
GrayC: Greybox Fuzzing of
Compilers and Analysers for C
Karine Even-Mendoza¹² , Arindam Sharma¹, Alastair F. Donaldson¹ and Cristian Cadar¹

1 2

2

System
Under
Test

Fuzzing

3

GrayC ?

Compiler Fuzzing Categories

Greybox Fuzzing

● Successful for testing general software
○ Google: ~9k vulnerabilities and 28K bugs in 850 projects

4

● Attempts for static languages include keyword dictionaries, protobuf
descriptions of language structure, regular expressions for common patterns

○ Still produce a high rate of invalid programs
○ Clang-Proto-Fuzzer: bugs are being fixed too slow (if at all)
○ No-fuss Compiler Fuzzing: code that crashes a C or C++ compiler, but that includes

extensive undefined behaviour may well be ignored by developers.

● Not yet effective in compiler testing
○ Random, byte-level: High levels of invalidity
○ Tends to exercise the shallow (lexer, parser etc) parts of the compiler

GrayC

5

● Greybox fuzzing for testing compilers for C,
a language with lots of UB

● Key idea: semantic-aware mutations
○ AST guidance
○ Modify individual programs or combine existing
○ A configurable level of aggressiveness
○ LibFuzzer: the underlying greybox fuzzing engine

Smithsonian Institution - Flickr: Grace
Hopper and UNIVAC, CC BY 2.0

Mutations

6

Mutators Recombiners

• Delete Statement

• Duplicate Statement

• Expand Expressions

• Type Modifications

• Function Combination

• Function Body Replacement

• Code Fragment Addition

Recombiner Example
int dest_func(int x_dest, int y_dest){

int b_dest = x_dest + y_dest;
b_dest = b_dest + 5;
return b_dest;

}

7

int source_func(int j_src, int k_src) {

int m_src = j_src * k_src;

return m_src;

}

int dest_func(int x_dest, int y_dest) {

int j_src = x_dest;

int k_src = y_dest;

int m_src = j_src * k_src;

int b_dest = x_dest + y_dest;

b_dest = b_dest + 5;

return b_dest;

}

Initialize variables
corresponding to the src
function to the args of dest
function

Interleave statements from src
function

Randomly select return from
src or dest

+

Evaluation in the Wild

8

Bug: GCC (Middle-End) 11, 12 (Bugzilla: #103813)

struct a d;

struct a {

int b;

int c[]

} main() { d.c[268435456] || d.c[1]; }

9

struct a d;

struct a {

int b;

int c[]

} main() { d.c[1] || d.c[1]; }

struct a d;

struct a {

int b;

int c[]

} main() { d.c[1]; }

Controlled Experiments

10

1) GrayC Our tool
2) GrayC-No-Cov-Guidance Does coverage guidance matter?

3) GrayC-Fragments-Fuzzing Only code fragments injection, no coverage (similar to LangFuzz)

4) Clang-Fuzzer Greybox fuzzing with byte-level mutations

5) Csmith Generative, grammar-based fuzzing

6) Grammarinator Grammar-based fuzzing (ANTLR C grammar)

7) PolyGlot Language-agnostic AFL-based fuzzer, based on semantic error fixing

8) RegExpMutator LibFuzzer-based fuzzer based that uses regexp-based mutations

8 tools, 24h, 10 repetitions

Throughput and Static Validity

11

.

.

.

GrayC is able to
match the static
validity rates of a
generative fuzzer
like Csmith

Vanilla greybox
fuzzers and grammar-
based fuzzers are
primarily useful for
solely testing the
frontend

Compiler Middle-end Coverage

12

Compiler Backend Coverage

13

Bugs Found in 24h

14

Testcase Contribution

15

We contributed 24 test cases
to LLVM’s test suite:
16 of them getting accepted
+
8 of them under review

Conclusion

16

Greybox compiler fuzzing for
languages with extensive UB is
feasible

Significant gains in terms of bug-
finding & coverage compare to prior
work

Key idea is to use AST-level
semantics- aware mutations

GrayC found 30 bugs (26 fixed), with
25 previously unknown (22 fixed)

We used GrayC to contribute 24 test
cases (16 accepted) to the LLVM
compiler

