates wide execution trees with many dangling states.
This leads to memory pressure and early state termination,
implicitly pruning subtrees randomly.

(3) It prioritises shallow paths over deeper paths, meaning that
loops are typically not exhaustively explored.

To obtain statistically robust results for this heuristic, we plan to
run 10 randomly selected benchmarks 100 times each, for one hour,
using different seeds for KLEE’s random number generator. This
will be conducted across three configurations: baseline KLEE, and
SparKLE utilising the two most successful configurations in terms
of coverage identified from the DFS experiments. We will compare
the combined coverage of each configuration to determine if our
SSLE prototype, SparKLE, can cover more lines of code or at least
different code sections that were inaccessible before.

5.3.2 RQ2: Other Approaches. Tainting and bookkeeping in SSLE
can be costly, especially with high tainting thresholds. We propose
two less complex approaches and compare their efficacy against
SSLE with 1 h DFS runs:

all-simple treats all loops as simple loops without decision
points and selects states solely by their iteration count.

fixed-DP skips the tainting step and tracks edge patterns only
for a fixed number of DPs.

We plan to implement these approaches in SparKLE and compare
those versions based on the same benchmark set for 1 h with DFS
search heuristic.

For the all-simple approach, we already implemented a prototype
and the preliminary results are shown in Table 7. This approach
outperforms SSLE (with the best-performing 2/2 configuration) for
cat, and baseline KLEE for three more benchmarks. These results
suggest that while the all-simple approach can be effective for
certain benchmarks, it generally falls short compared to the more
sophisticated SSLE method.

Although less precise, the fixed-DP approach has less compu-
tational overhead due to the missing tainting step and serves as
an indicator of whether SSLE’s complexity is actually needed to
reduce path explosion with reasonable precision. We propose 8, 16,

FUZZING ’24, September 16, 2024, Vienna, Austria Frank Busse, Martin Nowack, and Cristian Cadar

Table 7: Covered bitcode lines for the all-simple approach
(1 h DFS, no state revival, simple filter: binary) in comparison

to baseline KLEE and SSLE with 2/2 thresholds (Table 3).

App Baseline All-simple SSLE 2/2

basename 5,285 5,285 5,285
cat 5,767 6,437 5,767
cxxfilt 6,481 3,516 6,769

date 10,454 10,641 11,656

factor 4,154 4,178 6,440

raw2tiff 9,398 9,247 9,405

sum 7,522 7,522 7,872

uniq 7,676 7,887 8,280

32, 48, and 64 as static limits for the number of tracked decision
points and will use higher numbers if initial results indicate that it
might be worthwhile.

After completing the implementation, we will provide an artefact
containing SparKLE, all benchmarks and our results.

6 Related Work

Path explosion caused by loops is a well-known problem and sev-
eral mitigations [25] have been proposed in the past. The simplest
approach is bounded symbolic execution that just limits the number
of iterations to a fixed number and rarely fully explores interest-
ing loops. Readily available are compiler optimisations, which work
well in practice for some types of loops [3, 24]. A more labour-
intensive approach involves writing models for the most common
loops in functions such as strlen, strcmp or memcmp. Depending
on the implementation, these models can reduce the number of
paths significantly, but in the case of complete models, they can also
increase the constraint-solving overhead due to more complex path
constraints. To handle operations on strings, typically involving
heavily-branching loops, specialised string solvers [11, 30] can be
employed to solve more abstract constraints in the theory of strings.
However, to be most effective they rely on well-defined string-APIs
and require e.g. indices into strings to be integers. For C-like lan-
guages, strings are often manipulated via hand-written loops [10]
and, in the case of KLEE, indices are just bitvectors.

Instead of unrolling loops during execution, loop summarisa-
tion [9, 17, 26] tries to create summaries for loops by introducing
symbolic iteration counts and capturing a loop’s behaviour in more
complex path constraints. This technique is successfully used in
practice, but is not applicable to all loops. A similar approach is
compact symbolic execution [20] that uses parametric templates to
describe all states leaving cyclic program paths. This can speed up
the execution and reduce the number of states but also complicates
constraint solving as it introduces path constraints with quantifiers.

Sparse symbolic loop execution (SSLE), as proposed in this paper,
is orthogonal to most approaches or can be applied when other
approaches fail. The proposed sampling of intermediate loop iter-
ations resembles the bucketing algorithm of common AFL-based
fuzzers [28], although in a look-ahead manner. SSLE primarily acts

as a filter for loop states and is search heuristic-agnostic. How-
ever, the outcome of branch decisions has been used to steer the
exploration of symbolic execution engines before.

Context-guided search (CGS) [19] explores programs increment-
ally in a breadth-first-search manner and selects paths for further
exploration by comparing their (increasing) k-contexts. A k-context
is the suffix sequence of taken branches of length k of a state. Paths
that have an unseen k-context are prioritised. Li et al. [15] pro-
pose subpath-guided search (SGS) as a method to direct the search
process along less-explored paths. The approach utilises a priority
queue where states are ordered based on the frequency of their
recent branch decisions, specifically the last n decisions, referred to
as a subpath. States that follow less frequently observed subpaths
are prioritised, thereby encouraging exploration in under-explored
regions of the state space.

Greybox fuzzing faces the same challenges as symbolic execution
in the context of path explosion and similar mitigation techniques
can be applied. Instead of using sliding context windows or path
suffixes, prefix-guided fuzzing [14] compares prefixes of traversed
basic block edges and terminates executions with known prefixes
early. The prefix length is determined for each benchmark individu-
ally by sampling known inputs and finding a setting with a high
recall rate. In contrast, SSLE does not consider global prefixes across
all program paths but instead focuses on statically computed pre-
fixes among paths originating from the same loop. This approach
could be beneficial for greybox fuzzing, especially for paths that
branch deeply within the code, making it an interesting direction
for future research.

7 Conclusion

In this paper, we have introduced sparse symbolic execution (SSLE),
a novel approach designed to mitigate the path-explosion problem
caused by heavily branching loops during dynamic symbolic exe-
cution. After classifying sibling states spawned from the same loop
according to their observed behaviour at relevant decision points,
SSLE selects only a small number of states from each class and
postpones others. We have implemented SSLE in a prototype based
on KLEE, called SparKLE, and demonstrated its efficacy for a small
number of benchmarks as preliminary results.

We have also outlined a plan for a more comprehensive evalu-
ation where we will evaluate SparKLEwith different configurations
against a large set of benchmarks and also less complex alternative
approaches.

8 Acknowledgements

This project has received funding from the European Research
Council under the European Union’s Horizon 2020 research and in-
novation program (grant agreement 819141) and from the Engineer-
ing and Physical Sciences Research Council (grant EP/X040836/1).

Sparse Symbolic Loop Execution (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

References

[1] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: Attacking
Path Explosion in Constraint-Based Test Generation. In Proc. of the 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08) (Budapest, Hungary).

[2] Frank Busse, Martin Nowack, and Cristian Cadar. 2020. Running Symbolic
Execution Forever. In Proc. of the International Symposium on Software Testing
and Analysis (ISSTA’20) (Online). https://doi.org/10.1145/3395363.3397360

[3] Cristian Cadar. 2015. Targeted program transformations for symbolic execution.
In Proc. of the Joint Meeting of the European Software Engineering Conference and
the ACM Symposium on the Foundations of Software Engineering, New Ideas Track
(ESEC/FSE NI’15) (Bergamo, Italy). https://doi.org/10.1145/2786805.2803205

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08) (San Diego, CA, USA).

[5] Cristian Cadar and Dawson Engler. 2005. Execution Generated Test Cases:
How to Make Systems Code Crash Itself. In Proc. of the 12th International SPIN
Workshop on Model Checking of Software (SPIN’05) (San Francisco, CA, USA).
https://doi.org/10.1007/11537328_2

[6] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Communications of the Association for Computing Machinery
(CACM) 56, 2 (2013), 82–90. https://doi.org/10.1145/2408776.2408795

[7] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. In Proc. of
the 34th ACM Symposium on the Principles of Programming Languages (POPL’07)
(Nice, France).

[8] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proc. of the Conference on Programing Language Design
and Implementation (PLDI’05) (Chicago, IL, USA).

[9] Patrice Godefroid and Daniel Luchaup. 2011. Automatic Partial Loop Summar-
ization in Dynamic Test Generation. In Proc. of the International Symposium on
Software Testing and Analysis (ISSTA’11) (Toronto, Canada).

[10] Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Cristian
Cadar. 2019. Computing Summaries of String Loops in C for Better Testing
and Refactoring. In Proc. of the Conference on Programing Language Design and
Implementation (PLDI’19) (Phoenix, AZ, USA).

[11] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. 2009. HAMPI: A Solver for String Constraints. In Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’09) (Chicago, IL, USA).

[12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient state merging in symbolic execution. In Proc. of the Conference on Pro-
graming Language Design and Implementation (PLDI’12) (Beijing, China).

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, CA, USA).
https://doi.org/10.1109/CGO.2004.1281665

[14] Shaohua Li and Zhendong Su. 2023. Accelerating Fuzzing through Prefix-Guided
Execution. In Proc. of the ACM on Programming Languages (OOPSLA’23) (Cascais,
Portugal).

[15] You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic
Execution to Less Traveled Paths. In Proc. of the 28th Annual Conference on

Object-Oriented Programming Systems, Languages and Applications (OOPSLA’13)
(Indianapolis, IN, USA). https://doi.org/10.1145/2509136.2509553

[16] Arash Sabbaghi and Mohammad Reza Keyvanpour. 2020. A Systematic Review
of Search Strategies in Dynamic Symbolic Execution. Computer Standards &
Interfaces 72 (2020). https://doi.org/10.1016/j.csi.2020.103444

[17] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. 2009.
Loop-extended Symbolic Execution on Binary Programs. In Proc. of the Inter-
national Symposium on Software Testing and Analysis (ISSTA’09) (Chicago, IL,
USA).

[18] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proc. of the Joint Meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’05) (Lisbon, Portugal). https://doi.org/10.1145/1081706.1081750

[19] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-Guided
Search Strategy in Concolic Testing. In Proc. of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE’14) (Hong Kong). https://doi.org/
10.1145/2635868.2635872

[20] Jiří Slabý, Jan Strejček, and Marek Trtík. 2013. Compact Symbolic Execution. In
Automated Technology for Verification and Analysis (ATVA).

[21] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis
in LLVM. In Proc. of the 25th International Conference on Compiler Construction
(CC’16) (Barcelona, Spain).

[22] David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020. Past-
Sensitive Pointer Analysis for Symbolic Execution. In Proc. of the Joint Meeting
of the European Software Engineering Conference and the ACM Symposium on the
Foundations of Software Engineering (ESEC/FSE’20) (Online).

[23] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.
Chopped Symbolic Execution. In Proc. of the 40th International Conference on
Software Engineering (ICSE’18) (Gothenburg, Sweden).

[24] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. 2012. -Overify: Optim-
izing Programs for Fast Verification. In Proc. of the 14th Workshop on Hot Topics
in Operating Systems (HotOS’13) (Santa Ana Pueblo, NM, USA).

[25] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Characteristic Stud-
ies of Loop Problems for Structural Test Generation via Symbolic Execution. In
Proc. of the 28th IEEE International Conference on Automated Software Engineering
(ASE’13) (Palo Alto, CA, USA). https://doi.org/10.1109/ASE.2013.6693084

[26] Xiaofei Xie, Yang Liu, Wei Le, Xiaohong Li, and Hongxu Chen. 2015. S-looper:
Automatic Summarization for Multipath String Loops. In Proc. of the International
Symposium on Software Testing and Analysis (ISSTA’15) (Baltimore, MD, USA).

[27] Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. 2012. Memoized
symbolic execution. In Proc. of the International Symposium on Software Testing
and Analysis (ISSTA’12) (Minneapolis, MN, USA).

[28] Michal Zalewski. [n. d.]. Technical “whitepaper” for afl-fuzz. http://lcamtuf.
coredump.cx/afl/technical_details.txt.

[29] Michał Zalewski. 2019. AFL buckets. https://afl-1.readthedocs.io/en/latest/about_
afl.html#detecting-new-behaviors.

[30] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based String
Solver for Web Application Analysis. In Proc. of the Joint Meeting of the European
Software Engineering Conference and the ACM Symposium on the Foundations of
Software Engineering (ESEC/FSE’13) (Saint Petersburg, Russia).

Received 2024-06-21; accepted 2024-07-22

https://doi.org/10.1145/3395363.3397360
https://doi.org/10.1145/2786805.2803205
https://doi.org/10.1007/11537328_2
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2509136.2509553
https://doi.org/10.1016/j.csi.2020.103444
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/2635868.2635872
https://doi.org/10.1145/2635868.2635872
https://doi.org/10.1109/ASE.2013.6693084
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://afl-1.readthedocs.io/en/latest/about_afl.html#detecting-new-behaviors
https://afl-1.readthedocs.io/en/latest/about_afl.html#detecting-new-behaviors

	Abstract
	1 Introduction
	2 Sparse Symbolic Loop Execution
	2.1 Loops Affecting Decision Points (DP loops)
	2.2 Simple Loops

	3 Implementation
	3.1 State Batching
	3.2 Tainting
	3.3 DP loops
	3.4 Simple Loops

	4 Preliminary Results
	5 Planned Evaluation
	5.1 Research Questions
	5.2 Benchmarks
	5.3 Experiments

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

