
ConcFuzzer: a sanitizer guided hybrid fuzzing framework
leveraging greybox fuzzing and concolic execution

Peng Li, Rundong Zhou, Yaohui Chen,

Yulong Zhang, Tao (Lenx) Wei

lipeng28@baidu.com

1

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

• Fuzzing procedure
1. Start with sample inputs
2. Mutate inputs to generate mutants
3. Run them and collect coverage information
4. Save and prioritize mutants that contribute new coverage
5. Repeat the step 2 until the end

• American Fuzzy Lop (AFL)
• State-of-the-art fuzzer, widely used in both Industry and academia

Coverage-guided greybox fuzzing

2

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Coverage-guided greybox fuzzing (cont.)

• Pros:
• Fast and cheap, i.e., native speed

• Cons:
• Difficult to access code guarded by complex conditions

test_me (int x) {
if (x == 0xdeadbeef) {

assert(false && “error!”);
}

}
Probability of hitting error = 1 / 2$%

3

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Concolic Execution

• Concolic = Conc{rete + Symb}olic

4

void foo (int x, int y) {
int z = 2*y;
if (x == 100000) {
if (x < z) {

/* error */
assert(0);

}
}

}

if

x = 0
y = 0

x ≠ 100000

if

x = 100000

x = 100000
y = 0

x ≥ z

x = 100000
y = 50001

x < z

Snippet of C code from wikipediab731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Concolic Execution (cont.)

• Pros:
– Systematic state exploration to reach high coverage
– Automatic test case generation
– White box fuzzing
– Relief the constraint solving burden. i.e., one time solving per path, avoid

potential non-linear solving choke
• Cons:

– Slow compared against native execution
– State explosion problem

5

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Concolic Execution on top of KLEE

6

1. Delay constraint solving until the state
get scheduled

2. If the state’s path constraint is satisfiable,
compute the input

3. Otherwise, discard the state

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Natural complementation between Fuzzing and
Concolic execution

7

Automatic test
case generation

• Fast +
• Cheap +
• No state explosion +
• Hard to reach basic

blocks guarded with
complex conditions -

Greybox Fuzzing

• Slow -
• Expensive -
• State explosion -
• Effective to reach basic

blocks guarded with
complex conditions +

Concolic Execution

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Prior arts of hybrid fuzzing

8

• Hybrid concolic testing [Rupak et al., ICSE’07]
– Interleaving of random testing and bounded exhaustive concolic

execution

• Driller [Nick et al., NDSS’16]
– Run fuzzing (AFL) and concolic executor (Angr) in parallel

• Hybrid solution outperforms either part w.r.t code coverage

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Does high code coverage guarantee finding the bug?

9

• Proper checks must be there
• Inputs violating checks must be present

int sum(int a, int b) {
int c = a + b;
If (c%2 == 0)

print(“c is even \n”);
else

print(“c is odd \n”);
return c;

}

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

10

We want to build a system which is able to
– Instrument checks automatically
– Generate inputs with the guidance of checks to catch bugs as quicker

as possible

Motivation

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Automatic oracle generation through sanitizers

11

• Sanitizers
– Address Sanitizer, Undefined behavior Sanitizer, Thread Sanitizer …

int c = a + b; Entry:
…
br i1 %5, label %cont, label %handler.add_overflow

handler.add_overflow: preds = %entry
…
br label %cont, !dbg !22, !nosanitize !2

cont: ; preds = %handler.add_overflow, %entry
b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

12

• Instrument a mark for sanitizer branches to differentiate from the
other branches

int c = a + b;

Entry:
…

br i1 %5, label %cont, label %handler.add_overflow edge_sanitizer !2

handler.add_overflow: preds = %entry
…
br label %cont, !dbg !22, !nosanitize !2

cont: ; preds = %handler.add_overflow, %entry

A sanitizer guided hybrid fuzzing framework

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

A sanitizer guided hybrid fuzzing framework (cont.)

13

• AFL is capable of finding inputs accessing sanitizers fast
– Most of inputs may access sanitizer branch but did not trigger violations
– The inputs accessing more sanitizers are prioritized to pass to concolic

executor

• Concolic executor determines if complementary inputs triggering
bugs exist through constraint solving
– Concolic executor prioritizes states leading to sanitizer violation
– Concolic executor only computes new state’s test case and will not

continuously explore it in the slow interpretation manner
– All test cases produced by concolic executor are passed to AFL on the fly

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

14

Marked sanitizers in UBSan

• Addition
• Subtraction
• Multiplication
• Left/Right shift
• Division/Modulus
• Load invalid Enum/Bool types
• Out of bound array index

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

15

Beyond C semantics
• Apollo (Baidu’s open autonomous driving platform)

– https://github.com/ApolloAuto/apollo
– ~ 145,000 LOC pure in C++
– ~ 90 global partners

• Most of C++ features are handled by Clang front-end
• uclibc++

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

https://github.com/ApolloAuto/apollo

16

Beyond C semantics

• Apollo (Baidu’s open autonomous driving platform)
– https://github.com/ApolloAuto/apollo

– ~ 145,000 LOC pure in C++
– ~ 90 global partners

• Most of C++ features are supported by Clang front-end

• uclibc++
– Obsolete
– Does not support C++11

• klee-libc++

• Atomic C++ operations
b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

https://github.com/ApolloAuto/apollo

17

C/C++ Programs

Extended
Clang-3.6 with sanitizer

turned on

Instrumented
LLVM IR

Instrument & Compile

AFL-Clang-Fast

Instrumented
Binary

Instrument & Compile

AFL

Test Cases Z3klee-uclibc/klee-libc++Test Cases

concolic executor

Concolic Executor

Test cases accessing sanitizers

All test cases

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

18

How well does it perform on real world applications?

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

19

djpeg (Libjpeg-9b)

Fig 1. ConcFuzzer’s 24 hours running results for djpeg

Fig 2. AFL’s 24 hours running results for djpeg

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

20

djpeg (Libjpeg-9b)

Covered Paths
#

Imported
inputs

of bugs found

AFL 3,476 N.A. 114 Left shift overflow
6 buffer overflow

Table 1. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the covered
paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

21

djpeg (Libjpeg-9b)

Covered Paths
#

Imported
inputs

of bugs found

AFL 3,476 N.A. 114 Left shift overflow
6 buffer overflow

ConcFuzzer 4,421 89 128 Left shift overflow
7 buffer overflow

Table 1. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the covered
paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

22

djpeg (Libjpeg-9b)

Covered Paths
#

Imported
inputs

of bugs found

AFL 3,476 N.A. 114 Left shift overflow
6 buffer overflow

ConcFuzzer 4,421 89 128 Left shift overflow
7 buffer overflow

KLEE* 61 N.A. 0

Table 1. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the covered
paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

23

Tcpdump (libpcap)

Fig 3. concfuzzer’s 24 hours running results for Tcpdump

Fig 4. AFL’s 24 hours running results for Tcpdump.

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

24

Tcpdump (libpcap)

Covered Paths # Imported inputs # of bugs found

AFL 2,773 N.A. 2 left shift overflow

Table 2. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

25

Tcpdump (libpcap)

Covered Paths # Imported inputs # of bugs found

AFL 2,773 N.A. 2 left shift overflow

ConcFuzzer 6,300 101 11 left shift overflow

Table 2. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

26

Tcpdump (libpcap)

Covered Paths # Imported inputs # of bugs found

AFL 2,773 N.A. 2 left shift overflow

ConcFuzzer 6,300 101 11 left shift overflow

KLEE* 57 N.A. 0

Table 2. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL and KLEE do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

27

MbedTLS X509 Certificate Parser

Fig 5. concfuzzer’s 24 hours running results for mbedtls x509 certificate parser

Fig 6. AFL’s 24 hours running results for mbedtls x509 certificate parser

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

28

MbedTLS X509 Certificate Parser

Covered Paths # Imported inputs # of bugs found

AFL 518 N.A. 0

Table 3. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

29

MbedTLS X509 Certificate Parser

Covered Paths # Imported inputs # of bugs found

AFL 518 N.A. 0

ConcFuzzer 1,204 1 0

Table 3. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

30

MbedTLS X509 Certificate Parser

Covered Paths # Imported inputs # of bugs found

AFL 518 N.A. 0

ConcFuzzer 1,204 1 0

KLEE* 6,193 N.A. 0

Table 3. AFL vs ConcFuzzer vs KLEE results after 24 hours execution.
N.A. means AFL do not have the feature of importing inputs from

concolic executor to AFL. # of generated ktests is used to denote the
covered paths # in KLEE

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

Conclusion
• Standing on the shoulders of giants:

– Clang / LLVM
– AFL / KLEE
– Z3 / STP

• Invent a sanitizer guided hybrid fuzzing solution to improve the bug
finding capability while guaranteeing the high coverage

• Demonstrate an effective sanitizer guided hybrid fuzzing system named
ConcFuzzer to analyze real world C/C++ applications and catch bugs

31

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

32

b731afe6-Xa84HERK1GnSwA3/tFANFd61XImMydEQoagyCw==-500ddfd78926

