
Combining Static Analysis Error Traces with
Dynamic Symbolic Execution

(Experience Paper)
Frank Busse • Pritam M. Gharat • Cristian Cadar • Alastair F. Donaldson

Software Reliability Group • Multicore Programming Group

off-the-shelf
static analyser

off-the-shelf
symbolic executor

developers

traces concrete inputs for
true positives

2

Disclaimer - Experience Paper

What we did:

● combined traces for two bug classes from two static analysis engines
with one symbolic execution engine in a particular way

What we didn’t:

● compare static analysis vs. (dynamic) symbolic execution
● generalise results to any combination of static analysis with symbolic

execution
● benchmark static analysers

3

Example

4

Example

4

> example foo
> example Hi!
Aborted (core dumped)
> example Ii!
Aborted (core dumped)

Example

4

Example

4

> example foo
> example Hi!
Aborted (core dumped)
> example Ii!
Aborted (core dumped)

Example
Static Analysis Traces

> scan-build clang example.c
example.c:23:15: warning: Use of memory
after it is freed [unix.Malloc]
 int result = *p0;
 ^~~
1 warning generated.
scan-build: Analysis run complete.
scan-build: 1 bug found.

5

Example
Static Analysis Traces

1

2

9

87

6

5

4

3

6

Infeasible Traces

7

Example
Dynamic Symbolic Execution

> klee [...] example.bc --sym-arg 3
KLEE: Using STP solver backend
KLEE: ERROR: example.c:23: memory error: out of bound
pointer
KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 23361
KLEE: done: completed paths = 554
KLEE: done: generated tests = 4

8

Example
Dynamic Symbolic Execution

9

in1 == ‘H’

in1 > ‘H’ - 2

in2 == ‘i’in1 > ‘H’ - 2

in3 == ‘!’…

T
F

TF

F T F T

F T

Example
Dynamic Symbolic Execution

10
…

search heuristic determines
exploration order (e.g. dfs, bfs
random, coverage-guided)

https://clang-analyzer.llvm.org/

C/C++/Objective-C

Clang Static
Analyzer

Infer

C/C++/Objective-C

https://fbinfer.com/

traces

traces

bitcodeInstrumentation

https://klee.github.io/
LLVM IR

KLEE

11

Example
Instrumentation

1

2

9

87

6

5

4

3

12

Example
Instrumentation

1

2

9

87

6

5

4

3

12

Constraint
Enforcement

Ignore noop

Try add constraint if feasible

Require constraint has to hold

13

2 87

Example
Constraint Enforcement

> klee [...] example.bc --sym-arg 3
KLEE: Using STP solver backend
KLEE: ERROR: example.c:23: memory error: out of bound
pointer
KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 23361
KLEE: done: completed paths = 554
KLEE: done: generated tests = 4

> klee [...] example.bc --sym-arg 3
KLEE: Using STP solver backend
KLEE: ERROR: example_run.c:25: memory error: out of bound
pointer
KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 1230
KLEE: done: completed paths = 1
KLEE: done: generated tests = 1

14

Example
Constraint Enforcement

> klee [...] example.bc --sym-arg 3
KLEE: Using STP solver backend
KLEE: ERROR: example_run.c:25: memory error: out of bound
pointer
KLEE: NOTE: now ignoring this error at this location

KLEE: done: total instructions = 1230
KLEE: done: completed paths = 1
KLEE: done: generated tests = 1

14

Targeted
Search Heuristic

● drives execution engine towards
instrumented lines

● skips unreachable steps
● terminates states that can’t reach

final step
● prioritises states that

○ reached more steps
○ are closer to next step

15

Targeted
Search Heuristic

● drives execution engine towards
instrumented lines

● skips unreachable steps
● terminates states that can’t reach

final step
● prioritises states that

○ reached more steps
○ are closer to next step

15

inter-procedural control-flow graph

1

3

2

Targeted
Search Heuristic

15

● drives execution engine towards
instrumented lines

● skips unreachable steps
● terminates states that can’t reach

final step
● prioritises states that

○ reached more steps
○ are closer to next step

Evaluation

We investigated

● historical SA bug reports
● CoREBench¹
● 25 applications/suites > 7yrs old

In short

● (almost) no historical reports
● known bugs not found
● true positives trivial and/or bug class

not supported by KLEE

¹ https://www.comp.nus.edu.sg/~release/corebench/
16

Evaluation

We investigated

● historical SA bug reports
● CoREBench¹
● 25 applications/suites > 7yrs old

In short

● (almost) no historical reports
● known bugs not found
● true positives trivial and/or bug class

not supported by KLEE

¹ https://www.comp.nus.edu.sg/~release/corebench/

➟ We had to artificially inject bugs.

16

relevant reports true/false positives

CSA Infer CSA Infer

311 322 6/183 60/122

Infer reports many missing NULL-checks for
malloc(), strdup(), localtime(), …

Bug Injection

● two bug types
○ null-pointer dereferences
○ use-after-free errors

● 1–4 events along path
● only in hard to reach instructions

(KLEE needs more than 10min to
cover instruction)

● 10 applications from Coreutils 8.31

int *xtmp;

int *ytmp = (int *)malloc(sizeof(int));
xtmp = ytmp; // 0-3 aliases for 1-4 event bugs

free(ytmp);
printf("%d", *xtmp); // use-after-free

17

2-event bug

Bug Injection

● two bug types
○ null-pointer dereferences
○ use-after-free errors

● 1–4 events along path
● only in hard to reach instructions

(KLEE needs more than 10min to
cover instruction)

● 10 applications from Coreutils 8.31

int _i = 1, *xtmp = &_i, *ytmp = &_i;

xtmp = (int *)malloc(sizeof(int));

ytmp = xtmp; // 0-2 aliases for 1-4 event bugs

free(xtmp); printf("%d", *ytmp); // use-after-free

17

3-event bug

1

2

3

program path

Bug Injection

● 297 one-event bugs
● 632 two-event bugs
● 478 three-event bugs
● 357 four-event bugs

55 bugs for further evaluation

Typical trace lengths:

● CSA 10–20 steps (max. 55)
● Infer 1–5 steps

18

19

Results
Instrumented Code

● targeted heuristic finds more bugs in

less time

● require performs worst

● try only slightly better than ignore

● intermediate steps rarely beneficial

(5 repetitions)

The static analysis error traces in our experiments in general do not add
(m)any benefits when combined with targeted symbolic execution.

https://klee.github.io/

3rd International KLEE Workshop
15–16 Sep 2022 London

(Hybrid)

