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JavaScript

● The Language of the web.
● Increasingly popular as server-side (Node.js) and client side 

(Electron) solution.
● Top 10 language (Github)



● Large & Confusing Specification

● Language constantly revised

JavaScript (2)



JavaScript (3)

● JavaScript is currently hard to test / verify
● Static approaches limited by dynamic aspects of the language
● Solutions like Flow / TS their own ecosystem
● Good target for DSE
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When debug coerces to 5 or ‘on’
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Challenges

Implicit Type Coercion
Dynamic code generation

Asynchronous event model

Heavy use of strings and regular 
expressions

I will address these issues today



ExpoSE

New DSE Tool Open Source



Instrumentation

● Instrument program trace into source code

● Mature instrumentation tools available (Jalangi2, NodeProf, etc)
● Handle eval for free
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Asynchronous Events

● Callback events replace concurrency
● Difficult to decide when a program has terminated
● Don’t replay in the same process
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Dynamic Type System
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Dynamic Type System

Symbolic type coercions should be 
minimized as much as possible

All types need to be explored



Strings & Regular Expressions

● JavaScript has built-in regular expressions

● Widespread Usage



Strings & Regular Expressions (2)

● SMT Solvers support classical regular expressions
● Language extensions non-regular
● Matching precedence now matters
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Strings & Regular Expressions (4)

● Matching precedence can cause issues

SMT Solver Concrete Matcher
Test Case

Queue

Rejected

Candidate Accepted



JavaScript analysis is hard!
Take care with type coercion

Keep program structure in mind

Open Source: ExpoSE, Z3JS, and Regex available at

Conclusion


