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Motivation

« Symbolic execution and fuzzing - insufficient coverage =>

vulnerabilities not discovered
 |dea - Analyze individual functions (C programs) for vulnerabilities
* Do reachability analysis for vulnerabilities using symbolic execution

» But what about path explosion?



Targeted symbolic execution

 To tackle path-explosion
« Set targets (function entry points or vulnerable instructions in
functions)

* Terminate states that do not reach targets-of-interest



Sonar-search

* Implementation of targeted-search in KLEE — KLEE22
« Target may be function-call, function-return, LLVM bb or klee assert
* Nested searcher

* nurs:covnew when target is reached
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Sonar-search

Three cases for sonar-
search to consider
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Compositional symbolic

execution with Macke



Real-life programs too big
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Symbolic execution of isolated functions
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Symbolic execution of isolated functions
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Summarization of vulnerability as PC (or pc solution)
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Sonar-search to vulnerable functions
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Macke - Results

MACKE only both KLEE only

Program
bc 1.06 5 0 0
bison 3.0.4 1 0 0
bzip2 1.0.6 0 0 0
coreutils 6.10 24 28 0
coreutils 8.25 34 4 0
diff 3.4 0 1 0
flex 2.6.0 0 0 0
flex SIR 2 3 0
goahead 3.6.3 0 0 0
grep 2.25 0 0 0
grep SIR 0 2 0
iq 1.5 0 0 0
less 481 0 1 0
1z4 r131 0 1 0
ngircd 23 1 0 0
sed 4.2.2 0 0 0
tar 1.29 0 1 0
zopfli 1.0.1 0 0 0
in total 67 41 0
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Increasing function

coverage with Munch



Symbolic execution vs. Fuzzing

» Path explosion and constraint solver in symbolic execution -> Low
path coverage in “"deep” parts of program

* Weak input (mutation) strategy with fuzzing -> Low path coverage
everywhere.

* |dea: Greybox fuzzing (symbolic execution + fuzzing)
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Munch - Greybox Fuzzer for Function Coverage

FS hybrid SF hybrid
* Fuzzing for limited time » Symbolic execution (KLEE
. . default strategy) for limited
* List uncovered functions

time
. fSonqr—search to uncovered - Fuzzing with seed inputs
unctions generated by KLEE
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Munch - Results

* 9 C-programs (<€ Macke)

Technique

Munch FS

Munch SF

Symbolic
execution

Fuzzing

~ 2 hours

2 hours

5 hours

5 hours
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Munch - Results
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Munch - Results
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Conclusion

« Sonar-search (KLEE22) for targeted symbolic
execution

* Two use-cases of sonar-search
« Compositional analysis of C programs
* Greybox fuzzing to increase function coverage

« Compositional analysis performs better in terms of
vulnerability discovery than symbolic execution

* Greybox fuzzing performs better in terms of function
coverage, than symbolic execution or blackbox

fuzzing.
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