
Code, Test, and Coverage Evolution in Mature
Software Systems: Changes over the Past Decade

Thomas Bailey
Imperial College London

London, United Kingdom
thomas.bailey0@outlook.com

Cristian Cadar
Imperial College London

London, United Kingdom
c.cadar@imperial.ac.uk

Abstract—Despite the central role of test suites in the software
development process, there is surprisingly limited information on
how code and tests co-evolve to exercise different parts of the
codebase.

A decade ago, the Covrig project examined the code, test, and
coverage evolution in six mature open-source C/C++ projects,
spanning a combined development time of twelve years. In this
study, we significantly expand the analysis to nine mature C/C++
projects and a combined period of 78 years of development time.
Our focus is on understanding how development practices have
changed and how these changes have impacted the way in which
software is tested.

We report on the co-evolution of code and tests; the adoption of
CI, coverage, and fuzzing services; the changes to the overall code
coverage achieved by developer test suites; the distribution of
patch coverage across revisions; how code changes drive changes
in coverage; and the occurrence and evolution of flaky tests.

Our large-scale study paints a mixed picture in terms of how
software development and testing have changed over the past
decade. While developers put more emphasis on software testing
and the overall code coverage achieved by developer test suites
has increased in most projects, coverage and fuzzing services are
not widely adopted, many patches are still poorly tested, and the
fraction of flaky tests has increased.

Index Terms—coverage evolution, patch coverage, CI adoption,
fuzzing adoption, flaky tests

I. INTRODUCTION

A good test suite, run continuously as the software evolves,
is a key ingredient of a reliable and secure project. While
what makes a good test suite is subject to debate, there are at
least some characteristics which are generally acknowledged: A
good test suite should at the very least achieve high statement
and branch coverage (as a test suite cannot find bugs in code
which it does not exercise), it should not be flaky (as debugging
failures of flaky tests can waste significant time) and it should
keep up with the changes in the code (as many bugs are
introduced via insufficiently validated patches).

The Covrig project [1], published in ISSTA 2014, is the
first to report how software and their test suites evolve over a
significant number of revisions. In particular, the 2014 study
examines six popular open-source systems written in C and
C++, analysing the evolution of their code and test suites over
a period of 250 code revisions.

In this work, we are revisiting and significantly extending
the study in order to understand how development and testing
practices have changed (or not) over the last decade. The study

is timely, as the last decade has seen important changes in the
open-source testing ecosystem, with wide availability of cloud-
based continuous integration (CI) platforms such as TravisCI [2]
and GitHub Actions [3], and the emergence of services such
as OSS-Fuzz [4] and CIFuzz [5] that take advantage of the
latest advances in fuzzing research.

Our study includes the six applications analysed in the Covrig
project, to which we add three more. All these applications
are widely-used, mature applications, which is why they have
continued to be maintained and extended over the last decade.
While Covrig looked at 250 code revisions per application,
spanning a combined period of 12 years of development time,
we are looking at up to 2,500 code revisions per application,
spanning a combined period of 78 years.

To understand how the development and testing practices
have changed over time, we report how the code and tests
have changed in size; how test suite coverage has evolved and
what has caused particular inflection points; how well patches1

are tested; how different kinds of code changes drive changes
in overall coverage; the extent to which projects employ CI,
coverage and fuzzing services; and the prevalence of flaky tests
over time.

A. Research Questions

Our research questions are summarised below. Four of them
are taken or adapted from the Covrig paper [1] (RQ1, RQ3,
RQ4, RQ6), one of them comes from a 2018 study by Hilton
et al. [6] (RQ5), and two are new (RQ2, RQ7).

RQ1: How do code and tests evolve? Are they continuously
increasing in size? Do they increase at the same rate?

RQ2: Have projects adopted CI, coverage, and fuzzing
services? When has this taken place and what were the
challenges encountered?

RQ3: How does the overall code coverage evolve? Does it
increase steadily over time, or does it remain constant?

RQ4: What is the distribution of patch coverage across
revisions? What fraction of a patch is covered by the
regression test suite? Do smaller patches have higher
coverage?

1In this paper, we use the terms “patch”, “commit” and “revision” inter-
changeably.



RQ5: How do code changes drive changes in coverage? Does
code coverage change more because old code becomes
tested, new tested code is added, or code is deleted?

RQ6: How prevalent are flaky tests? Do developers quickly
identify and address flaky tests? Does running the test
suite multiple times cover different lines of code?

RQ7: Given the previous research questions, how has
software testing changed in mature open-source
C/C++ projects over the past decade?

B. Findings and Contributions

The main findings and contributions of this project are:
1) We investigate the evolution of executable and test code

over a combined period of 78 years in nine mature widely-
used software projects written in C and C++. We find that
all these projects increase in size, both in terms of code
and tests. A majority of the projects place more emphasis
on testing their code compared to a decade ago and the
overall coverage achieved by the developer test suites has
increased. However, the overall coverage in these projects
is still low in many projects, with a majority of projects at
under 50% branch coverage.

2) We find that most projects have adopted CI services in the
last decade, with a few also tracking coverage and being
fuzzed by the OSS-Fuzz [4] service.

3) We analyse the extent to which patches are tested, by
tracking patch coverage, the percentage of lines of code in
the patch which are covered by the developer test suite. We
find that a significant number of patches are poorly tested
or not tested at all, and that smaller patches have higher
coverage overall.

4) We investigate the extend to which different types of code
changes trigger changes in coverage. We find that a lot of
code is added without being tested, code changes can cause
covered code to become uncovered, and a lot of code which
was covered at the beginning of our study is still uncovered
at its end.

5) We analyse and quantify the presence of flaky tests and
their impact on code coverage. Overall, we find that the
number of flaky revisions has substantially increased, despite
significant research work in this period on mitigating this
problem.

6) We replicate the findings in the Covrig paper [1] and update
and extend the Covrig infrastructure. We have contributed
our changes to the open-source Covrig project, and make
our experiments available as an artifact at https://srg.doc.ic.
ac.uk/projects/covrig/.

II. STUDY DESIGN AND METHODOLOGY

Our study includes the six projects analysed by Covrig,
namely Binutils, Git, Lighttpd2, Memcached, Redis, and
ZeroMQ, to which we have added APR, Curl, and Vim. These
are all mature, widely-used C/C++ projects, maintained and
extended over many years, and used at various times by high-
traffic websites such as Facebook, GitHub, StackOverflow,

Twitter/X, Wikipedia, YouTube, and many other commercial
and open-source software products.

We could have extended the study to contain many more
projects written in additional languages, while keeping a
relatively small number of revisions, as in similar studies [6].
However, we decided instead to scale up the study in terms of
number of revisions studied, managing to study thousands in-
stead of hundreds of revisions, over many years of development
time.

A. Systems under Test

The nine projects analysed in our study are:

APR (Apache Portable Runtime, https://apr.apache.org/)
provides a performant interface to platform-specific implemen-
tations of key software paradigms, such as atomic operations,
locks and thread pools. It is used in many popular applications,
such as the Apache HTTP web server, to achieve platform
independence.

Binutils (https://www.gnu.org/software/binutils/) is a collec-
tion of utilities used for inspecting and editing object files,
libraries and binary programs. As with Covrig, we analyse
the twelve utilities in the binutils directory, comprising
user-level programs for many UNIX distributions.

Curl (https://curl.se/) is a popular library that enables users
to fetch data using URLs. It is portable and supports various
protocols, including HTTP2/3, FTP and POP3.

Git (https://git-scm.com/) is the most popular version control
system used in open-source development.

Lighttpd2 (https://redmine.lighttpd.net/projects/lighttpd2/)
is a new version of the lightweight Lighttpd web server. It
was meant as the latest development branch, but has now been
“abandoned”, according to the website. There are still commits
in the past year, but infrequent when compared to Lighttpd 1.4,
their stable version. We have nevertheless decided to analyse
Lighttpd2, to compare against the Covrig results, which used
this version.

Memcached (https://memcached.org/) is a distributed mem-
ory object caching system used to reduce database load in
high-performance web platforms.

Redis (https://redis.io/) is an in-memory data store which is
most commonly used as a distributed key-value store.

ZeroMQ (https://zeromq.org/) is an asynchronous messaging
library for distributed and concurrent applications. Covrig
analysed the 4.x branch of the software, so we are doing
the same, although the latest commit to this branch was made
in 2020.

Vim (https://www.vim.org/) is a popular open-source text
editor, which can be used both on the command line and via
a GUI.

Table I shows some basic statistics of the projects under
study. ZeroMQ is written in C++, while the rest are C projects.
As of the last revision studied, the projects have between 7.5k
and 110k executable lines of code (ELOC), with a median

https://srg.doc.ic.ac.uk/projects/covrig/
https://srg.doc.ic.ac.uk/projects/covrig/
https://apr.apache.org/
https://www.gnu.org/software/binutils/
https://curl.se/
https://git-scm.com/
https://redmine.lighttpd.net/projects/lighttpd2/
https://memcached.org/
https://redis.io/
https://zeromq.org/
https://www.vim.org/


TABLE I: Code and test suite size of the studied projects, as
of the last revision analysed.

Code Tests
App Lang. ELOC Lang. TLOC
APR C 17,890 C 22,578

Binutils C 33,556 DejaGNU 20,350

Curl C 31,965 Perl/Python 47,486

Git C 109,698 C/Perl 159,316

Lighttpd2 C 27,334 Python 3,596

Memcached C 11,776 C/Perl 10,058

Redis C 39,287 Tcl 14,036

Vim C 108,295 Vim Script 32,353

ZeroMQ C++ 7,546 C++ 4,018

Date, Blame and Diff
Information

Post Processing
v2 (Python)

v2

v2

Fig. 1: Extended Covrig architecture (adapted from [1]).

value of 32k ELOC. The test suites of these projects are written
in a variety of languages and vary between 3.6k and 159k test
lines of code (TLOC), with a median of 20k TLOC. Overall,
these projects have large test suites, with three of them (APR,
Curl, Git) having more lines of code in their test suites than in
the actual code. We retrieved ELOC from coverage runs using
lcov [7], and counted the lines of code present in test files
using cloc [8].

B. Analysis Framework

Our analysis extends Covrig, which is available as open
source. Figure 1 shows the architecture of the extended Covrig
infrastructure. Covrig pulls repository data from the projects’
version control systems (Git), retrieving bug data and line
mappings. It then starts Docker containers to run the test suites
of individual revisions in isolation. Static project information
and data from test suite runs are then combined to give coverage
data.

We have upgraded the configuration of the Docker containers,
rewrote the post-processing phase into Python (the original
was written in Shell), and enhanced the collected data with
additional information needed for the differential coverage
analysis of §III-E. We have contributed these changes back to
the project.

Fig. 2: Timespan for the revisions collected in each project.
The hashed parts on the left indicate the revisions considered
by Covrig.

C. Experimental Methodology

For the six projects studied in the Covrig paper, we started
with the same 250 revisions and selected up to 2,500 revisions
(including the original 250) until either we had reached this
limit or the most recent revision of that project. For the other
three projects, we started in 2013, around the time when the
Covrig study was conducted.

The range of commits for each repository can be seen
in Figure 2, where the hashed parts on the left indicate the
revisions considered by Covrig.

As in Covrig, we only examined commits on the main
branch of the repository and restricted ourselves to revisions
that modify executable code and/or test code, and compile.

Table II shows the number of revisions collected for each
project and the timespan during which they were developed.
Overall, we considered development timespans varying between
4.4 and 14 years, with a combined timespan of 78 years.

Four of the projects—Curl, Git, Redis, Vim—reach the
maximum number of 2,500 revisions (needing between 4 to 6
years to do so). The other projects reach their latest commits,
with the total number of revisions ranging between 287 for
ZeroMQ and 889 for Memcached.

The total number of revisions that compile correctly in the
timespan considered is 23,569 revisions.2 However, we only
consider revisions that add or modify code or tests, which are
the 13,610 revisions shown in Table II.

Most projects have the majority of commits in the OK bins
as their test suites pass a high proportion of the time (as they
should). Redis is an exception with tests failing frequently—
we later learned this is due to inherent flakiness in its test
suite (see §III-F). Curl also contains a majority of revisions
with test failures. In this case, flakiness is less of an issue:

2When a sequence of commits that previously were on development branches
are merged into the main branch, often only the last commit compiles. This
kind of behaviour is common when authors do not squash commits on a merge.
We encountered a reasonable number of compile errors in this process, but
just ignored these revisions.



TABLE II: Revisions used in this study. OK: code compiles
and all tests pass, TF: some tests fail, TO: test suite times out,
Total = OK + TF + TO, Span: timespan for revisions.

App Span Total OK TF TO
APR 122mo 435 429 5 1

Binutils 149mo 1,630 1,305 325 0

Curl 63mo 2,500 890 1,527 83

Git 60mo 2,500 1,843 623 34

Lighttpd2 148mo 369 332 37 0

Memcached 168mo 889 615 258 16

Redis 72mo 2,500 483 2,007 10

Vim 53mo 2,500 1,925 575 0

ZeroMQ 100mo 287 202 85 0

Total 78y 13,610 8,024 5,442 144

instead, usually a single test fails occasionally due to changed
environmental conditions when running its tests, such as with
certificates. For instance, certain sites now require curl -k
to connect insecurely to certain webpages, whereas the test
written at the time would not have required the flag. Git and
Curl also have fair numbers of test timeouts—they tend to exist
in a series of consecutive revisions, until they are eventually
fixed.

Correctness. To enable an accurate comparison between the
data obtained ten years ago in the Covrig project and our new
data, it was important to make sure that our improvements to the
Covrig infrastructure did not introduce any errors. To do so, we
checked whether we succeeded in replicating the Covrig results
from 2014. This comparison was over the set of 250 revisions
which were presented in the original Covrig paper, using the
archive of results made available by the project. For numerical
results, we used Levene’s test [9], [10], which produces a
statistic to judge the equality of variances between two groups,
using the medians of the groups. This test does not assume
a normal distribution (which is instead the case in methods
such as the F-test), and so is an appropriate metric to compare
our two datasets. As a result of these checks, we discovered
and fixed some problems—e.g., some tests were not run in
ZeroMQ because the Libsodium dependency was not installed.
Once these were fixed, the results were deemed statistically
similar. One important exception are the test flakiness results,
where we often see somewhat larger changes. This is expected
given the nondeterministic nature of these experiments and the
impact of different hardware on flakiness [11].

III. EMPIRICAL STUDY

We now present the results of our empirical study, with
reference to the RQs introduced earlier in §I-A.

A. Code and Test Evolution

RQ1: How do code and tests evolve? Executable lines of code
(ELOC) is a good base metric to outline the development
activity within a codebase. Figure 3 shows the ELOC evolution
for the nine repositories in our study. All projects have ended

Fig. 3: Evolution of executable lines of code (ELOC). The
vertical dotted line represents the extent of the previous study
(at 250 revisions).

Fig. 4: Evolution of test lines of test code (TLOC). The vertical
dotted line represents the extent of the previous study (at 250
revisions).

up with considerably more ELOC by the end of the study. Two
notable drops are the one in ZeroMQ which was already studied
in the Covrig paper (a result of refactoring and removal of code
duplication), and a large drop in Binutils. On investigation, the
latter is triggered by a single commit that removes support for



a now withdrawn standard for object modules (IEEE 695).3

Apart from these cases, most revisions contribute rather than
remove executable code. Some revisions add a large number
of ELOC to the project: These typically correspond to the
addition of new features, such as support for flash memory
in Memcached, a new regular expression engine in Vim, and
support for a new protocol in Curl.

Figure 4 shows the evolution of test lines of code (TLOC)
in these projects. For many projects, we see a steady increase
in TLOC, with fewer bursts than in the case of ELOC.

The biggest jump in TLOC is seen in a Curl revision. This
is the result of importing a Python testing dependency into
the package directly (impacket, as a result of doing a pip
install),4 which allows for better testing capabilities. This
increases TLOC by around 12k in a single commit, and commits
after this one employ these changes in new tests.5 We will
see in §III-C that coverage increases significantly in the same
period as a result of this addition.

In both Binutils and Vim, we see a step change in the amount
of effort dedicated to testing. While initially there are few test
contributions in both projects, this changes dramatically in
mid-2015 and beginning of 2016 respectively. For Vim in
particular, the developers add over 30k TLOC in a period of
around 18 months (starting roughly from revision da59dd5),
quadrupling the size of their test suite.

One interesting observation is that compared to a decade
ago [1], the majority of the projects (APR, Binutils, Curl, Git,
Vim and ZeroMQ) add considerably more lines of test code
than they do executable lines during the analysed period.

To summarise, the answer to RQ1 is that compared to a
decade ago, significantly more effort has been dedicated to
testing in many projects, with project such as Vim witnessing
an overhaul in their test strategies. This is of course a positive
development, and we will examine its impact shortly.

B. Adoption of CI, Coverage and Fuzzing Services

RQ2: Have projects adopted CI, coverage, and fuzzing services?
To answer this RQ, we first investigated how projects use CI
services to run their tests and keep track of coverage metrics.
From inspecting the project repositories, we discovered that
seven of the nine projects studied have a CI process in place.
Table III provides a summary of the CI systems used, together
with the dates and patches which put them in place.

As can be seen in the table, two of these projects (Binutils,
Lighttpd2) still do not use a CI as of the time of writing, while
the other seven projects adopted CI systems between 2013
(ZeroMQ) and 2021 (APR). While at the time of the Covrig

3https://github.com/bminor/binutils-gdb/commit/fdef3943
4https://github.com/curl/curl/commit/f1609155d54c82b
5https://github.com/curl/curl/commit/a6f8d27efc7b0
6https://github.com/apache/apr/commit/c50db7ae
7https://github.com/curl/curl/commit/be31924f
8https://github.com/git/git/commit/522354d7
9https://github.com/memcached/memcached/commit/924dade6
10https://github.com/redis/redis/commit/a2ac5c38
11https://github.com/vim/vim/commit/0600f351
12https://github.com/zeromq/zeromq4-x/commit/59a164d2

TABLE III: CI systems used by each project, including any
legacy CIs: GH (GitHub Actions), CircleCI (Circle), CirrusCI
(Cirrus), TravisCI (Travis), AppVeyor, Azure Pipeline (Azure),
Zuul.

App Legacy CI Current CI Start

APR Travis GH 20216

Binutils – – –

Curl Travis, Zuul GH, Circle, Cirrus, Ap-
pVeyor, Azure

20137

Git Travis GH, Azure 20158

Lighttpd2 – – –

Memcached Travis GH 20189

Redis Circle GH 201910

Vim Travis GH, Cirrus, AppVeyor 201511

ZeroMQ – Travis 201312

study essentially none of the projects had a CI in place (only
ZeroMQ adopted one toward the end of the study), now most
of them have one. The most intense use of CI services is in
Curl: we noticed over 130 different CI pipelines that are run
for each pull request in 2023.

It is also interesting to see that initially most projects adopted
TravisCI, but then switched to a different CI, most likely once
TravisCI stopped being free for OSS projects [12]. Nowadays
the most popular CI is GitHub Actions. This shows how
OSS projects are often at the mercy of free offerings from
commercial providers (not just for CI, but also code hosting,
program analysis tools etc. ), which adds extra burden to their
maintenance.

Only two of the seven projects seem to explicitly track
coverage during the CI runs. One of them is Vim, which
subscribes to the Codecov [13] service.13 The other one is Curl,
which checks on each pull request that “code coverage does
not shrink drastically”14 and subscribed to the Coveralls [14]
service in the past.

A challenge in keeping track of overall coverage is that some
variations are expected over time (see §III-C and §III-E). For
instance, Vim had to configure their CI to tolerate coverage
decreases of less than 0.05%.15 More radically, Curl decided to
drop support for the Coveralls service in 2018, after observing
large coverage fluctuations.16

During the past decade, fuzzing has seen tremendous
progress [15], with parts of the industry starting to adopt
it. In particular, Google’s OSS-Fuzz [4] has established itself
as a popular platform for fuzzing open-source software. OSS-
Fuzz uses several state-of-the-art fuzzers to fuzz open-source
projects at scale. To date, OSS-Fuzz has found over 10,000
security vulnerabilities and over 36,000 bugs while fuzzing
over 1000 open-source projects [16].

13https://app.codecov.io/gh/vim/vim
14https://github.com/curl/curl/blob/master/tests/CI.md
15https://github.com/vim/vim/commit/845b7285
16https://github.com/curl/curl/commit/83c0e960

https://github.com/bminor/binutils-gdb/commit/fdef3943
https://github.com/curl/curl/commit/f1609155d54c82b
https://github.com/curl/curl/commit/a6f8d27efc7b0
https://github.com/apache/apr/commit/c50db7ae
https://github.com/curl/curl/commit/be31924f
https://github.com/git/git/commit/522354d7
https://github.com/memcached/memcached/commit/924dade6
https://github.com/redis/redis/commit/a2ac5c38
https://github.com/vim/vim/commit/0600f351
https://github.com/zeromq/zeromq4-x/commit/59a164d2
https://app.codecov.io/gh/vim/vim
https://github.com/curl/curl/blob/master/tests/CI.md
https://github.com/vim/vim/commit/845b7285
https://github.com/curl/curl/commit/83c0e960


TABLE IV: OSS-Fuzz fuzzing statistics as of March 2024,
from https://introspector.oss-fuzz.com.

App Fuzzed Coverage Fuzz targets

APR No - -

Binutils Yes 32.17% 26

Curl Yes 21.77% 17

Git Yes 10.76% 10

Lighttpd2 Yes 34.71% 1

Memcached No - -

Redis No - -

Vim No - -

ZeroMQ No - -

However, despite their high popularity, only four of the nine
projects analysed in this study have been fuzzed by OSS-Fuzz:
Binutils, Curl, Git, and Lighttpd2. The other six projects, APR,
Memcached, Redis, Vim and ZeroMQ, are absent. Furthermore,
even for the four projects which are fuzzed, the coverage
achieved by OSS-Fuzz is low, at under 35%. Table IV shows
the OSS-Fuzz fuzzing statistics for these projects.

One likely reason for which many projects are absent and the
ones present have low coverage is that fuzzing these projects
is in fact not fully automated. Developers need to write fuzz
targets, essentially test drivers to exercise different parts of
the code. The last column of Table IV shows the number of
fuzz targets written for each project. Systems for automatically
generating fuzz targets would help address this challenge and
have started to be created [17], [18], [19], although this topic
is still under-explored compared to other aspects of fuzzing.

In conclusion, the last decade has seen most projects adopt
CI services, with some also adopting coverage and fuzzing
services. However, challenges remain: the availability of free
CI services plays a big role in open-source development
(as witnessed by the migration from TravisCI), coverage
tracking is often imprecise (with Curl, for instance, giving
up on coverage tracking because of this), and fuzzing requires
significant manual work to be adopted (in the form of fuzz
target development).

C. Coverage Evolution

RQ3: How does the overall code coverage evolve? We run
each test suite five times and measure line and branch coverage.
We follow the same methodology as in Covrig, with a line
counted as covered if it is executed in at least one of the runs.

Figure 5 plots the evolution of line and branch coverage
in these projects. The first observation is that line and branch
coverage closely follow each other. Therefore, as in the Covrig
paper, we mostly focus on line coverage from this point on.

Coverage levels vary significantly between projects, but
across the revisions studied, almost all stay roughly constant
or increase. Two projects with significant increases in coverage
are Binutils and Vim, which as discussed in §III-A, have put
significant effort into testing activities during this period.

Fig. 5: Evolution of the overall line and branch coverage
accumulated over five runs of each system’s test suite.

The exception to the rule in terms of coverage evolution is
Redis, where we observe a marked decrease in line coverage
from 60.7% to 51.5%. We will discuss in more detail in §III-E
the kinds of changes that have driven this decrease in coverage.

One noticeable feature in some of the graphs are the points
below the coverage lines. These are revisions where due to
bugs, tests do not run to completion.

D. Patch Coverage

RQ4: What is the distribution of patch coverage across
revisions? Given a patch, the patch size is the number of ELOC
added or modified by the patch, and the patch coverage is the
fraction of these ELOC which are covered by the developer
test suite. As with Covrig [1], we present in Figure 6 the patch
coverage distribution, but extend it to highlight the 0% and
100% bins to match the format in the study by Hilton et al. [6].

As a decade ago, the patch coverage distribution appears to
be bimodal, even when extended to more projects and more
revisions. With the introduction of 0% and 100% bins, we see
similar results to that of the Hilton et al [6], in that a large
percentage of patches are either not covered at all, or are fully
covered.

A large number of patches have poor coverage, under 25%,
including a substantial number with 0% coverage. We find it
disconcerting that in such popular software projects, developers
submit so many patches without a single test exercising them.
Perhaps even a simple system where such patches would be

https://introspector.oss-fuzz.com


Fig. 6: Distribution of patch coverage for each project. This
considers only revisions that contribute ELOC.

flagged, or even rejected by the CI, could partly address this
problem.

One caveat of this representation is that it does not take
into account the size of the patch (in terms of ELOC added
or modified). This means a fully-covered patch with hundreds
ELOC is given the same weight as a fully-covered patch with
a single ELOC. To account for this, Figure 7 reports the
distribution of patch sizes, with each size bin labeled with the
overall patch coverage. Most projects have a similar distribution,
with most patches having at most 10 ELOC. However, they all
have large patches as well, including some which are often 1000
ELOC. The average patch coverage is usually higher for smaller
patches, which is expected. However, there are exceptions,
most notably in Git and Memcached—these projects have high
overall coverage (see Figure 5), which benefits patches across
sizes.

E. Explaining Changes to Coverage

RQ5: How do code changes drive changes in coverage? Similar
to Hilton et al. [6], we plan to understand the impact of source
code changes to coverage.

We consider the differential coverage categories introduced
by Cox [20], which are more fine-grained than those used by
Hilton et al. [6], but we merge several categories to get a final
list of eight categories instead of twelve.17 Our categories and
their descriptions are summarised in Table V.

Figure 8 graphically shows how the changes in the studied
projects divide among the different categories. The baseline
covered and uncovered categories (CBC and UBC) are shown
under the x-axis as they represent the lines of code whose
status has not changed.

This graph immediately reveals several interesting observa-
tions regarding the evolution for these projects. For instance,
there is unfortunately a lot of code which is added without being
covered by any of the test cases (UNC), across all projects, and

17We merge GIC into GNC and UIC into UNC, as usually the inclusion of
code is an addition to the codebase. Similarly, we merge EUB into DUB and
ECB into DCB.

TABLE V: Differential coverage categories, taken from [20].

UNC Uncovered New Code Newly added code is not cov-
ered.

LBC Lost Baseline Coverage Code covered at the baseline
revision is no longer covered.

UBC Uncovered Baseline
Code

Code uncovered at the baseline
revision is still not covered.

GBC Gained Baseline Cover-
age

Code not covered at the base-
line revision is now covered.

GNC Gained coverage New
Code

Newly added code is covered.

CBC Covered Baseline Code Code covered at the baseline
revision is still covered.

DUB Deleted Uncovered
Baseline code

Previously uncovered code has
now been deleted.

DCB Deleted Covered Base-
line code

Previously covered code has
now been deleted.

sometimes changes lead to covered code to become uncovered
(LBC). Furthermore, a lot of code which was uncovered at the
beginning of our study is still uncovered now (UBC), often
more than a decade later.

Some projects do a better job at testing the newly added
code, with most new code in Git and Vim in particular being
covered by the test suite (GNC). Vim in particular is also
noticeable in its efforts to add test cases to cover previously
uncovered code (GBC). One aspect that these graphs hide
though is the time when this coverage is gained: this could
happen when code is committed, or any number of revisions
later until the end of the study.

At the other end of the spectrum from Git and Vim, most of
the code added to Redis is uncovered, which is one of the main
causes of the overall decrease in coverage that we observed
in §III-C. Binutils similarly adds a majority of code which is
uncovered, but its testing effort (see §III-A) combined with the
amount of uncovered code which is deleted (DUB) seems to
have compensated and led to an overall gain in coverage (see
§III-C). Nevertheless, overall it is worrying to see so much
code being added without a single test case exercising it.

F. Flaky Tests

RQ6: How prevalent are flaky tests? In this question, we study
the extent of test flakiness and its impact on coverage. To do
so, as in Covrig, we run each test suite five times and record
for each revision whether we get non-deterministic pass/fail
test suite outcomes. Flakiness in these applications usually
stems from multi-threaded code, network event ordering, and
non-deterministic behaviour in the test harness.

The results are shown in Table VI. The fraction of revisions
affected by flaky tests varies between only 0.5% for APR to
almost 60% for Redis. Disappointingly, the relative number of
revisions with flaky tests has increased compared to a decade
ago. This is despite flakiness becoming an important topic in
software engineering research since the time the Covrig paper
was written [11].



Fig. 7: Patch size distribution. Each bin is annotated with the average patch coverage across all the patches it contains.

Fig. 8: Differential coverage by category, measured from the
first revision in the study.

The largest increases are in Binutils and Redis. For Binutils,
no flaky tests were recorded at the time of the Covrig study,
while now 18.6% of the revisions (including the 250 ones
studied by Covrig, which show no flakiness) have them. This
seems to have started with a flaky test for the objdump utility.

TABLE VI: Number of flaky revisions, where the test suite
reports mixed results across runs. Statistics on the ELOC non-
deterministically executed in these revisions.

Flaky revisions Flaky ELOC
Revs %Revs v. Covrig Max Median

APR 2 0.5% N/A 35 30.5

Binutils 303 18.6% +18.6pp 0 0

Curl 99 4.1% N/A 39 18

Git 43 1.7% +1.3pp 26 14.5

Lighttpd2 10 2.7% +2.3pp 28 7

Memcached 95 10.9% +2.5pp 42 24

Redis 1490 59.8% +53.4pp 290 50

Vim 49 2.0% N/A 11 4

ZeroMQ 51 17.8% +5pp 33 14

For Redis, the number of flaky revisions has increased
substantially, with around 60% of the revisions studied now
flaky. The number of flaky tests in Redis seems to be substantial,
with relatively few fixes. For instance, we found one issue18

which was first reported in 2013, but is still unresolved as of
2024.

To understand how quickly flaky tests are fixed, Figure 9
shows the distribution of flaky tests over time. One can observe
clusters of consecutive revisions which are flaky: Flaky tests
are introduced, persist for a number of revisions, and then are
eventually fixed. Such clusters are particularly pronounced in
Lighttpd2, Memcached and ZeroMQ.

G. Changes over the Last Decade

RQ7: Given the previous RQs, how has software testing changed
in mature open-source C/C++ projects over the past decade?
Our empirical study has extended the original Covrig study
from a combined period of 12 years of development time to

18https://github.com/redis/redis/issues/1417

https://github.com/redis/redis/issues/1417


Fig. 9: Histograms for revisions with flaky tests. Each bin
represents 10 commits, and the y-axis shows the number of
commits in each bin that report mixed test suite results across
the five repetitions.

78 years, by including many (and in some cases all) of the
commits written in the last decade in nine mature software
projects. In addition to some of the questions posed in the
Covrig study,19 we have also examined new research questions,
including how projects have adopted CI services and how code
changes have driven changes in coverage.

Our large-scale study paints a mixed picture of how the
development of mature open-source C/C++ software projects
has changed in the last decade.

Some changes are positive: Most projects have now adopted
CI services such as GitHub Actions, and a few of them
explicitly track changes to coverage and use the OSS-Fuzz
fuzzing service. Thus, most projects are expanding more effort
on testing, with some projects, such as Vim, seeing significant
contributions in terms of new test cases. In fact, compared to a
decade ago, we see much more test code added in a majority
of the projects compared to executable code. Most projects
at least double their TLOC count, and in some cases we see
increases in the range of 3-6x. As a result, overall line and
branch coverage increase in all projects except one, although
different projects start from different baselines.

Other changes are unfortunately either neutral or negative.
The code of all projects increases significantly over time,
suggesting at least a certain amount of code bloat. Despite
the increase in overall coverage, some projects still have

19We excluded a few RQs from the Covrig paper. For example, we excluded
”How many patches touch only code, only tests, none, or both?” as we found it
less important, although we do have this data in the artifact. We also excluded
the RQs on the correlation between coverage and bugs, due to the limited bug
data available, which also led to inconclusive results in the Covrig paper.

unacceptably low coverage overall, with a majority of the
projects at under 50% branch coverage at the end of the
studied period. In terms of patch coverage, we observed the
same bimodal distribution, with most of the patches either well
tested or not tested (almost) at all. As expected, smaller patches
are more likely to see higher coverage than large patches in
most projects. The fact that so many patches continue to be
poorly tested, or not tested at all, is particularly worrying,
given that many critical bugs and security vulnerabilities are
introduced by patches [21], [22] Another negative finding is
that the proportion of flaky tests has increased considerably,
despite the fact that during the same period we have seen a
lot of research in detecting and mitigating flaky tests [11].

H. Threats to Validity

The most important threat to the validity of this study is that
it might not generalise to other software projects. To mitigate
this threat, we added three more projects in addition to the
six considered in the Covrig study. Nevertheless, the study is
limited to longstanding, mature C/C++ projects. Furthermore,
we did not analyse recent revisions in all projects, so it is
possible that we may have missed development and testing
changes that were implemented more recently.

Our study involves a huge amount of data and processing
scripts, which might contain errors. We mitigated this threat
by independently reproducing the Covrig results and applying
statistical tests to confirm the correctness of our changes to
the infrastructure, and by making our artifact available for
inspection.

IV. ACTIONABLE INSIGHTS

Our findings, summarised in §I-B and discussed in detail
throughout the paper, provide actionable insights to the research
community and have the potential to influence future research.

Most testing research uses overall coverage as its main
optimisation objective, but our study shows that even when
overall coverage is high, code changes are often poorly
tested. The research community should put more effort into
incremental program analysis techniques that target code
changes.

Despite the increased adoption of CI and fuzzing frameworks,
open-source developers struggle to adopt them. One issue is the
changing availability of free services offered by commercial
providers. The establishment of standards could make it easier
for open-source developers to change providers. Another
challenge is related to the difficulty of writing fuzz drivers.
While a lot of fuzzing research is focused on improving
exploration heuristics, more effort should be placed on the
under-explored area of automated fuzz driver generation.

Our study investigates the different ways in which code
changes trigger changes in coverage—for example, that code
changes can cause covered code to become uncovered. Future
research could use this insight to automatically extract such
dependencies and ensure they are properly tested.

Our study shows that flaky tests increase over time despite
significant research work in this period on mitigating this



problem. This raises the challenge of understanding the gap
between the state of practice, and research on flaky test
detection and mitigation.

V. RELATED WORK

Our work focuses on understanding how code is tested in
mature software projects, and how this has changed in the last
decade. Compared to a majority of prior work that focuses on
static metrics, we focus on dynamic metrics, based on various
forms of coverage.

The Covrig paper [1] was the first to report line, branch and
patch coverage information for a large number revisions in six
mature C/C++ open-source projects. Our paper replicates this
work and then significantly extends it to include more projects
and up to ten times as many software revisions per project.

Four years after the Covrig study, Hilton et al. [6] analysed
the patch coverage of 47 projects written in several different
languages. The much larger number of projects considered
means that the number of revisions considered in each is
relatively small, around 166 on average. By contrast, we are
keeping Covrig’s focus on mature C/C++ projects and analyse
only nine such projects, but look at an order of magnitude
more revisions per project. One of the key contributions of
the Hilton et al. study is to report the different ways in which
code changes can affect coverage. Inspired by their study, we
consider this as one of our research questions.

Earlier work on coverage has included much more limited
studies. For instance, Elbaum et al. [23] are the first to report
on the impact of code evolution on overall coverage, but
their observations are limited to the small Space program
and seven revisions of Bash. Zaidman et al. [24] investigate
the co-evolution of code and tests in two open-source and one
industrial Java projects, providing around ten data points for
each project.

More broadly, understanding software evolution is an active
area of research and prior work provides valuable findings that
complement ours, in the areas of code and test evolution [24],
[23], [25], [26], CI and fuzzing adoption [27], [28], [29], and
flaky tests [30], [11], [31], [32], [33], among others. Compared
to most prior work, our study is characterised by its long
timespan and its focus on dynamic metrics, and particularly
coverage, to understand how software development and testing
have changed over the past decade.

VI. CONCLUSION

Despite the ubiquity of test suites in the software devel-
opment process, there is surprisingly limited information on
how code and tests co-evolve to exercise different parts of the
codebase in real software projects.

We have studied nine mature C/C++ software projects over
a total of 13,610 revisions spanning a combined period of
78 years of development time. In this time span, we report
a continuous increase in both ELOC and TLOC, with test
code often exceeding the amount of executable code added.
The majority of the projects have adopted CI services, and
a few projects also coverage and fuzzing services. By and

large, more attention is given to testing, and overall coverage
increases in this timespan for all but one project. On the
negative side, many of the projects are still poorly tested, and
an unacceptable fraction of patches are tested very little or not
at all. Our differential coverage analysis shows that in many
projects a lot of code is added without being tested and a large
fraction of the code which was uncovered at the beginning of
our study remains uncovered. Flaky tests have unfortunately
increased for all the projects studied in Covrig, although they
nevertheless affect a small number of revisions in most of the
projects studied.

VII. DATA AVAILABILITY

We have contributed all our changes to the open-source
Covrig repository20 and are making our data and artifact
available to the community [34]. Please visit https://srg.doc.ic.
ac.uk/projects/covrig/ for detailed information.

ACKNOWLEDGEMENTS

This project has received funding from the European
Research Council under the European Union’s Horizon 2020
research and innovation program (grant agreement 819141).

REFERENCES

[1] P. D. Marinescu, P. Hosek, and C. Cadar, “Covrig: A framework for
the analysis of code, test, and coverage evolution in real software,” in
Proc. of the International Symposium on Software Testing and Analysis
(ISSTA’14), Jul. 2014.

[2] Travis-CI, “Travis-CI,” https://www.travis-ci.com/.
[3] GitHub, “GitHub Actions,” https://github.com/features/actions.
[4] K. Serebryany, “OSS-Fuzz – Google’s continuous fuzzing service for

open source software,” in Proc. of the 26th USENIX Security Symposium
(USENIX Security’16), Aug. 2017, invited talk.

[5] Google, “CIFuzz,” https://google.github.io/oss-fuzz/getting-started/
continuous-integration/, 2024.

[6] M. Hilton, J. Bell, and D. Marinov, “A large-scale study of test coverage
evolution,” in Proc. of the 33rd IEEE International Conference on
Automated Software Engineering (ASE’18), Sep. 2018.

[7] Linux Test Project, “LCOV,” https://github.com/linux-test-project/lcov.
[8] ALDanial, “CLOC: Count lines of code,” https://github.com/AlDanial/

cloc.
[9] H. Levene, “Robust tests for equality of variances,” Contributions to

probability and statistics, pp. 278–292, 1960.
[10] M. B. Brown and A. B. Forsythe, “Robust tests for the equality of

variances,” Journal of the American Statistical Association, vol. 69, no.
346, pp. 364–367, 1974.

[11] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A survey of
flaky tests,” ACM Transactions on Software Engineering Methodology
(TOSEM), vol. 31, no. 1, Oct. 2021.

[12] J. Geerling, “Travis CI’s new pricing plan threw a wrench
in my open source works,” https://www.jeffgeerling.com/blog/2020/
travis-cis-new-pricing-plan-threw-wrench-my-open-source-works, Nov.
2020.

[13] Codecov Team, “Codecov.” [Online]. Available: https://about.codecov.io/
[14] Coveralls Team, “Coveralls.” [Online]. Available: https://coveralls.io/
[15] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and

reflections,” IEEE Software, vol. 38, no. 03, pp. 79–86, 2021.
[16] Google, “OSS-Fuzz trophies,” https://github.com/google/oss-fuzz?tab=

readme-ov-file#trophies, 2024.
[17] B. Domagoj, F. I. Stefan Bucur, Yaohui Chen, C. L. Tim King,

Markus Kusano, L. Szekeres, and W. Wang, “FUDGE: Fuzz driver
generation at scale,” in Proc. of the Joint Meeting of the European
Software Engineering Conference and the ACM Symposium on the
Foundations of Software Engineering (ESEC/FSE’19), Aug. 2019.

20https://github.com/srg-imperial/covrig/

https://srg.doc.ic.ac.uk/projects/covrig/
https://srg.doc.ic.ac.uk/projects/covrig/
https://www.travis-ci.com/
https://github.com/features/actions
https://google.github.io/oss-fuzz/getting-started/continuous-integration/
https://google.github.io/oss-fuzz/getting-started/continuous-integration/
https://github.com/linux-test-project/lcov
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://www.jeffgeerling.com/blog/2020/travis-cis-new-pricing-plan-threw-wrench-my-open-source-works
https://www.jeffgeerling.com/blog/2020/travis-cis-new-pricing-plan-threw-wrench-my-open-source-works
https://about.codecov.io/
https://coveralls.io/
https://github.com/google/oss-fuzz?tab=readme-ov-file#trophies
https://github.com/google/oss-fuzz?tab=readme-ov-file#trophies


[18] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic
fuzzer generation,” in Proc. of the 29th USENIX Security Symposium
(USENIX Security’20), Aug. 2020.

[19] D. Liu, J. Metzman, and O. Chang, “AI-powered fuzzing: Break-
ing the bug hunting barrier,” https://security.googleblog.com/2023/08/
ai-powered-fuzzing-breaking-bug-hunting.html, Aug. 2023.

[20] H. Cox, “Differential coverage: automating coverage analysis,” in Proc.
of the IEEE International Conference on Software Testing, Verification,
and Validation (ICST’21), Apr. 2021.

[21] “Heartbleed bug,” http://heartbleed.com/, Apr. 2014.
[22] “Shellshock (software bug),” https://en.wikipedia.org/wiki/Shellshock

(software bug), 2014.
[23] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software evolu-

tion on code coverage information,” in Proc. of the IEEE International
Conference on Software Maintenance (ICSM’01), Nov. 2001.

[24] A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer, “Studying
the co-evolution of production and test code in open source and industrial
developer test processes through repository mining,” Empirical Software
Engineering (EMSE), vol. 16, no. 3, pp. 325–364, 2011.

[25] Q. Le Dilavrec, D. E. Khelladi, A. Blouin, and J.-M. Jézéquel, “Untan-
gling spaghetti of evolutions in software histories to identify code and
test co-evolutions,” in Proc. of the IEEE International Conference on
Software Maintenance and Evolution (ICSME’21), Sep. 2021.

[26] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production and test code,” in Proc. of the
2009 International Working Conference on Mining Software Repositories
(MSR’09), May 2009.

[27] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
Proc. of the 31th IEEE International Conference on Automated Software
Engineering (ASE’16), Sep. 2016.

[28] Y. Gupta, Y. Khan, K. Gallaba, and S. McIntosh, “The impact of the
adoption of continuous integration on developer attraction and retention,”
in Proc. of the 2017 International Working Conference on Mining
Software Repositories (MSR’17), May 2017.

[29] O. Nourry, M. Kondo, M. Alfadel, S. McIntosh, and Y. Kamei, “Exploring
the adoption of fuzz testing in open-source software: A case study of
the Go community,” in Proc. of the IEEE International Conference on
Software Maintenance and Evolution (ICSME’24), Oct. 2024.

[30] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proc. of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE’14), Nov. 2014.

[31] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on the
lifecycle of flaky tests,” in Proc. of the 42nd International Conference
on Software Engineering (ICSE’20), May 2020.

[32] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An empirical
analysis of UI-based flaky tests,” in Proc. of the 43rd International
Conference on Software Engineering (ICSE’21), May 2021.

[33] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in Android apps,” in Proc. of the IEEE International Conference on
Software Maintenance and Evolution (ICSME’18), Sep. 2018.

[34] “Artifact for ’Code, Test, and Coverage Evolution in Mature Software
Systems: Changes over the Past Decade’.” [Online]. Available:
https://zenodo.org/records/10937123

https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
http://heartbleed.com/
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://zenodo.org/records/10937123

	Introduction
	Research Questions
	Findings and Contributions

	Study Design and Methodology
	Systems under Test
	Analysis Framework
	Experimental Methodology

	Empirical Study
	Code and Test Evolution
	Adoption of CI, Coverage and Fuzzing Services
	Coverage Evolution
	Patch Coverage
	Explaining Changes to Coverage
	Flaky Tests
	Changes over the Last Decade
	Threats to Validity

	Actionable Insights
	Related Work
	Conclusion
	Data Availability
	References

