The TRACER-X System

Joxan JAFFAR & Rasool MAGHAREH

Department of Computer Science, National University of Singapore
*{joxan, rasool}@comp.nus.edu.sg

April 2018
(KLEE Workshop 2018)

The TRACER-X System 1/29

TRACER-X

@ Introducing TRACER-X symbolic execution approach
@ Based on the KLEE symbolic virtual machine

@ Interpolation for search-space reduction

@ TRACER-X

@ Website: http://www.comp.nus.edu.sg/~tracerx
@ Github: https://github.com/tracer—x/

The TRACER-X System 2/29

http://www.comp.nus.edu.sg/~tracerx
https://github.com/tracer-x/

@ Mitigating Search-Space Complexity with Interpolation
© TRACER-X (KLEE with Interpolation)

© Weakest Precondition Interpolation

© Memory Bounds Interpolation

© Symbolic Heap

@ Results & Current Directions

The TRACER-X System 3/29

Problem and Solution

@ Naive analysis/verification (e.g., standard model checking)
— huge search space:
exponential in the size of the program

@ To mitigate the problem we employ learning

2: PRUNE

We use information from already traversed (symbolic
execution) subtree to prune other subtrees

The TRACER-X System

Example: Proving Safety

Initially x > 0

(0) if (a=1)then (1) skip endif

(2) if (b=1) then (3) c := 0 endif

(4) if (c=1)then (5) x := x + 1 endif
(6) assert(x > 0)

Next: The Tree

The TRACER-X System 5/29

Symbolic Execution Tree

(O)xp >0
a =1 x>0 a # 1
(1) x>0,a=1 (2)
bo by # 1
(2) x>0,a=1 (3) (4)
b=1 3 4) (5) (6)
B lc‘: ¢ =1 co#1 ¢ :‘Acﬂu ix1—xo+1
x>0,a=1
b=1,c=0(4) 5 (6) <5> (6)
o =1 N £ 1 ix1:x0+1 = 0+1
5) X (6) (6) (6)
Xy =X+ 1
6) X

Constraints with versioned variables for a path in the tree:

X0 >0(0) a =1(1)(2) bp=1(3) c1 =0(4)
ct=1(5)x1=x0+1(6)

The TRACER-X System 6/29

Interpolation

@ HALF Interpolant
Path-based “weakest precondition”
(Often easy to compute)

@ FULL Interpolant
Combine half interpolants to become Tree-based
(Challenge is to obtain compact representation)

Example of the Most Basic Interpolation Method: UNSAT-CORE

Xo>0(0)a=1(1){2)bp=1(3)c; =0 (4)
ci=1 <5>X1:X0+1 <6>

The above constraints are unsatisfiable, remove constraints that are
not needed to ensure unsatisfiability

(0) (1) (2) (3) c1 =0 (4) c1 =1 (5) (6)

The TRACER-X System 7/29

Example: Proving Safety

Initially x > 0

(0) if (a=1) then (1) skip endif

(2) if (b=1) then (3) ¢ := 0 endif

(4) if (c=1)then (5) x := x + 1 endif

(6) assert(x > 0) @ DFS traversal.
@ W/o interpolation:

(0) xo >0 The full tree is

ap =1 ap # 1
%\ traversed.
(B)

o @ @ W/ interpolation:
l (MBSUMED (A)isx >0,(B)is
@) x> 0,a# 1, hence

@Nﬁ: (B) is subsumed by

(3) (4) (A), big subtree

l o =0 % :,/\CO #1 traversal is
avoided.
(] W 1 l)ﬁ =xp+1

(5) (6) (6) (6)
X = x>0 SAFE!

The TRACER-X System

From KLEE TO TRACER-X

@ Forward Symbolic Execution to find feasible paths (Similar
to KLEE)

@ Intermediate execution states preserved (Unlike KLEE)

@ Half interpolants are generated by backward tracking

@ Full interpolants generated by merging half interpolants

@ Full interpolants used for subsumption at similar program

points
Figure: Tracer-X Framework
€ —
Cot LLVM IR KLEE SMT Solver
Objc

Annotations

Interpolation Engine

The TRACER-X System

Weakest Precondition VS Strongest Postcondition

e WP
Goal-directed and often small formula, per path.
Unfortunately, not easy to compress individual path WP.
Biggest disadvantage: agnostic to context.
(eg: Example above, if x had initial value.)

@ SP
Not goal-directed and often large formula, for all paths.
Per path reasoning is precise.

@ SP with Interpolation
Can exploit learning from the unsat-core: basic interpolation.
A remaining disadvantage: interpolation needs to infer new
information beyond unsat-core.

The TRACER-X System 10/29

Interpolation: Weakest Precondition

@ Ideal interpolant is the weakest precondition (WP)
of the target

@ Unfortunately, WP is intractable to compute

x = 0;

if (bl) x += 3 else x += 2
@ if (b2) x += 5 else x += 7

if (b3) x += 9 else x += 14

{x < 24}

Assume (b1 A =b2 A —b3) is UNSAT.

WP is:

bl — (-2 ANB3 A X <T7)V (b2 A x < 4)
-b1 — x <3

@ Essentially, WP is exponentially disjunctive

The TRACER-X System 11/29

Weak-ER Precondition of TRACER-X

First the Easy Cases:

suppose a context of €.

@ WP(t,w) =--- LLVM inverse transition of ¢
@ wpr(assume(b),w) =w A b
@ WP(if (b) then Sl elseS2, w)=wAbwhereCEDb

@ Similarly for when ¢ = —b

The TRACER-X System 12/29

Weak-ER Precondition of TRACER-X

The General Case:
if (b) then S1 else S2 with postcondition w where

@ the contextis ¢ = ¢y, 6, , Ch.
@ Neither € = b nor ¢ = —b holds.
@ wpp(S1,w)is wy and wpp(S2,w) is wy

In general, the weakest precondition V is a disjunction:
(b — CLJ1) N (ﬁb—) wg)

We want to compute a convex ¢. (Therefore € = ¢ = V)

Takeaway:
@ There is no succinct definition for this convex.

@ The above examples show, however, that there are
many special cases to exploit.

The TRACER-X System 13/29

WP Interpolation Example 1

@ Choose a candidate

to generalize: o
c=2Ad=4 Original Context:

a>0ANb=5AN-1<x<1Ac=2Nd=4
@ Extract the subset of
W; and W> which
share the same H)<580A-2<X<5Ac+2d<
variables with
c=2Nd=4:

o Subset of W;:
c+2d <57
o Subset of Ws: {}

© If one subset is W,:b<580A0<x<5A W,:b<760Ax2-2
empty, generalize the c+2d<57
candidate to the
other subset:
c+2d <57.

The TRACER-X System 14/29

WP Interpolation Example 2 (pointers and elements)

@ When generalizing,
arrays candidates

should be chosen inta[l100]Ap=a+7 A
and generalized *p=0A*a+6=5
carefully:

@ Candidate:
int a[100jAp=a+7 X>0 X<0

Axp=0Axa+6=>5
@ Generalization:

int a[100] A W,: p <a+ 1000 W,: *p==0
p < a+100Axp==0
A*xa+6=>5

Note that the generalization of p does not include p = a+ 6.

The TRACER-X System 15/29

Memory Bounds Interpolation

(0

(0) p=malloc(b) |
(1) if (...) then (1)py = malloc(5)
p1 <pPp+4Apr <po+3
p++ Py =po +1 _ s
else 1= Pot
p+ = 2 (2)C = *pPy w- - - subsumed (2)
endif PSPt
Py <po+5 Py > po+5
(2) c==xp
infeasible

The TRACER-X System 16/29

Interpolation: Symbolic Heap

#define MAX 18
n = input(); // getting a symbolic input

X = malloc(l); *x = n;

for (int i = 0; i < MAX; i++) {
if (*) { y = malloc(l); »xy = *x+1; }
else { vy = malloc(l); xy = =xx+1; }

X =Yy

@ malloc () is nondeterministic, but enjoys separation
@ Branches (essentially) identical
@ Times out using KLEE and LLBMC (30 mins)

@ Exponential running time for both KLEE and LLBMC (and
potentially Veritesting)

The TRACER-X System 17/29

Is (B) Subsumed by (A)?

x=malloc(1l);
*X=N;

l n=input () ;

nw— ng, 1024 — ngy

y=malloc (1) ;

*y=xx+1;

X=Y;

1024 — ny, 2048 — ng + 1 1024 — ngy, 3072 — ny + 1

N+ Ny, x — 2048, y — 2048 ns ng, x — 3072, y — 3072
(A) (B)

In dynamic symbolic execution and even LLBMC, different
concrete values are returned by each malloc call (satisfies
separation)

— both states cannot be matched

The TRACER-X System

Is (B) Subsumed by (A)?

x=malloc(1l);
*X=N;

l n=input () ;

ne ng,X +— Ny

y=malloc (1) ; y=malloc (1) ;
*y=+xx+1; *y=xx+1;
X=y; X=Yi
Xo — Mo, Y1 — No + 1 Xo — Mo, Zy — ng + 1
ne— No, X +— Y1,y — W ne— No, X — 21,y — Z3
(A) (B)

Our approach:

@ We regard dynamically-allocated addresses symbolically:
1024 = xp, 2048 = yy, 3072 = z.

@ Matching: (y4,21) — subsumption holds!

The TRACER-X System

Symbolic Heap Interpolation of TRACER-X

N—=NgAX+—Z{ ANy 24

5 Xo— N Ayi— ng+ 1A
U no maxey Ay ey

321.(xo»—>n0/\z1h>n0+1/\)>:

Existentials: z;, y; : some addresses dynamically allocated
Problem: Prove subsumption by eliminating existentials

— SMT solvers are weak in solving quantified formulas

@ General problem is NP-Complete or harder (conjecture)
@ Must use specialized quantifier elimination techniques

The TRACER-X System 20/29

Symbolic Heap Interpolation of TRACER-X

Xo—> Mo ANzy — ng+ 1A =3 Xo—> Mg Ays— ng+ 1A
Ni—=NMNAX—Z{ ANy — Z N\ NN AX = YiAY = Y

Xo— NgANZy— ng+ 1A ': Xo— NgAzy— ng+ 1A
N—nNAX+—Zi ANy Z N—nNgAX—Zi ANy — Z

Procedure:

@ Unquantify antecedent variables: z; becomes free

@ Elimination done by traversal from global/local variables and
finding matching substitutions that would work. In our case,
[z1/y1], replacing existentially-quantified y; with free z;.

© Solve subsumption using SMT solver via entailment without
quantification.

© In general, compute data structure homomorphisms for
quantifier elimination
(In general, intractable, but often easy.)

The TRACER-X System 21/29

COREUTILS Results 1 (Complete Runs)

Figure: (Both TRACER-X and KLEE Finish Execution)

KLEE vs. TRACER-X - Analysis Time
@ KLEETime(s) @ TXTime(s)

300 257.86

200

Benchmark

The TRACER-X System 22/29

COREUTILS Results 2 (Complete Runs)

Table: (TRACER-X Finishes Execution but KLEE does not Finish)

KLEE (TIMEOUT: 3600 S) TRACER-X

Benchmark LOC # 7 £ S 7 E F i

base64 401 0 0 2115667 3327.7 0 0 294256 20551
cat 339 1 2761 2729703 1824.5 1 45546 127526 14128
chcon 604 0 0 1663596 1927.5 0 0 221628 15722
chgrp 612 0 0 778227 2461.7 0 0 150836 34330
comm 255 0 0 1860052 27481 0 0 67496 39677
df 547 2 2108 13114 900.7 2 1456 1531 2321
dircolors 241 0 0 1824002 3366.0 0 0 115004 7883
env 286 0 0 1846675 63.1 0 0 5078 3124
fold 98 0 0 1959113 1292.3 0 0 46899 49494
head 482 1 4 1950422 2438.4 1 3 6323 3375
hostid 175 0 0 2107218 3494.4 1 1 332198 19060
hostname 180 0 0 2323263 968.4 0 0 116020 7876
In 497 0 0 578519 3064.2 0 0 145226 16363
logname 181 0 0 2125296 3018.7 0 0 315266 18633
mkdir 237 0 0 902244 1964.6 0 0 53072 35288
mkfifo 206 0 0 906846 1930.6 1 4 52775 35516
mknod 597 2 155 2519413 3300.7 2 2 243958 15422
mktemp 650 0 0 2448222 3131.1 0 0 278334 9539
nice 238 0 0 2372168 215.4 0 0 16973 1963

RACER-X System

COREUTILS Results 3 (Complete Runs)

Table: (TRACER-X Finishes Execution but KLEE does not Finish)

KLEE (TIMEOUT: 3600 S TRACER-X

Benchmark | LOC #ERR(#EP #PE:‘-’ Time () #ERR _ #EP #SP #PEP |
nl 1293 0 0 2039298 1527.9 0 0 15508 37601
nohup 209 0 0 832849 23515 0 0 86765 26321
paste 135 0 0 1760657 7547 0 0 1392 40251
pinky 514 0 0 461789 7759 0 0 7609 1255
pr 598 0 0 528712 3009 0 0 1241 7436
printf 553 0 0 2065362 2736.7 0 0 177617 22781
readlink 301 0 0 3076444 38 0 0 1925 244
™ 656 0 0 1330799 341.9 0 0 33313 30590
rmdir 180 0 0 765438 21741 0 0 43524 39515
setuidgid 290 0 0 1124960 1578.9 0 0 38662 14778
shred a72 0 0 22206 3971 0 0 0 27
sleep 204 0 0 926939 17786 0 0 61065 41583
tee 88 0 0 2000807 67.9 0 0 1058 2989
tty 176 0 0 1564733 7760.6 0 0 1116 22012
unlink 177 0 0 1596777 970.7 0 0 115903 7899
who 749 0 0 2903432 9093 0 0 1211 21137
whoami 183 0 0 2106260 3164.8 0 0 325344 18620

RACER-X System

COREUTILS Results 4 (INCOMPLETE Runs)

KLEE vs. TRACER-X - Branch Coverage

KLEE vs. TRACER-X - Instruction Coverage

W TRACERX W KLEE

B TRACER-X W KLEE

100

75

Note our good performance on coverage.

The TRACER-X System 25/29

Current Directions: Testing

@ Modified Condition/Decision Coverage (MC/DC): A
minimal set of test-cases needed to ensure the safety

@ DSE-based approaches: Unguided search for test-cases

@ Cannot prove test-case non-existence (not fully traversed
SET)

@ TRACER-X Approach:
@ Guided search to find a path reaching a target test-case

@ Proving non-existence of a test-case if not found in the end
of search

The TRACER-X System 26/29

Current Directions: Incremental Quantitative Analysis

@ Quantitative Analysis: Ensure safety of non-functional
features in embedded systems and loT

@ Exact Methods: Not Scalable
@ Abstraction-based methods: Scalable but Inaccurate

@ TRACER-X Approach:
@ Given an upper and lower-bound check the mid-point
@ If safe: Decrease the upper-bound to the mid-point

@ |f counter-example found: Increase the lower-bound
(unavailable for abstraction-based analyses)

@ progressively increasing certified accuracy
@ Stop-any-time
@ Dynamic Resource Cost Model

The TRACER-X System 27/29

Current Directions: Combinatorial Optimization (COP)

@ COP is widely applicable in Al
@ A good solution is usually good enough

@ Traditional methods: Mathematical Programming &
Constraint Programming

@ TRACER-X Approach:
@ Run TRACER-X on a program that check a given solution

@ Maintain lower and upper-bounds (similar to Quantitative
Analysis)
@ Use Interpolation and Symmetry to prune

@ progressively walking towards optimal solution
@ Stop-any-time

The TRACER-X System 28/29

Conclusion

@ TRACER-X:
@ Website: http://www.comp.nus.edu.sg/~tracerx
@ Github: https://github.com/tracer-x/

@ (with Unsat-Core & some Weakest-Precondition
interpolation)

The TRACER-X System 29/29

http://www.comp.nus.edu.sg/~tracerx
https://github.com/tracer-x/

