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Brief Introduction

Director of Research

Fujitsu Labs of America, Sunnyvale, California

Lead the “Software Quality and Security Lab” – 10 researchers

Have been with Fujitsu 20 years

•In Silicon Valley time that is close to 200

PhD, Princeton University, EE

Worked in

Hardware Test (PhD)

Hardware Verification/Validation (early 2000s)

Software Validation and QA (from 2006)
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The Fujitsu Group
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Fujitsu Laboratories 

of Europe, Ltd.

(Europe)

(Established 2001)

Fujitsu Laboratories 

of America, Inc.

(U.S.)

(Established 1993)

Fujitsu Laboratories Ltd.

Atsugi Laboratories 

(Japan)

(Established 1983)

Fujitsu Laboratories Ltd.

Kawasaki Laboratories

(Japan) 

(Established 1968)

Fujitsu Research and 

Development Center

Co., Ltd. (China)

(Established 1998)

 Capital: 5 billion JPY
 R&D Budget:  Approx. 30 billion JPY
 Employees:  Approx. 1,500 worldwide

Fujitsu Laboratories Group

80 years

A rich history

of InnovationFORTUNE named Fujitsu as

“one of the World's Most Admired Companies”

for a third consecutive year.
156 thousand

employees

180+
countries

On site service

Revenue: $41 billion R&D Expenditure: $2.5 billion(Est. June 1935)

(70% software related products & services)



Motivation: Building Software is Expensive
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 The annual global cost of debugging software is US $312 billion

 Software developers spend half their time finding and fixing bugs

Source: T. Britton et al., “Reversible Debugging Software,” 2013.

The global cost of software development (as of 2013) was estimated at US $1.25 Trillion !

Tremendous business potential for software developer productivity enhancement.



The Cost of (hardware & software) Bugs
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Intel Pentium FDIV Bug – 1994
Total Cost: $475 million

9136241002 1.33382044
3,145,727

4,195,835


1.333739068902037589

The global cost of debugging software (as of 2013) had 
risen to $312 billion annually. The research found that, on 

average, software developers spend 50% of their 
programming time finding and fixing bugs.

- Cambridge University Research Study[1]

[1] http://www.prweb.com/releases/2013/1/prweb10298185.htm

Mars Climate Orbiter- 1999

Destroyed due to software 
on the ground generating 
commands in pound-force 

(lbf), while the orbiter 
expected newtons (N).

Mission Cost: $327.6 million

Heartbleed OpenSSL Vulnerability 
April 2014

“The Heartbleed bug has 
likely cost businesses tens 

of millions of dollars in lost 
productivity” (Reuters) 

http://www.prweb.com/releases/2013/1/prweb10298185.htm


Software Testing  Software Quality

Testing is a dominant element in the processes to 
establish confidence in the correctness of software 

High-quality test suites are notoriously laborious to 
develop

Product code of SQLite version 3.7.17 consists of 81.3 
KSLOC, while its test suite is 91,421.1 KSLOC, i.e., 

1,124x larger than the product code itself

Automatic test generation holds the promise of 
helping reduce the cost of software testing
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Did an extensive survey within Fujitsu companies and 
subsidiaries

•This type of data is hard to come by not well documented

Three major categories emerged

 Enterprise software mainly client-server type

•Server side code written in Java

•We have research and a tool on this based on Java Pathfinder

Embedded software in networking switches, scanners, vending 
machines etc.  

•Written in C/C++

•This will be a target of this talk

Client/user side code in an UI/Browser

•Written in JavaScript, Python, Php etc.

•We have done some work on this too.

What kind of Software is relevant?
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Main problems in the QA process?

 Testing is time consuming and boring

 Writing tests was a completely manual process 

 Testing was often outsourced to third parties

 Third parties do not have complete understanding of spec to test

 Test coverage is often poor
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Automated Test Generation 
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class myClass

{

myClass() {};

int foo(int x)

{

if(x > 5)

return 2;

else

return 0;

};

}

void TestDriver()

{

myClass m;

int test = 0;

m.foo(test);

}

Test vector 1: test = 0x0006

Test vector 2: test = 0x0000

void cppUnitTestSuite()

{

myClass m;

assert(m.foo(6)==2);

assert(m.foo(0)==0);

}

3

Function Under Test

1. Test Driver Generation

2. Test Input Generation 
3. Test Oracle Generation

4. Test Flow Integration



Our Approach

Input generation 

 Symbolic execution based test generation (KLEE based)

• Implementing a String based SMT solver

 Unit level automatic test generation

Test-driver generation

 Iterative diagnosis-driven refinement 

Oracle problem

 User defined, mutation, general errors or golden model

Test flow integration

Incremental test generation from existing test-suites
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KLOVER:  KLEE for C++ programs
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LLVM-G++ 
Compiler

C/C++ program
(w. symb. inputs)

uClibc++
headers

bytecode Sym. Executor 
extended from 

KLEE

uClibc++
library 

(bytecode)

Test 
cases 

(Inputs)

replay

bugs
+

coverage



KLOVER Steps

 Extension of KLEE

 Add support for extra LLVM instructions, mainly 

intrinsic functions

 >30 such instructions e.g. llvm.stacksave, llvm.memcpy, ...

 C++ specific instructions, e.g. instructions (llvm.atomic.*)   

pertaining to the C++ memory model

 Dynamically link the bytecode of a C++ library 

(implementation) in runtime

 we extend the publicly available library uClibc++

 we optimize this library for symbolic execution



KLEE limitations that we faced

 Sometimes slow, and path blow up

 It executes the low level bytecode for each API in the library

 It relies on a constraint solver to calculate symbolic values 

(computations in AES are too complicated to the solver)

 The implementation of an API may contain too many 

branches in the library implementation

• Take the string library as example. Klee may generate thousands of 

paths for a simple string program, most of which are useless paths



Our Optimizations

 To speed up KLOVER and scale it to large programs

 Re-implement some core API in the uClibc++ library

• Remove the branches within an API implementation so as to avoid 

useless paths

• Intercept the calls to some APIs and replace the calls with customized 

handling

 Develop our own solvers for constraint solving

• The PASS string solver in FLA

• Application-oriented solvers (e.g. for database applications)



_UCXXEXPORT int compare(const basic_string& str) const{

...

int retval = strcmp(vector<Ch, A>::data, str.vector<Ch, A>::data, len);

...

}

int strncmp(register const char *s1, 

register const char *s2, size_t n) {

while (n && (*s1 == *s2)) {

if (!*s1++) 

return 0;

++s2;

--n;

}

return (n == 0) ? 0 : (*s1 < *s2) ? -1 : 1);

}

Eg: Original Implementation of string.compare (uClibc++)

KLOVER will 

create > n

branches within 

this API call 

Two calls to this API 

will lead to > n2

paths 



Example: Re-Implementation of string.compare

KLOVER now explores only one path within this API 

call; no useless branches will be created (note that no 

“if” or “while” is involved). 

_UCXXEXPORT int compare(const basic_string& str) const {

…          // some initialization work

int v = 0;       // 1, 0 and -1 stand for gt, eq and lt respectively

for (size_type i = 0; i < rlen; i++) {

v += (!v) * ((operator[](i) > str[i]) - (operator[](i) < str[i]));

}

v += (!v) * ((vector<Ch, A>::elements > str.elements) -

(vector<Ch, A>::elements < str.elements));

return v;

}



More Issues

 Executing the API code is slow even using the improved 

implementation

 It cannot handle symbolic lengths

for (size_type i = 0; i < rlen; i++) {

…

}

KLOVER will fail 

when rlen is 

symbolic 

 We prefer a more capable and efficient solver 

– We extend the KLEE IR to support string operations

– We intercept all string API calls and build the IR

– We check the satisfiability of a string IR expression 

with customized solver which support symbolic lengths



Handling Symbolic Stings
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a = x, b = y, c = z , d = w, Φ = { }  

Φ = { z = concat(x,y)}  

Φ = { (z = concat(x, y) & (z != “qrs” ) }  

Φ = { (z = concat(x,y)) & (z = “qrs” ) }  

Φ = { (w = concat(concat(x,y),”t”)) & (z != “qrs”) }  

foo(String a, String b) {
String c;
String d;
c = a.concat(b);
if !(c.equals(“qrs”)) {
d = c.concat(“t”);
return d;

}
return c;

}

Φ is symbolic expression

x,y,z,w are symbolic strings

We need to create a solver that solves for

such string constraints



PASS (Parameterized Array based String Solver)
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 Model strings as parameterized arrays (PArrays)
 s1 : [0][1]…[len-1] 

 both the index and the length are parameterized (i.e. symbolic) 

 string constraints are quantified expressions with symbolic indices

• e.g.  i [k, k+10] : s1[i] ≠ c, for symbolic k and c

 Use quantifier elimination to find solutions or prove unsat
 use symbolic length based heuristics to remove quantifiers

 always terminate for bounded lengths

String + Numeric 
Constraints Quantified expressions 

over PArrays

Non-quantified 
Expressions

Iterative 
Quantifier 

Instantiation
SMT Solver

PArray
Model

Automaton
Model

PASS: String Solving with Parameterized Array and Interval Automaton

Haifa Verification Conference, 2013
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KLOVER Evaluation  

4 million lines of C++ code
• Manual testing: 4hrs per class

• Unit test quality was poor

FUJITSU LAYER 2

PHOTONIC SWITCH

 Applied KLOVER to 5 of 50 modules in switch code

 Total about 500K lines of code
 KLOVER achieved 80% line coverage and found several bugs in code

 Technology was subsequently transferred to Fujitsu Network Computing, Texas



Benchmark Results: Test Generation Time
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Benchmark Result: Code Coverage
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Benchmark Result: Number of Tests

22

0

50

100

150

200

250

300

350

N
u

m
b

e
r 

o
f 

T
e
s
ts

C++ classes from Fujitsu network product

87 123
tests on average tests on average

Manual KLOVER

Total test code

increased 5X to

10X



Understanding/Maintaining Auto Generated Test Code

Huge number of new test cases generated

Difficult to understand intent of new tests

 Exceptions caused by unconstrained/invalid inputs 

Difficult to maintain such huge test suite

The importance of writing compact test cases is well 
recognized

Quotes from the GNU bug reporting instructions (LLVM, Mozilla & 
Webkit have similar guidelines):

•“smaller test cases make debugging easier”

•“GCC developers prefer bug reports with small, portable test cases”

•“minimized test cases can be added to the GCC test suites”
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MANUAL

Test Case quality depends on Test Driver quality
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Create Driver/Stubs

Generate Test Cases

Run Unit Test

AUTO

AUTO

Automatic 

Driver/Stub

Generator

AUTO

MANUALAUTO Fully-Automated

Test Executor

Test-Target

Program

Test Results

Driver

Stubs

Unit Test Cases

AUTO

Driver generation

and test case 

generation not

independent of

each other



Motivational Example: Naïve Approach
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int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

} 
return 1;

}

void naive_driver() {
void* x = malloc(1024);
register_symbolic(x);
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

Not obvious what the function
expects.  Pass a symbolic

memory object of some size 

packet_receive() implicitly assumes
- x points to packet object
- y->size is the size of data object
- y->payload points to data object

Symbolic execution would not
be able to cover this branch

Intelligent driver generation is the key!

Naïve Driver



Example: Diagnosis-Driven Driver Refinement
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void driver_1() {
void* x = NULL;
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

} 
return 1;

}

Minimal Driver

Symbolic Execution

void driver_2() {
data* x_buf = new data();
register_symbolic(x_buf->flag);
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
int exp;
register_symbolic(exp);
assert(packet_receive(x) == exp);

}

Enhanced Driver
Driver Enhancement

(1) x is accessed as packet type
(2) sizeof(y->payload) ≥ y->size
(3) y->payload is accessed as data type
(4) z->flag field is used in path condition 

Diagnosis Information



Example: Iterative Test Generation
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void test_1() {
data* x_buf = new data();
x_buf->flag = FLAG_OK;
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
assert(packet_receive(x) == 0);

}

1st iteration generates test_1()

Re-uses existing test-cases from the previous 
iteration, cloning and modifying them minimally at 
fine-grained level to create new test-cases

2nd iteration modifies two lines
with an annotation "// !test_1”.

void test_2() {
data* x_buf = new data();
x_buf->flag = FLAG_INVALID;     // !test_1
packet* x = new packet();
x->size = sizeof(data);
x->buf = x_buf;
x->payload = new data();
assert(packet_receive(x) == 1); // !test_1

}



Overview: Fine-Grained Incremental Generation
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Incremental Symbolic
Execution

Event Diagnosis

Incremental Driver
Generation

Function
Under

Test

Previous
Test

Drivers

New Test
Suite

Enhanced
Drivers

Diagnosis
Information



Incremental Symbolic Execution
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Basic
Symbolic 
Execution

C++ 
Support

Incremental
Execution

Event
Diagnosis

KLEE ✔

KLOVER ✔ ✔

FSX ✔ ✔
✔

(Similar to DiSE &
Memoise)

✔

Note: FSX tool is built from scratch.
It does not share code with any of these tools. 



Event Diagnosis

Outputs a diagnosis for a given indicative event
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int packet_receive(void* x) {
packet* y = (packet*) x;
memcpy(y->payload, y->buf, y->size);
data* z = (data*) y->payload;
if (z->flag == FLAG_OK) {
return 0;

} 
return 1;

}

(1) Null pointer access at y->payload
(2) Out-of-bound access at memcpy()
(3) Branch-not-taken at

if (z->flag == FLAG_OK)
Diagnosis Information

y is accessed as packet type
z is accessed as data type

Type Information

sizeof(y->payload) ≥ 
y->size

Range Information

y → x, y->size → x->size
y->buf[] → x->payload[]

z->flag → x->payload->flag

Relevant Input SetIndicative Events



Precise Computation of Relevant Input Sets

Encoded as Boolean characteristic functions, and 
compactly represented through Reduced-Ordered 

Binary Decision Diagrams (ROBDDs)
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Incremental Driver Generation
Enhances previous drivers to eliminate events by 

modifying values of inputs relevant to such events
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void* x = NULL;
. . .

memcpy(y->payload,y->buf,y->size);

void* x = (void*) new packet();
. . .

memcpy(y->payload,y->buf,y->size);

Null pointer access

x->size = 0;
. . .

memcpy(y->payload,y->buf,y->size);

x->size = sizeof(data);
. . .

memcpy(y->payload,y->buf,y->size);

Out-of-bound access

x->buf->flag = FLAG_DEFAULT;
. . .

if (z->flag == FLAG_OK) {

register_symbolic(x->buf->flag);
. . .

if (z->flag == FLAG_OK) {

Branch-not-taken



Tool Implementation 
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Clang C/C++
Frontend

Customized
STP Constraint

Solver

SQLite3
Database

CUDD
Package

LLVM
IR

Incremental
Driver

Generator

Relevant
Input

Analyzer

Test Stub
Generator

Mutation
Analyzer

Incremental
Symbolic
Executor

FSX Core Engine (45k LOC in C++) 

FSX Test Generation Driver (Ruby) FSX Server (Ruby)

CodeCasa SCCS & CI
Platform (Ruby)



Experimental Setup

Baseline tool: FSX-Baseline

Generates naïve driver where all assignable variables including 
function arguments, member variables and global variables are 
assigned symbolic values and any pointers are set to new objects

Symbolic executor implements same search strategy as KLEE

Benchmark subjects

iPerf: network bandwidth measurement tool (5k LOC in C++)

•Representative set of challenging issues for automatic test generation

•5 versions from version 2.0.1 to 2.0.5 used as a software evolution example

Three embedded software subjects from Fujitsu commercial 
network products

•Subject S (39k LOC in C), Subject R (12k LOC in C), Subject B (15k LOC in C)
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RQ1: Full Test Suite Generation 
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Can FSX generate high-quality unit tests
for large system software?

FSX is able to generate higher quality tests than FSX-
Baseline for all benchmarks
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RQ2: Test Suite Augmentation
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Can FSX perform test-suite augmentation, 
minimizing maintenance cost of new test code?

FSX re-used existing test-cases from the previous version, 
cloning and modifying them minimally while FSX-Baseline 
generated new test-cases for uncovered functionality
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RQ3: Test Suite Enhancement
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Can FSX enhance an existing test-suite, minimizing 
maintenance cost of the new test code?

FSX’s enhancement boosts the coverage much more than 
FSX-Baseline’s while adding much less lines
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Test Oracle Problem

 No easy answer

 Regression test suites from previous model

 User defined assertions in code

 Normal error conditions like exceptions, crashes 
etc.

Automatic translation from a specification 
language like UML

 Using UI feature based invariants 

38 Copyright 2017 FUJITSU LABORATORIES OF AMERICA



Use-case 1: SCM/CI System Integration
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Source Code
Management

Developer
Repository

Developer

Build

Test

Continuous
Integration

FSX Bot
Repository Test Code

Patch

Pull

Incremental
Test

Generation

FSX
Build & Test

Configuration



Use-case 2: Application Modernization
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Legacy Platform Modern Platform

Modernization

Generated
Test Code

Product
Code

Product
Code

Test Code
(Optional)

Test Suite Generation

Generated
Test Code

Test oracles assert
the current actual

output value on the
legacy platform

Complete

Do All
Tests Pass?

Bug 
Found!

NO YES



Deployment: Modernizing Vending System

41 Copyright 2017 FUJITSU LABORATORIES OF AMERICA

Legacy Vending System Modern Vending System

Modernization

Product
Code

Do All
Tests Pass?

Found 3 critical bugs
due to standard library & 

compiler upgrades

NO!

RHEL 5.8 RHEL 7.2

504k ELOC

Generated
Test Code

Test Suite Generation

75.9% C0

56.9% C1
in 14 hours

. . .
if (memcmp(x, y, n) == -1) {

. . .
}

. . .

Buggy Product Code Example

RHEL 7: memcmp()
returns the value

difference between
two memory blocks

RHEL 5: memcmp()
returns either -1, 0, or 1



Conclusions
Fujitsu research concentrated on making automated 

software testing useable in an industrial development 
environment

 Created techniques for test driver generation, test input 
generation, and seamless integration into the test and 
development cycle at unit testing level

Tools are being used internally by software teams to 
enhance test and debug productivity

 Future Challenges:

 scaling to larger modules for system or integration test

 better ways of generating test oracles

 better human – tool coordination

some effort in automatic debugging and repair
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