
Indradeep Ghosh

Fujitsu Laboratories of America
Sunnyvale, CA, USA

April 20, 2018

Utilization and Evolution of KLEE-
based Technologies for Embedded
Software Testing at Fujitsu

Copyright 2017 FUJITSU LABORATORIES OF AMERICA

KLEE Workshop 2018

Brief Introduction

Director of Research

Fujitsu Labs of America, Sunnyvale, California

Lead the “Software Quality and Security Lab” – 10 researchers

Have been with Fujitsu 20 years

•In Silicon Valley time that is close to 200

PhD, Princeton University, EE

Worked in

Hardware Test (PhD)

Hardware Verification/Validation (early 2000s)

Software Validation and QA (from 2006)

1 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

The Fujitsu Group

2 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Fujitsu Laboratories

of Europe, Ltd.

(Europe)

(Established 2001)

Fujitsu Laboratories

of America, Inc.

(U.S.)

(Established 1993)

Fujitsu Laboratories Ltd.

Atsugi Laboratories

(Japan)

(Established 1983)

Fujitsu Laboratories Ltd.

Kawasaki Laboratories

(Japan)

(Established 1968)

Fujitsu Research and

Development Center

Co., Ltd. (China)

(Established 1998)

 Capital: 5 billion JPY
 R&D Budget: Approx. 30 billion JPY
 Employees: Approx. 1,500 worldwide

Fujitsu Laboratories Group

80 years

A rich history

of InnovationFORTUNE named Fujitsu as

“one of the World's Most Admired Companies”

for a third consecutive year.
156 thousand

employees

180+
countries

On site service

Revenue: $41 billion R&D Expenditure: $2.5 billion(Est. June 1935)

(70% software related products & services)

Motivation: Building Software is Expensive

3 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

 The annual global cost of debugging software is US $312 billion

 Software developers spend half their time finding and fixing bugs

Source: T. Britton et al., “Reversible Debugging Software,” 2013.

The global cost of software development (as of 2013) was estimated at US $1.25 Trillion !

Tremendous business potential for software developer productivity enhancement.

The Cost of (hardware & software) Bugs

4 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Intel Pentium FDIV Bug – 1994
Total Cost: $475 million

9136241002 1.33382044
3,145,727

4,195,835


1.333739068902037589

The global cost of debugging software (as of 2013) had
risen to $312 billion annually. The research found that, on

average, software developers spend 50% of their
programming time finding and fixing bugs.

- Cambridge University Research Study[1]

[1] http://www.prweb.com/releases/2013/1/prweb10298185.htm

Mars Climate Orbiter- 1999

Destroyed due to software
on the ground generating
commands in pound-force

(lbf), while the orbiter
expected newtons (N).

Mission Cost: $327.6 million

Heartbleed OpenSSL Vulnerability
April 2014

“The Heartbleed bug has
likely cost businesses tens

of millions of dollars in lost
productivity” (Reuters)

http://www.prweb.com/releases/2013/1/prweb10298185.htm

Software Testing  Software Quality

Testing is a dominant element in the processes to
establish confidence in the correctness of software

High-quality test suites are notoriously laborious to
develop

Product code of SQLite version 3.7.17 consists of 81.3
KSLOC, while its test suite is 91,421.1 KSLOC, i.e.,

1,124x larger than the product code itself

Automatic test generation holds the promise of
helping reduce the cost of software testing

5 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Did an extensive survey within Fujitsu companies and
subsidiaries

•This type of data is hard to come by not well documented

Three major categories emerged

 Enterprise software mainly client-server type

•Server side code written in Java

•We have research and a tool on this based on Java Pathfinder

Embedded software in networking switches, scanners, vending
machines etc.

•Written in C/C++

•This will be a target of this talk

Client/user side code in an UI/Browser

•Written in JavaScript, Python, Php etc.

•We have done some work on this too.

What kind of Software is relevant?

6 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Main problems in the QA process?

 Testing is time consuming and boring

 Writing tests was a completely manual process

 Testing was often outsourced to third parties

 Third parties do not have complete understanding of spec to test

 Test coverage is often poor

7 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Automated Test Generation

8

class myClass

{

myClass() {};

int foo(int x)

{

if(x > 5)

return 2;

else

return 0;

};

}

void TestDriver()

{

myClass m;

int test = 0;

m.foo(test);

}

Test vector 1: test = 0x0006

Test vector 2: test = 0x0000

void cppUnitTestSuite()

{

myClass m;

assert(m.foo(6)==2);

assert(m.foo(0)==0);

}

3

Function Under Test

1. Test Driver Generation

2. Test Input Generation
3. Test Oracle Generation

4. Test Flow Integration

Our Approach

Input generation

 Symbolic execution based test generation (KLEE based)

• Implementing a String based SMT solver

 Unit level automatic test generation

Test-driver generation

 Iterative diagnosis-driven refinement

Oracle problem

 User defined, mutation, general errors or golden model

Test flow integration

Incremental test generation from existing test-suites

9 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

KLOVER: KLEE for C++ programs

10 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

LLVM-G++
Compiler

C/C++ program
(w. symb. inputs)

uClibc++
headers

bytecode Sym. Executor
extended from

KLEE

uClibc++
library

(bytecode)

Test
cases

(Inputs)

replay

bugs
+

coverage

KLOVER Steps

 Extension of KLEE

 Add support for extra LLVM instructions, mainly

intrinsic functions

 >30 such instructions e.g. llvm.stacksave, llvm.memcpy, ...

 C++ specific instructions, e.g. instructions (llvm.atomic.*)

pertaining to the C++ memory model

 Dynamically link the bytecode of a C++ library

(implementation) in runtime

 we extend the publicly available library uClibc++

 we optimize this library for symbolic execution

KLEE limitations that we faced

 Sometimes slow, and path blow up

 It executes the low level bytecode for each API in the library

 It relies on a constraint solver to calculate symbolic values

(computations in AES are too complicated to the solver)

 The implementation of an API may contain too many

branches in the library implementation

• Take the string library as example. Klee may generate thousands of

paths for a simple string program, most of which are useless paths

Our Optimizations

 To speed up KLOVER and scale it to large programs

 Re-implement some core API in the uClibc++ library

• Remove the branches within an API implementation so as to avoid

useless paths

• Intercept the calls to some APIs and replace the calls with customized

handling

 Develop our own solvers for constraint solving

• The PASS string solver in FLA

• Application-oriented solvers (e.g. for database applications)

_UCXXEXPORT int compare(const basic_string& str) const{

...

int retval = strcmp(vector<Ch, A>::data, str.vector<Ch, A>::data, len);

...

}

int strncmp(register const char *s1,

register const char *s2, size_t n) {

while (n && (*s1 == *s2)) {

if (!*s1++)

return 0;

++s2;

--n;

}

return (n == 0) ? 0 : (*s1 < *s2) ? -1 : 1);

}

Eg: Original Implementation of string.compare (uClibc++)

KLOVER will

create > n

branches within

this API call

Two calls to this API

will lead to > n2

paths

Example: Re-Implementation of string.compare

KLOVER now explores only one path within this API

call; no useless branches will be created (note that no

“if” or “while” is involved).

_UCXXEXPORT int compare(const basic_string& str) const {

… // some initialization work

int v = 0; // 1, 0 and -1 stand for gt, eq and lt respectively

for (size_type i = 0; i < rlen; i++) {

v += (!v) * ((operator[](i) > str[i]) - (operator[](i) < str[i]));

}

v += (!v) * ((vector<Ch, A>::elements > str.elements) -

(vector<Ch, A>::elements < str.elements));

return v;

}

More Issues

 Executing the API code is slow even using the improved

implementation

 It cannot handle symbolic lengths

for (size_type i = 0; i < rlen; i++) {

…

}

KLOVER will fail

when rlen is

symbolic

 We prefer a more capable and efficient solver

– We extend the KLEE IR to support string operations

– We intercept all string API calls and build the IR

– We check the satisfiability of a string IR expression

with customized solver which support symbolic lengths

Handling Symbolic Stings

17 Copyright 2017 FUJITSU LIMITED

a = x, b = y, c = z , d = w, Φ = { }

Φ = { z = concat(x,y)}

Φ = { (z = concat(x, y) & (z != “qrs”) }

Φ = { (z = concat(x,y)) & (z = “qrs”) }

Φ = { (w = concat(concat(x,y),”t”)) & (z != “qrs”) }

foo(String a, String b) {
String c;
String d;
c = a.concat(b);
if !(c.equals(“qrs”)) {
d = c.concat(“t”);
return d;

}
return c;

}

Φ is symbolic expression

x,y,z,w are symbolic strings

We need to create a solver that solves for

such string constraints

PASS (Parameterized Array based String Solver)

18 Copyright 2017 FUJITSU LIMITED

 Model strings as parameterized arrays (PArrays)
 s1 : [0][1]…[len-1]

 both the index and the length are parameterized (i.e. symbolic)

 string constraints are quantified expressions with symbolic indices

• e.g. i [k, k+10] : s1[i] ≠ c, for symbolic k and c

 Use quantifier elimination to find solutions or prove unsat
 use symbolic length based heuristics to remove quantifiers

 always terminate for bounded lengths

String + Numeric
Constraints Quantified expressions

over PArrays

Non-quantified
Expressions

Iterative
Quantifier

Instantiation
SMT Solver

PArray
Model

Automaton
Model

PASS: String Solving with Parameterized Array and Interval Automaton

Haifa Verification Conference, 2013

19

KLOVER Evaluation

4 million lines of C++ code
• Manual testing: 4hrs per class

• Unit test quality was poor

FUJITSU LAYER 2

PHOTONIC SWITCH

 Applied KLOVER to 5 of 50 modules in switch code

 Total about 500K lines of code
 KLOVER achieved 80% line coverage and found several bugs in code

 Technology was subsequently transferred to Fujitsu Network Computing, Texas

Benchmark Results: Test Generation Time

20

0

2

4

6

8

10

12

14

16

18

20

G
e
n

e
ra

ti
o

n
 T

im
e
 [

h
o

u
rs

]

C++ classes from Fujitsu network product

Manual

120 hours

KLOVER

3 hours
total test generation total test generation

Benchmark Result: Code Coverage

21

0

10

20

30

40

50

60

70

80

90

100

C
o

d
e
 L

in
e
 C

o
v
e
ra

g
e
 [

%
]

C++ classes from Fujitsu network product

97.8% 90.9%
total line coverage total line coverage

Manual KLOVER

Benchmark Result: Number of Tests

22

0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

T
e
s
ts

C++ classes from Fujitsu network product

87 123
tests on average tests on average

Manual KLOVER

Total test code

increased 5X to

10X

Understanding/Maintaining Auto Generated Test Code

Huge number of new test cases generated

Difficult to understand intent of new tests

 Exceptions caused by unconstrained/invalid inputs

Difficult to maintain such huge test suite

The importance of writing compact test cases is well
recognized

Quotes from the GNU bug reporting instructions (LLVM, Mozilla &
Webkit have similar guidelines):

•“smaller test cases make debugging easier”

•“GCC developers prefer bug reports with small, portable test cases”

•“minimized test cases can be added to the GCC test suites”

23 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

MANUAL

Test Case quality depends on Test Driver quality

24 Copyright 2017 FUJITSU LABORATORIES LTD.

Create Driver/Stubs

Generate Test Cases

Run Unit Test

AUTO

AUTO

Automatic

Driver/Stub

Generator

AUTO

MANUALAUTO Fully-Automated

Test Executor

Test-Target

Program

Test Results

Driver

Stubs

Unit Test Cases

AUTO

Driver generation

and test case

generation not

independent of

each other

Motivational Example: Naïve Approach

25 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

}
return 1;

}

void naive_driver() {
void* x = malloc(1024);
register_symbolic(x);
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

Not obvious what the function
expects. Pass a symbolic

memory object of some size

packet_receive() implicitly assumes
- x points to packet object
- y->size is the size of data object
- y->payload points to data object

Symbolic execution would not
be able to cover this branch

Intelligent driver generation is the key!

Naïve Driver

Example: Diagnosis-Driven Driver Refinement

26 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

void driver_1() {
void* x = NULL;
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

}
return 1;

}

Minimal Driver

Symbolic Execution

void driver_2() {
data* x_buf = new data();
register_symbolic(x_buf->flag);
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

Enhanced Driver
Driver Enhancement

(1) x is accessed as packet type
(2) sizeof(y->payload) ≥ y->size
(3) y->payload is accessed as data type
(4) z->flag field is used in path condition

Diagnosis Information

Example: Iterative Test Generation

27 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

void test_1() {
data* x_buf = new data();
x_buf->flag = FLAG_OK;
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
assert(packet_receive(x) == 0);

}

1st iteration generates test_1()

Re-uses existing test-cases from the previous
iteration, cloning and modifying them minimally at
fine-grained level to create new test-cases

2nd iteration modifies two lines
with an annotation "// !test_1”.

void test_2() {
data* x_buf = new data();
x_buf->flag = FLAG_INVALID; // !test_1
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
assert(packet_receive(x) == 1); // !test_1

}

Overview: Fine-Grained Incremental Generation

28 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Incremental Symbolic
Execution

Event Diagnosis

Incremental Driver
Generation

Function
Under

Test

Previous
Test

Drivers

New Test
Suite

Enhanced
Drivers

Diagnosis
Information

Incremental Symbolic Execution

29 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Basic
Symbolic
Execution

C++
Support

Incremental
Execution

Event
Diagnosis

KLEE ✔

KLOVER ✔ ✔

FSX ✔ ✔
✔

(Similar to DiSE &
Memoise)

✔

Note: FSX tool is built from scratch.
It does not share code with any of these tools.

Event Diagnosis

Outputs a diagnosis for a given indicative event

30 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

}
return 1;

}

(1) Null pointer access at y->payload
(2) Out-of-bound access at memcpy()
(3) Branch-not-taken at

if (z->flag == FLAG_OK)
Diagnosis Information

y is accessed as packet type
z is accessed as data type

Type Information

sizeof(y->payload) ≥
y->size

Range Information

y → x, y->size → x->size
y->buf[] → x->payload[]

z->flag → x->payload->flag

Relevant Input SetIndicative Events

Precise Computation of Relevant Input Sets

Encoded as Boolean characteristic functions, and
compactly represented through Reduced-Ordered

Binary Decision Diagrams (ROBDDs)

31 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Incremental Driver Generation
Enhances previous drivers to eliminate events by

modifying values of inputs relevant to such events

32 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

void* x = NULL;
. . .

memcpy(y->payload,y->buf,y->size);

void* x = (void*) new packet();
. . .

memcpy(y->payload,y->buf,y->size);

Null pointer access

x->size = 0;
. . .

memcpy(y->payload,y->buf,y->size);

x->size = sizeof(data);
. . .

memcpy(y->payload,y->buf,y->size);

Out-of-bound access

x->buf->flag = FLAG_DEFAULT;
. . .

if (z->flag == FLAG_OK) {

register_symbolic(x->buf->flag);
. . .

if (z->flag == FLAG_OK) {

Branch-not-taken

Tool Implementation

33 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Clang C/C++
Frontend

Customized
STP Constraint

Solver

SQLite3
Database

CUDD
Package

LLVM
IR

Incremental
Driver

Generator

Relevant
Input

Analyzer

Test Stub
Generator

Mutation
Analyzer

Incremental
Symbolic
Executor

FSX Core Engine (45k LOC in C++)

FSX Test Generation Driver (Ruby) FSX Server (Ruby)

CodeCasa SCCS & CI
Platform (Ruby)

Experimental Setup

Baseline tool: FSX-Baseline

Generates naïve driver where all assignable variables including
function arguments, member variables and global variables are
assigned symbolic values and any pointers are set to new objects

Symbolic executor implements same search strategy as KLEE

Benchmark subjects

iPerf: network bandwidth measurement tool (5k LOC in C++)

•Representative set of challenging issues for automatic test generation

•5 versions from version 2.0.1 to 2.0.5 used as a software evolution example

Three embedded software subjects from Fujitsu commercial
network products

•Subject S (39k LOC in C), Subject R (12k LOC in C), Subject B (15k LOC in C)

34 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

RQ1: Full Test Suite Generation

35 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Can FSX generate high-quality unit tests
for large system software?

FSX is able to generate higher quality tests than FSX-
Baseline for all benchmarks

0

10

20

30

40

50

60

70

80

iPerf-2.0.1 Subject S Subject R Subject B

FSX

FSX-Baseline

B
ra

n
ch

 C
o

ve
ra

ge
 [

%
]

RQ2: Test Suite Augmentation

36 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Can FSX perform test-suite augmentation,
minimizing maintenance cost of new test code?

FSX re-used existing test-cases from the previous version,
cloning and modifying them minimally while FSX-Baseline
generated new test-cases for uncovered functionality

3247

5

234

3

28

51

3424
1140

1807

1

10

100

1000

10000

iPerf-2.0.1 iPerf-2.0.2 iPerf-2.0.3 iPerf-2.0.4 iPerf-2.0.5

FSX

FSX-Baseline

Te
st

 C
o

d
e

 In
cr

e
m

e
n

t
[L

O
C

]

RQ3: Test Suite Enhancement

37 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Can FSX enhance an existing test-suite, minimizing
maintenance cost of the new test code?

FSX’s enhancement boosts the coverage much more than
FSX-Baseline’s while adding much less lines

0

10

20

30

40

50

60

FSX FSX-Baseline
0

50

100

150

200

250

300

350

FSX FSX-Baseline

B
ra

n
ch

 C
o

ve
ra

ge
 [

%
]

Te
st

 C
o

d
e

 S
iz

e
 [

K
LO

C
]

+26.6%

+12.8%

+180%

+1,197%

Test Oracle Problem

 No easy answer

 Regression test suites from previous model

 User defined assertions in code

 Normal error conditions like exceptions, crashes
etc.

Automatic translation from a specification
language like UML

 Using UI feature based invariants

38 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Use-case 1: SCM/CI System Integration

39 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Source Code
Management

Developer
Repository

Developer

Build

Test

Continuous
Integration

FSX Bot
Repository Test Code

Patch

Pull

Incremental
Test

Generation

FSX
Build & Test

Configuration

Use-case 2: Application Modernization

40 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Legacy Platform Modern Platform

Modernization

Generated
Test Code

Product
Code

Product
Code

Test Code
(Optional)

Test Suite Generation

Generated
Test Code

Test oracles assert
the current actual

output value on the
legacy platform

Complete

Do All
Tests Pass?

Bug
Found!

NO YES

Deployment: Modernizing Vending System

41 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Legacy Vending System Modern Vending System

Modernization

Product
Code

Do All
Tests Pass?

Found 3 critical bugs
due to standard library &

compiler upgrades

NO!

RHEL 5.8 RHEL 7.2

504k ELOC

Generated
Test Code

Test Suite Generation

75.9% C0

56.9% C1
in 14 hours

. . .
if (memcmp(x, y, n) == -1) {

. . .
}

. . .

Buggy Product Code Example

RHEL 7: memcmp()
returns the value

difference between
two memory blocks

RHEL 5: memcmp()
returns either -1, 0, or 1

Conclusions
Fujitsu research concentrated on making automated

software testing useable in an industrial development
environment

 Created techniques for test driver generation, test input
generation, and seamless integration into the test and
development cycle at unit testing level

Tools are being used internally by software teams to
enhance test and debug productivity

 Future Challenges:

 scaling to larger modules for system or integration test

 better ways of generating test oracles

 better human – tool coordination

some effort in automatic debugging and repair
42 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Acknowledgements

43 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Mukul Prasad

Hiroaki Yoshida

Guodong Li

44 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

