
Constraint-Based Testing
for Floating-Point Code:
Challenges and Opportunities

Cristian Cadar, Daniel Schemmel

Software Testing

● Software has bugs

● Many different bug finding tools exist
– Regression suites, fuzzing, verification, static analysis, compiler sanitizers, …

● This talk: Tools using SMT constraints
– Example: Symbolic Execution

● Floating point arithmetic is finicky...

2

Very Quick: Symbolic Execution

if (x * y == 42) {
 printf("Welcome!\n");
} else {
 abort();
}

3

Floating Point SMT Theory

● The obvious solution: Just use a floating point SMT theory!
– E.g.: QF_ABVFP instead of QF_ABV

● Mapping from program to constraints similar as for bitvectors

● We implemented this approach for KLEE
– Liew, Schemmel, Cadar, Donaldson, Zähl, Wehrle. Floating-point symbolic execution: A case study in N-

version programming. ASE 2017.

● It is very slow

4

Floating Point SMT Theory Performance Experiment

● Three theories
– Integers

– Bitvectors equivalent to int64_t

– Floating Point Numbers equivalent to double

● Three constraints for each theory
– x

– Y

– z

5

Floating Point SMT Theory Performance Experiment

Benchmark 1: ./simple.py --mode int
 Time (mean ± σ): 146.2 ms ± 4.7 ms [User: 124.3 ms, System: 21.1 ms]
 Range (min … max): 140.2 ms … 155.5 ms 19 runs

Benchmark 2: ./simple.py --mode bv64
 Time (mean ± σ): 189.8 ms ± 5.7 ms [User: 161.2 ms, System: 27.7 ms]
 Range (min … max): 183.6 ms … 204.4 ms 14 runs

Benchmark 3: ./simple.py --mode fp64
 Time (mean ± σ): 714.7 ms ± 7.0 ms [User: 676.5 ms, System: 35.7 ms]
 Range (min … max): 707.2 ms … 730.0 ms 10 runs

6

Floating Point SMT Theory Performance Experiment

● Let’s add just one more condition...
–

–

–

–

7

Floating Point SMT Theory Performance Experiment

Benchmark 1: ./still-simple.py --mode int
 Time (mean ± σ): 146.9 ms ± 3.6 ms [User: 125.5 ms, System: 20.5 ms]
 Range (min … max): 139.8 ms … 153.9 ms 19 runs

Benchmark 2: ./still-simple.py --mode bv64
 Time (mean ± σ): 197.6 ms ± 6.5 ms [User: 165.2 ms, System: 31.6 ms]
 Range (min … max): 190.4 ms … 210.3 ms 14 runs

Benchmark 3: ./still-simple.py --mode fp64
 Time (mean ± σ): 2.084 s ± 0.029 s [User: 2.038 s, System: 0.039 s]
 Range (min … max): 2.044 s … 2.128 s 10 runs

8

Approximate Solutions

● Any technique is incomplete or imprecise for non-trivial programs
– Symbolic execution, fuzzing: Path explosion

– Model checking: State explosion

– Static analysis: Imprecise (has false positives)

– Verification: Writing proofs infeasible for arbitrary programs

● Maybe an approximate solution is good enough?

9

Fixed Point Approximation of Floating Point Numbers

● The floating point theory can be lowered to the bitvector theory
– Softfloat libraries do the same thing in the concrete world

● Structurally simpler queries are usually easier to solve

● Use a simplified lowering not exactly capturing IEEE 754 semantics

● Many programs don’t really use the full range of a double anyway…

● Can we just use a fixed point number instead?

10

Fixed Point Performance Experiment

Benchmark 1: ./still-simple.py --mode int
 Time (mean ± σ): 146.9 ms ± 3.6 ms [User: 125.5 ms, System: 20.5 ms]
 Range (min … max): 139.8 ms … 153.9 ms 19 runs

Benchmark 2: ./still-simple.py --mode bv64
 Time (mean ± σ): 197.6 ms ± 6.5 ms [User: 165.2 ms, System: 31.6 ms]
 Range (min … max): 190.4 ms … 210.3 ms 14 runs

Benchmark 3: ./still-simple.py --mode fp64
 Time (mean ± σ): 2.084 s ± 0.029 s [User: 2.038 s, System: 0.039 s]
 Range (min … max): 2.044 s … 2.128 s 10 runs

Benchmark 4: ./still-simple.py --mode fix64
 Time (mean ± σ): 504.7 ms ± 5.9 ms [User: 459.2 ms, System: 43.7 ms]
 Range (min … max): 498.2 ms … 513.7 ms 10 runs

11

Fixed Point Approximation of Floating Point Numbers

● Advantages:
– Can grant massive speedups

● Challenges:
– Simplifying too far gives bogus results (basically degrades to a slow fuzzer)

– Applicability in the real world

● Ongoing work – input appreciated!
– How many bits for fixed point representation?

– Overflow or wraparound behavior?

12

Summary

● Floating point arithmatic is a problem for constraint-based approaches

● SMT solving is very slow

● Fuzzing can quickly generate satisfying assignments

● Using simpler, approximate number representations can potentially speed up
analysis at the cost of precision

13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

