Enhancing Symbolic Execution Using
Test Ranges

Sarfraz Khurshid
University of Texas at Austin
kKhurshid@ece.utexas.edu

1st International KLEE Workshop on Symbolic Execution

London, UK
20 April 2018

Work funded in part by the US National Science Foundation

In short, what is this talk about?
A tale of two techniques

Ranging for two systematic analysis techniques
* A symbolic execution technique
* A constraint solving technique
The two techniques look quite different but have commonalities

* Ranging to enhance them shares a common spirit — it
applies even to other techniques

* Moreover, the two techniqgues have an intricate relation
« Symbolic execution requires constraint solving

« But it also enables constraint solving — for a class of
constraints using a solver for another class!

* E.g., symbolic execution can solve structural
constraints using a solver for linear arithmetic

» Understanding this relation can help scale better

Khurshid: Enhancing Systematic Analyses Using Test Ranges

2

So what exactly is this talk about?

Basics of systematic constraint-driven testing
* Logical constraints describe inputs, outputs, paths, etc.
* Programs with structurally complex inputs
Basics of test ranges and ranged analysis
* Enhance systematic techniques

 Resumeable — pause and resume analysis; resume
analysis after it fails (hits resource bound)

 Parallel — distribute the analysis among different
workers with minimal overhead

* Incremental — re-use (some) analysis results after
a change

* Apply to a range of techniques

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Foundations
Systematic constraint-driven testing

Black-box view
* TestEra — based on Alloy/SAT [ASE’'01] o
 ASE Most Influential Paper Award 2015 | [—
« Korat — imperative constraints [ISSTA’'02] / % £
« ACM SIGSOFT Impact Paper Award 2012

White/gray-box view .
» Symbolic execution for object-oriented code B

« Generalized symbolic execution [TACAS"OB]
* Input generation using JPF [ISSTA'04]

» ISSTA Retrospective Impact Paper Award 2018*
* Announced. To be awarded at ISSTA in July 2018

4
Khurshid: Enhancing Systematic Analyses Using Test Ranges

Structurally complex data

0 .ClassName4{

.ClassName12{

[Adjie-Winoto+SOSP’99]

city e accessibility

washingto camera public

building data-type resolution

picture 640 x 480 This is some text

“[city = washington [building = whitehouse
[wing = west
[room = oval-office]]]]
[service = camera [data-type = picture
[format = jpg]]
[resolution = 640x480]]
[accessibility = public]”

Khurshid: Enhancing Systematic Analyses Using Test Ranges

This is some text

oval-office

Outline

Overview

Basics of systematic constraint-driven testing
Basics of ranged analysis

A bit of history

Conclusions

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Example: Binary search tree
How to systematically test remove?

class SearchTree {
Node root;
int size;

static class Node { — |
Node left; valid input
Node right;

}

// method under test
void remove(int x) { ... }

int info; [B,: 3]

input constraint: isTree() && isOrdered()
oracle constraint: isTree() && isOrdered() && “removes only x”

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Systematic constraint-based test generation
Black-box view

onstrain instance

Input constraints define properties of desired inputs
« Can characterize test purpose etc.
« Constraint solving problem only about properties of

iInputs, not program behaviors
Efficient solvers provide automatic test generation

« Alloy/SAT for declarative constraints [alloy.mit.edu]

« Korat for imperative constraints [korat.sourceforge.net]
Inputs are non-equivalent, i.e., tests have no redundancy
Test suites are dense, I.e., cover entire bounded input space

_QOracle constraints automate test oracles

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Example: Declarative constraints
Based on Alloy/SAT

Input constraint

- # root.*(left + right) = size| // consistency of size

all n: root.*(left + right) {

n lin n.*(left + right) // no directed cycles

sole n.~(left + right) /[at most one parent

no n.left & n.right } } /I left and right child not the same node

// binary search

Oracle constraint
root.*(left + right).info = root".*(left” + right’).info" - x // remove method

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Example: Imperative constraints

boolean repOk() {
if (root == null) return size == 0; // empty tree
Set visited = new HashSet();
LinkedList workList = new LinkedList(Q);
visited.add(root);
workList.add(root);
while (!workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (current.left != null) {
if (lvisited.add(current.left)) return false; // sharing
workList.add(current.left);
}
if Ccurrent.right !'= null) {
if (!visited.add(current.right)) return false; // sharing

workList.add(current.right);

}
}

1f (visited.size() != size) return false; // inconsistent size
// check binary search properties
return true;

Khurshid: Enhancing Symbolic Execution Using Test Ranges

How to solve an imperative constraint?
A simple approach: Use repOk as a filter

The constraint is executable. So, execute it — over and over
again — to solve it!

« Create many candidate inputs, run repOk to filter
E.g., consider trees with <3 nodes

4*4*(3*4*4)3 > 1.7M candidates; but only 15 are valid
and non-isomorphic! 1

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Using repOk as a filter: Example
Search tree with < 3 nodes, 3 int values

[t.root, t.size, ny.left, ny.right, ny.info, n,.left, n,.right, n,.info,
n,.left, n,.right, n,.info]
ONONONONONORONONONO

0000000000
0000000000

q
1
2

OOOOOOOOOH
1

000000000
0000000001
0000000001
000000000
OOOOOOOOO!

0000000002

00000000024

-~ 00000000
& 100000000y

4

0

U
: Enhancing Systematic Analyses Using Test Ranges

0000000003
0000000003
0000000003
OOOOOOOOIO
0000000010

3323323323
3323323323
3323323323

Valid: 249,984
Invalid: 1,519,488

12

Korat solver for imperative constraints
[ISSTA'02: Boyapati, Khurshid, Marinov]

Key insight: repOk executions can help prune input space
* Monitor accesses of object fields

Algorithm
« Explores bounded input space defined by a finitization
* Represents structures using candidate vectors, e.g.,

BinarySearchTree

 For size < 3, #candidates > 1.7M

« Executes repOk on a candidate to check its validity
and to determine which candidate to check next

* Provides isomorph-free generation

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Example: Monitoring field accesses

boolean repOk() {
if = null) return size == 0; // empty tree
Set visited = new HashSet();
LinkedList workList = new LinkedList(Q);
visited.add(root);
workList.add(root);
while (!workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (Ccurren @ = null) {
if (lvisite@.add(current.left)) return false; // sharing
workList.add(current.left);

}

if (cur'r'en!= null) {
if (lvisitedtddd(current.right)) return false; // sharing

workList.add(current.right); [To.root,

}
} N,.left

1f (visited.size() != size) return false; // inconsistent size
// check binary search properties No-"'ght]
return true; S —

14

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Example: Korat search step

Backtrack using field access list

[N1 1][Nz J

Generate the next Candldate

MH HI!II!! IIMM BMM :
N, 1]IN,: 3

* which satisfies repOk
Prune from the search all 33.44 = 6,912 candidates of the form

TO NO N1 N2
é@qx«SIT:%
8 N
g ‘53:,.
4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

-d. V. G L.

Korat search example: Dyn. backtrackingG
Search tree with < 3 nodes, 3 int values

[t.root, t.size, ny.left, ny.right, ny.info, n,.left, n,.right, n,.info,
n,.left, n,.right, n,.info]

dooooooooo* 1[goZdooooooo 1BEBo200[doooo

71000000000 1111020000000 10020010000

2000000000 112102 000[0j00 0 10020020000

JO00000000 1202000 OOO“*160200§0000

1
1EOOOOOOOOO 1202ﬂ002000“*11020030000
1 0

11110 0j0)0 00000 ** 1202{100J0j00O0 112020030000

1100[1000000** 12021001j000 1§02003ﬁ000

1002000000** 120210022000 *** 13020031j00

2000000000 120 2|2/00[0]0 00 1302003100

QOHOOOOOOO 12022001000 1302003100
2

10010000000 1!02200 000

Khurshid: Enhancing Systematic Analyses Using Test Ranges

= -
-7 Ve ML .

Korat search example: Many invalid cancC
Search tree with < 3 nodes, 3 int values

[t.root, t.size, ny.left, ny.right, ny.info, n,.left, n,.right, n,.info,
n,.left, n,.right, n,.info]

00000000000 ***

12020001000 **
12020002000 *
11000000000 **
11001000000 **

11002000000* 12021002000 **

13020031002 *™

» #explored =178; #valid found = 15; #candidates > 171I7\/I

Khurshid: Enhancing Systematic Analyses Using Test Ranges

=V‘l_l I.

Systematic constraint-based test generation
White/gray-box view: Generalized Symbolic Execution

[TACAS'03: Khurshid, Pasareanu, Visser]
Symbolic execution for primitives a la 70’s style

Concrete execution for references using lazy initialization on
access, e.g., consider “t.next’

®next 1 next *
E E >
B

next — next next ! next next next
« Enabled handling complex libraries, e.g., Java Collections
* Included in UC-KLEE [Ramos+CAV’11]

Abstract symbolic execution for library class java.util.String
* Build and solve constraints on strings

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Outline

Overview

Basics of systematic constraint-driven testing
Basics of ranged analysis

A bit of history

Conclusions

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Ranged analysis: Intuition

“What's in a test?!”
« A test input encodes the state of an analysis run
 Partitions the state space: explored, unexplored
* Enables resumeable analysis (pause, continue later)

* May resume on a different machine (faster or with
more memory)

 Allows quick recovery if analysis crashes
 Examples

« A candidate vector encodes the state of Korat search

A test input encodes the state of symbolic execution

__What's in 2 tests?!”

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Ranged analysis: Basic concept

A test pair [t,, t,] defines an analysis range

* The analysis only explores the subset of state space
defined by the range

Ranging applies to several analyses
« Parallel Korat [FSE’07]
» Parallel workers explore non-overlapping ranges
« Ranged symbolic execution [OOPSLA’12]
» Work stealing for load balancing
« Ranged model checking [JPF’12]
 Stateful model checker
« Ranged Alloy [ASE’13]
 Black-box back-end search based on SAT

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Ranged analysis: Forming ranges

Korat — 2 candidate vectors <v, w> where v is lexicographically
smaller than w, i.e., Korat search explores v before w

Symbolic execution — 2 test inputs <x, y> where path(x) is
lexicographically smaller than path(y)

« Symbolic execution explores path(x) before path(y

A&\

Standard Forming 4 ranges Non-overlapping
symbolic execution with 3 test inputs ranges (essentially)

Khurshid: Enhancing Systematic Analyses Using Test Ranges

lllustration: Triangle classification

// Jeff Offutt -- Java version Feb 2003

// The main triangle classification method
static int triang(int Sidel, int Side2, int Side3) {
int tri_out;
// tri_out 1is output from the routine:
// Triang i1f triangle is scalene
// Triang i1f triangle is isosceles
// Triang 1f triangle is equilateral
// Triang 1f not a triangle

-1
=2
= 3
-4

// After a quick confirmation that it's a legal
// triangle, detect any sides of equal length
if (Sidel <= 0 || SideZ <= @ || Side3 <= 0) {
tri_out = 4;
return (tri_out);
}
tri_out = 0;
if (Sidel == Side2) tri_out = tri_out + 1;
if (Sidel == Side3) tri_out = tri_out + 2;
if (Side2 == Side3) tri_out = tri_out + 3;

Khurshid: Enhancing Systematic Analyses Using Test Ranges

lllustration: Symbolic execution results

PC,: (S1>0), (S2>0), (S3>0), (S1!=S82), (S1!=S83), (S2 = S3),
((S1+ S2)>S3), ((S2 + S3) > 31), ((S1 + S3) > S2)
« Solution: S1 =3, S2 =4, S3 = 2; Output: 1
PC,: (S1>0), (S2>0), (S3>0), (S1!=S82), (S1!=83), (S2 = S3),
((S1+ S2) > S3), ((S2 + S3) > S1), ((S1 + S3) <= S2)
« Solution: S1=2,S2 =3, S3 =1, Output: 4
PC,: (S1>0), (S2>0), (S3>0), (S1!=S82), (S1!=S3), (S2 != S3),
((S1 + S2) > S3), ((S2 + S3) <= S1)
« Solution: S1 =3, S2 =2, S3 = 1; Output: 4
PC,. (S1>0), (S2>0), (S3>0), (S1!=S82), (S1!=S3), (S2 = S3),
((S1 + S2) <= S3)
« Solution: S1 =1, S2 =2, S3 =3; Output: 4
PC:: (S1>0), (S2>0), (S3>0), (S1!=S82), (S1!=83), (S2 == S3),
((S2 + S3) <= S1)
« Solution: S1=2,S2=1, S3 =1, Output: 4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

lllustration: Symbolic execution tree

, \t:m: <O, ?, ?>, 4
t3: <1, 0, ?>, 4
\btu: <1,1,0>,4

t3: <3, 2, 1>, 4

~
=
s
N
=
=
[HEY
Vv
w

C<TT >
v '<T T 1>
<t 't

t1:<3,4,2>, 1 t,:<2,3,1>,4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

lllustration: Ranging

Consider 2 tests: t; =<1,2,2>and {, =<1, 1, 2>
* Range [t;, t,] includes 5 paths > \bm: 0,2 7.4

4 are feasible ;/
t3: <1, O, ?>, 4
\btu: <1,1, 0>, 4

* 1is infeasible

* 3ranges [-, &), [ts, t), [fo, -]
partition the exploration

S|

t3: <3, 2, 1>, 4

o~
-
s

N
A
=
[EY
Vv

w

v <T ‘T T>:4 .\

<1 ‘T T
<t'1 '™

t1:<3,4,2>, 1 t,:<2,3,1>,4

C<T ‘T

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Ranged analysis: Characteristics
“What's in a range?!”

Ranges have succinct representations
Ranging provides a natural way to distribute the search
« However, forming “equi-distant” ranges requires care

Ranges encode a variety of useful analysis results
* Enable memoization and incremental analysis
Ranges define (and are defined by) test input orderings
* Provide a basis for test prioritization, minimization, ...
* E.g., “pick a test that is further away from this test”

[FSE’07, OOPSLA12, Siddiqui-UT-PhD’12, Qiu-UT-PhD’186,
Dini-UT-MS'16, ICSE g/ 17, SPIN'17, NFM'18]

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Specializing ranges: Re-execution

Infeasible ranges — summarize infeasibility results

E.g., for Korat, all candidates in the range are invalid, but
still must be checked explicitly by the search one by one

Future search — for the same problem — can skip them

« E.g. previously tested “if (repOk()) m();” and now test
“if (repOk() p();

2 largest invalid ranges: [cV,, CV355) and [CV73g, CVgog)
* Represent 47% of the candidates explored

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Specializing ranges: Constraint caching

Feasible ranges — summarize feasibility results
E.g., for symbolic execution, all paths in the range are feasible
* [t,, t,, d] — all paths in range [t,, t,] up to depth d
Distributed workers can share constraint feasibility results
using lightweight communication based on feasible ranges

* Re-create results by solver-free symbolic exploration

A sequence of feasible ranges can encode the entire program’s
constraint feasibility database — including infeasibility results

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Feasible ranges: lllustration

[t, =<3,4,2> t;=<2,1, 2>, 0]
is a feasible range

* ltincludes 8 paths

% \t14: <O, ?, ?>, 4
{ t13: <1, O, ?>, 4
\btu: <1,1, 05,4

S|

t3: <3, 2, 1>, 4

o~
-
s
N
A
=
[EY
Vv
w

'<TT'T> A
V< T 1>
<1 ‘c‘e>n

<1 ‘T ‘¢

tzi <2, 3, 1>, 4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Feasible ranges: lllustration

[t, = <3, 4, 2>, t; =<2, 1, 2>, -] encodes that each of the
following path conditions is feasible:
PC,: (S1>0), (S2 >

((S1 + S2) > S3)
PC,: (S1>0), (S2 >

1 (S3>0), (S1!=S2), (S1 1= S3),
S2 + S3) > S1), ((S1 + S3) > S2)
1 (S3>0), (S1!=S2), (S1 1= S3),

(S2 1= S3),
(S2 1= S3),

PC,: (81> 0), (S2 >
CGEEAEER)
PC,: (81> 0), (S2 >
(CGEEARSEE)
PC.: (S1>0), (S2 > 0), (S3 > 0), (S1 != S2), (S1 != S3), (S2 == S3),
((S2 + S3) <= S1)
PCq: (S1>0), (S2 > 0), (S3 > 0), (S1!=S2), (S1 != S3), (S2 == S3),
((S2 + S3) > S1)
PC.: (S1>0), (S2 > 0), (S3 > 0), (31 = S2), (S1 == S3), (S2 = S3),
((S1 + S3) <= S2)
__PC;: (S1>0), (S2>0), (S3>0), (S1!=S2), (S1 == S3), (S2 |=S3),
Ry ((S1+S3)>S2)

Khurshid: Enhancing Systematic Analyses Using Test Ranges

,(S3>0), (S1!=S2), (S1 1= S3), (S2 I= S3),
S2 + S3) <= S1)
1 (S3>0), (S11=S2), (S1 1= S3), (S2 = S3),

0)
, ((
0)
((S1+S2) > S3), ((S2 + S3) > S1), ((S1 + S3) <= S2)
0)
, ((
0)

Feasible ranges: lllustration

3 feasible ranges encode all constraint \b
feasibility results: | t0:<0, 2, 7>, 4
t, =<3,4,2> t;=<2,1, 2>, -] ./ b <1, 0, . 4
\t]_z: <1, 1, O>, 4

to=<1,1,2>,t,,=<2, 2, 1>, -]
ty=<1,1,3>, -, -]

5

t3: <3, 2, 1>, 4

AL N

V<1 T T
T TT>

tzi <2, 3, 1>, 4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Specializing ranges: Continuation

Unexplored ranges — contain some unexplored candidate(s)

« Can be explored later, by another worker, or even
another technique

E.g., for symbolic execution, different test generation
techniques can apply in tandem

Tests created by another technique or manually provide the
basis to define unexplored ranges

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Unexplored ranges: lllustration

Assume user provides 4 tests: \b
{ts, t5, L, L1} (in @ny order) O

This test suite leads to 3 O/
unexplored ranges:

t15:<1,1,0>, 4
[t5), (&7, tho), (tr0, -]

t14: <O, ?, ?>, 4

t3: <1, O, ?>, 4

o
BN
O

C<TT >

~
=
s

N
=
=
[HEY
Vv

w

t3: <3, 2, 1>, 4

'<TT'T> A
17 /<.[IZ l-[> .Ll
v <2 ‘T ‘1> 9
<t 't

t1:<3,4,2>, 1 t,:<2,3,1>,4

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Specializing ranges: Extension

Mixed ranges — summarize one search step

E.g., for Korat: [v, w) is a mixed range, if v is valid and
w = Korat.nextCV(v)

Korat search can be made incremental when repOk is
extended, e.g., binary tree evolves to a binary search tree

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Outline

Overview

Basics of systematic constraint-driven testing
Basics of ranged analysis

A bit of history

Conclusions

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Constraints in testing

Boyer et al. [1975], Clarke [1976], Howden [1975], King [1976]
pioneered core ideas — in the context of symbolic execution

« Constraints based on execution paths — path conditions
« Constraints provided by the user — assertions
* Focus: numeric constraints
Tools have existed for over 4 decades

« SELECT — A Formal System for Testing and Debugging
Programs by Symbolic Execution [Boyer+'75]

« EFFIGY
« Symbolic Execution and Program Testing [King'76]

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Constraints in SELECT [Boyer+'75]

G. User Supplied Assertions as an Adjunct to the

Program Code

As another mode of operation it is possible to
insert assertions, possibly in the form of programs
themselves, at various points in the program includ-
ing the output., These assertions can serve as

2)

constraint conditions that enable a user to
define subregions of the input space from

which SELECT is to generate the test data, or

specifications for the intent of the program
from which it is possible to verify the paths
of the program, Note that this does not
imply that the program itself is correct,
which would require that all program paths
are verified. T

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Path-based verification and need to
support debugging [King-PhD-CMU’69]

When a verification ccndition is found not to be a
theorem, one usually is able tc exhibit a set of values for

the variables which make it evaluate to ‘*false’. The linear

-132-

solver 1in our prover should be modified to produwe 2a
counter-example set of values whenever the proof fails.
These values can be used to form a particular state veztor
for some point 1in the program Qhere the program and
assertions disagree. A verifier which was able to censtruct
such counter-exanmples for erronzous programs would be an

extremely useful debugging aid. Jther wuseful aids would

—~alsc evolve from careful consideration of the whole process

iffwwith debuqgging in mind.,

Assertions in EFFIGY [King'76] (1)
8. Program Correctness, Proofs, and Symbolic Execution

That is, one must show, using any set of variable values
which satisfy the predicate at the beginning of the path,
that the values resulting from execution along the path
must satisfy the predicate at the end.

One can prove the correctness of each path by exe-
cuting it symbolically as follows:

I. Change the ASSERT at the beginning of the path to
an ASSUME; change the ASSERT at the end of the
path toa PROVE.

2. Initialize the path condition to true and all the pro-
gram variables to distinct symbols say, a;, a3,

Q& 3. Execute the path symbolically. Whenever an unre-

Assertions in EFFIGY [King'76] (2)

symbolic testing. If one is strictly confined to symbolic
execution without the use of any user introduced pre-
dicates, pc and the expressions requiring proof are syn-
tactically and semantically determined by the program-
ming language. However, the predicate semantics in
correctness proofs derive from the problem area of the
program and not the programming language.

It 1s this difference that convinces us that symbolic
execution for testing programs i1s a more exploitable
technique in the short term than the more general one of
program verification.

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Outline

Overview

Basics of systematic constraint-driven testing
Basics of ranged analysis

A bit of history

Conclusions

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Conclusions

Logical constraints have a key role in effective testing

« Can capture a rich class of (input/oracle) properties
Systematic testing is effective at finding bugs

 Handles programs with complex inputs
Ranging offers exciting ways to enhance systematic analyses

* A test encodes analysis state and allows resumeability

A test pair forms a range that defines a search sub-space

« Simple ranges enable parallel analysis

* Infeasible, feasible, unexplored, and mixed ranges
enables memoization and incremental analysis

Khurshid: Enhancing Systematic Analyses Using Test Ranges

Acknowledgements

Darko Marinov Nima Dini
Diego Funes
Chandrasekhar Boyapati Aleksandar Milicevic
Corina S. Pasareanu Sasa Misailovic
Willem Visser Nemanja Petrovic
Junaid Haroon Siddiqui
Rui Qiu
Guowei Yang
Cagdas Yelen
Junye Wen

Work funded in part by the US National Science Foundation

khurshid@utexas.edu
http://www.ece.utexas.edu/~khurshid

Khurshid: Systematic Software Testing Using Logical Constraints

