
ExpoSE: Practical Symbolic 
Execution of JavaScript
Blake Loring, Duncan Mitchell, Johannes Kinder



JavaScript

● The Language of the web.
● Increasingly popular as server-side (Node.js) and client side 

(Electron) solution.
● Top 10 language (Github)



● Large & Confusing Specification

● Language constantly revised

JavaScript (2)



JavaScript (3)

● JavaScript is currently hard to test / verify
● Static approaches limited by dynamic aspects of the language
● Solutions like Flow / TS their own ecosystem
● Good target for DSE



Challenges



Challenges

When argument starts with ‘--sanitize’



Challenges

When argument starts with ‘--sanitize’

When debug coerces to 5 or ‘on’



Challenges



Challenges

Heavy use of strings and regular 
expressions



Challenges

Asynchronous event model

Heavy use of strings and regular 
expressions



Challenges

Implicit Type Coercion

Asynchronous event model

Heavy use of strings and regular 
expressions



Challenges

Implicit Type Coercion
Dynamic code generation

Asynchronous event model

Heavy use of strings and regular 
expressions



Challenges

Implicit Type Coercion
Dynamic code generation

Asynchronous event model

Heavy use of strings and regular 
expressions

I will address these issues today



ExpoSE

New DSE Tool Open Source



Instrumentation

● Instrument program trace into source code

● Mature instrumentation tools available (Jalangi2, NodeProf, etc)
● Handle eval for free



Asynchronous Events

● Callback events replace concurrency



Asynchronous Events

● Callback events replace concurrency
● Difficult to decide when a program has terminated



Asynchronous Events

● Callback events replace concurrency
● Difficult to decide when a program has terminated
● Don’t replay in the same process



Dynamic Type System



Dynamic Type System

Symbolic type coercions should be 
minimized as much as possible



Dynamic Type System

Symbolic type coercions should be 
minimized as much as possible

All types need to be explored



Strings & Regular Expressions

● JavaScript has built-in regular expressions

● Widespread Usage



Strings & Regular Expressions (2)

● SMT Solvers support classical regular expressions
● Language extensions non-regular
● Matching precedence now matters



Strings & Regular Expressions (3)

● Encode as classic regular expressions and string constraints



Strings & Regular Expressions (3)

● Encode as classic regular expressions and string constraints



Strings & Regular Expressions (3)

● Encode as classic regular expressions and string constraints



Strings & Regular Expressions (3)

● Encode as classic regular expressions and string constraints



Strings & Regular Expressions (4)

● Matching precedence can cause issues



Strings & Regular Expressions (4)

● Matching precedence can cause issues

SMT Solver



Strings & Regular Expressions (4)

● Matching precedence can cause issues

SMT Solver Concrete Matcher

Candidate



Strings & Regular Expressions (4)

● Matching precedence can cause issues

SMT Solver Concrete Matcher
Test Case

Queue

Candidate Accepted



Strings & Regular Expressions (4)

● Matching precedence can cause issues

SMT Solver Concrete Matcher
Test Case

Queue

Rejected

Candidate Accepted



JavaScript analysis is hard!
Take care with type coercion

Keep program structure in mind

Open Source: ExpoSE, Z3JS, and Regex available at

Conclusion


