KLEE’s Sonar-Search

Reviewing in the context of Greybox Fuzzing

Saahil Ognawala, Alexander Pretschner, Thomas Hutzelmann,

Eirini Psallida, Ricardo Nales

Technical University of Munich, Germany




Agenda ‘

Sonar-search

‘.-.)' W LA
o

Compositional Greybox
analysis Fuzzing




Motivation

« Symbolic execution and fuzzing - insufficient coverage =>

vulnerabilities not discovered
 |dea - Analyze individual functions (C programs) for vulnerabilities
* Do reachability analysis for vulnerabilities using symbolic execution

» But what about path explosion?



Targeted symbolic execution

 To tackle path-explosion
« Set targets (function entry points or vulnerable instructions in
functions)

* Terminate states that do not reach targets-of-interest



Sonar-search

* Implementation of targeted-search in KLEE — KLEE22
« Target may be function-call, function-return, LLVM bb or klee assert
* Nested searcher

* nurs:covnew when target is reached



TUTI

Sonar-search

Three cases for sonar-
search to consider




Sonar-search




Sonar-search




Sonar-search




Compositional symbolic

execution with Macke



Real-life programs too big

N
o0
A

oo

Partial call-graph of Grep 2.25

©

11



Symbolic execution of isolated functions

AN 4

Nt

closur dfaerr
e or

Partial call-graph of Grep 2.25
12



Symbolic execution of isolated functions

AN 4

Nt

closur dfaerr
e or

5
Vulnerability @
here

v

Partial call-graph of Grep 2.25
13



TUTI

Summarization of vulnerability as PC (or pc solution)

N/
Q@ O
-1

Partial call-graph of Grep 2.25

14



Sonar-search to vulnerable functions

A/ﬂ
closur dfaerr
e or

15



Macke - Results

MACKE only both KLEE only

Program
bc 1.06 5 0 0
bison 3.0.4 1 0 0
bzip2 1.0.6 0 0 0
coreutils 6.10 24 28 0
coreutils 8.25 34 4 0
diff 3.4 0 1 0
flex 2.6.0 0 0 0
flex SIR 2 3 0
goahead 3.6.3 0 0 0
grep 2.25 0 0 0
grep SIR 0 2 0
iq 1.5 0 0 0
less 481 0 1 0
1z4 r131 0 1 0
ngircd 23 1 0 0
sed 4.2.2 0 0 0
tar 1.29 0 1 0
zopfli 1.0.1 0 0 0
in total 67 41 0

16



Increasing function

coverage with Munch



Symbolic execution vs. Fuzzing

» Path explosion and constraint solver in symbolic execution -> Low
path coverage in “"deep” parts of program

* Weak input (mutation) strategy with fuzzing -> Low path coverage
everywhere.

* |dea: Greybox fuzzing (symbolic execution + fuzzing)

18



TUTI

Munch - Greybox Fuzzer for Function Coverage

FS hybrid SF hybrid
* Fuzzing for limited time » Symbolic execution (KLEE
. . default strategy) for limited
* List uncovered functions

time
. fSonqr—search to uncovered - Fuzzing with seed inputs
unctions generated by KLEE

19



Munch - Results

* 9 C-programs (<€ Macke)

Technique

Munch FS

Munch SF

Symbolic
execution

Fuzzing

~ 2 hours

2 hours

5 hours

5 hours

20



Munch - Results

70
52,5
35

17,5

FS

B Average function coverage (%)

SF

Fuzzing

Symex

21



Munch - Results

3 NS

100
9

gg 75
(q0]
(-
S

o 50
O
C
3

o 25
O
C
>
LL

0

0

O Symex

6 9
Call-graph depth

Fuzzing © Munch SF © Munch FS

22

12



Conclusion

« Sonar-search (KLEE22) for targeted symbolic
execution

* Two use-cases of sonar-search
« Compositional analysis of C programs
* Greybox fuzzing to increase function coverage

« Compositional analysis performs better in terms of
vulnerability discovery than symbolic execution

* Greybox fuzzing performs better in terms of function
coverage, than symbolic execution or blackbox

fuzzing.




References

 Ognawala, S., Ochoa, M. et al. "MACKE: Compositional analysis of low-level
vulnerabilities with symbolic execution." Automated Software Engineering (ASE), 2016

e https://github.com/tum-i22/macke

 Ognawala, S., Hutzelmann, T. et al. "Improving Function Coverage with Munch: A
Hybrid Fuzzing and Directed Symbolic Execution Approach." Symposium for Applied
Computing (ACM SAC), 2018

* https://github.com/tum-i22/munch
« KLEE22 with Sonar-search - https://github.com/tum-i22/klee22 (branch “sonar”)

« Severity assessment tool - https://vmpretschner18.informatik.tu-muenchen.de/

« oghawala@in.tum.de

24


https://github.com/tum-i22/macke
https://github.com/tum-i22/munch
https://github.com/tum-i22/klee22
https://vmpretschner18.informatik.tu-muenchen.de/
mailto:ognawala@in.tum.de

