GrayC: Greybox Fuzzing of
Compilers and Analysers for C

Karine Even-Mendoza'?, Arindam Sharma?, Alastair F. Donaldson® and Cristian Cadar®

Imperial College Collzee
London SSLIBR

Fuzzing

w

w e W

=

System
Under
Test

Compiler Fuzzing Categories

intel / yarpgen

K.

Greybox Fuzzing

® Successful for testing general software
O Google: ~9k vulnerabilities and 28K bugs in 850 projects

e Not yet effective in compiler testing
O Random, byte-level: High levels of invalidity
O Tends to exercise the shallow (lexer, parser etc) parts of the compiler

e Attempts for static languages include keyword dictionaries, protobuf
descriptions of language structure, regular expressions for common patterns
O Still produce a high rate of invalid programs
O Clang-Proto-Fuzzer: bugs are being fixed too slow (if at all)
O No-fuss Compiler Fuzzing: code that crashes a C or C++ compiler, but that includes
extensive undefined behaviour may well be ignored by developers.

GrayC

e Greybox fuzzing for testing compilers for C,
a language with lots of UB

e Key idea: semantic-aware mutations

o

®)
®)
®)

AST guidance
Modify individual programs or combine existing
A configurable level of aggressiveness

LibFuzzer: the underlying greybox fuzzing engine

Smithsonian Institution - Flickr: Grace
Hopper and UNIVAC, CC BY 2.0

Mutations

Mutators Recombiners
* Duplicate Statement * Function Combination
* Delete Statement * Function Body Replacement
» Expand Expressions * Code Fragment Addition

Type Modifications

Recombiner Example

int dest func(int x_dest, int y dest){
int b_dest = x_dest + y_dest;

b dest = b_dest + 5;
return b_dest;

Initialize variables
corresponding to the src
function to the args of dest
function

int source_ func(int j_src, int k_src) {
int m_src = j src * k_src;

return m_src;

}
int dest_func(int x_dest, int y dest) {
int j_src = x_dest;
int k_src = y_dest; Interleave statements from src
int m_src = j_src * k_src; function

int b_dest = x_dest + y_dest;
b dest = b_dest + 5;

return b_dest;

Randomly select return from
src or dest

Evaluation in the Wild

Front-end Middle-/Back-end

GCC 2 10
LLVM 1 2
MSVC 3 0
Frama-C 2 10
TOTAL 8 22

Bug: GCC (Middle-End) 11, 12 (Bugzilla: #103813)

struct a d; \

struct a {
int b; i
int c[]

} main() { d.c[1]; } d.c[1]; }.c[1]; } /

\

Controlled Experiments

1) GrayC

2) GrayC-No-Cov-Guidance
3) GrayC-Fragments-Fuzzing
4) Clang-Fuzzer

5) Csmith

6) Grammarinator

7) PolyGlot

8) RegExpMutator

Our tool

Does coverage guidance matter?

Only code fragments injection, no coverage (similar to LangFuzz)
Greybox fuzzing with byte-level mutations

Generative, grammar-based fuzzing

Grammar-based fuzzing (ANTLR C grammar)

Language-agnostic AFL-based fuzzer, based on semantic error fixing

LibFuzzer-based fuzzer based that uses regexp-based mutations

8 tools, 24h, 10 repetitions

10

Throughput and Static Validity

GrayC is able to
match the static
validity rates of a
generative fuzzer
like Csmith

Vanilla greybox

fuzzers and grammar-

based fuzzers are
primarily useful for
solely testing the
frontend

Programs/h Statically-valid (%)
CsMITH 1,144 99.96%
GRrayC 2,906 99.47%
GRrRAYC-FRAGMENTS-FUZZING 4,152 99.08%
CLANG-FUZZER 1,183 1.55%
GRAMMARINATOR 5,391 0.0%

11

Compiler Middle-end Coverage

(*2]
(]
o
o
o

»
»
o
o
o

@ GraxC

(7] GRaYC-N0-CoV-GUIDANCE
@ GravC-FrRaGMENTs-FuzzING
@ CranG-Fuzzer

@ PoLvGroT

(] REGEXPMUTATOR

("] No-Fuss-FuzzeRr

D InITIAL CORPUS

64000

62000

60000 I L T L I | L T I I L] L} I L] L L] I L | L | L I L] L} L] I
0 4 8 12 16 20 24

Hours

Middle-end Line Coverage (LLVM)

12

Compiler Backend Coverage

~
N
o
o
o
]

¥

. i i - —

N
o
o
=
o
IIIII
_‘
*
Hi
H
l.
|.
H
|.
}.
b
i

@ GraxC

(7] GRaYC-N0-CoV-GUIDANCE
@ GravC-FrRaGMENTs-FuzzING
@ CranG-Fuzzer

@ PoLvGroT

(] REGEXPMUTATOR

("] No-Fuss-FuzzeRr

D InITIAL CORPUS

Back-end Line Coverage (LLVM)

64000 LELEL I LELEL I LI I | I LI L I L} L I | I L} L I) I

0 4 8 12 16 20 24

Hours
13

Bugs Found in 24h

Fix
Tool Component Rate
Middle Front
GRrAYC 6 - 100%
GRAYC-No0-Cov-GUIDANCE 4 - 100%
REGEXPMUTATOR 2 1 67%
CrAaNG-FuzzeEr 1 4 60%
PoLyYGLOT - 1 0%

14

Testcase Contribution

We contributed 24 test cases
to LLVM'’s test suite;

16 of them getting accepted
+

8 of them under review

Unit tests to improve code coverage

Adds a batch of C tests that have been found to cover several hundred
lines of Clang/LLVM that are not covered by the unit and regression
tests of the main LLVM project, nor by the test suite when run with the
-03 configuration.

The tests were originally generated using our fuzzer, and were then
reduced using C-Reduce and some manual inspection. They have been
checked for undefined behaviour-freedom using Frama-C and CompCert, and

manually checked to eliminate implementation-defined behaviour.

Differential Revision: https://reviews.1lvm.org/D118234

¥ main

© livmorg-16.0.5 ... llvmorg-16.0.0-rc1

';@ arindam-8 authored and lenary committed on Oct 11, 2022

15

Conclusion

Greybox compiler fuzzing for Key idea is to use AST-level
languages with extensive UB is semantics- aware mutations

feasible

Significant gains in terms of bug- GrayC found 30 bugs (26 fixed), with
finding & coverage compare to prior 25 previously unknown (22 fixed)
work

We used GrayC to contribute 24 test
cases (16 accepted) to the LLVM
compiler

16

