
LEVERAGING SYMBOLIC EXECUTION  
TO REPRODUCE FIELD FAILURES  

AND MIMIC USER BEHAVIOR

Partially supported by: NSF, IBM, MSR, and Google

Alessandro (Alex) Orso
School of Computer Science  

College of Computing
Georgia Institute of Technology

LEVERAGING SYMBOLIC EXECUTION  
TO REPRODUCE FIELD FAILURES  

AND MIMIC USER BEHAVIOR

Partially supported by: NSF, IBM, MSR, and Google

Alessandro (Alex) Orso
School of Computer Science  

College of Computing
Georgia Institute of Technology

Software Engineering
Static/Dynamic Program Analysis, Software Testing, Security

LEVERAGING SYMBOLIC EXECUTION  
TO REPRODUCE FIELD FAILURES  

AND MIMIC USER BEHAVIOR

Partially supported by: NSF, IBM, MSR, and Google

Alessandro (Alex) Orso
School of Computer Science  

College of Computing
Georgia Institute of Technology

Software Engineering
Static/Dynamic Program Analysis, Software Testing, Security

Field failures are

unavoidable!

TYPICAL DEBUGGING PROCESS

Bug
repository

Very hard to
(1) reproduce
(2) debug

TYPICAL DEBUGGING PROCESS

Bug
repository

Very hard to
(1) reproduce
(2) debug

Survey of Apache, Eclipse, and Mozilla developers:

Information on how to reproduce field failures is the most
valuable, and difficult to obtain, piece of information for
investigating such failures.
[Zimmermann10]

TYPICAL DEBUGGING PROCESS

Bug
repository

Very hard to
(1) reproduce
(2) debug

Survey of Apache, Eclipse, and Mozilla developers:

Information on how to reproduce field failures is the most
valuable, and difficult to obtain, piece of information for
investigating such failures.
[Zimmermann10]

OVERARCHING GOAL: help developers
(1) investigate field failures,
(2) understand their causes,
(3) eliminate such causes,  
(4) prevent future failures

OUR WORK SO FAR
Recording and replaying executions 
[icsm 2007, icse 2007]

Input anonymization
[icse 2011]

Input minimization
[woda 2006, icse 2007]

✘

Mimicking & explaining field failures
[icse '12, issta '12, issta '13, ase '13, ase '14, icst ’14, hvc ’16]

Mimicking user behavior  
[in progress]

OUR WORK SO FAR
Recording and replaying executions 
[icsm 2007, icse 2007]

Input anonymization
[icse 2011]

Input minimization
[woda 2006, icse 2007]

✘

Mimicking & explaining field failures
[icse '12, issta '12, issta '13, ase '13, ase '14, icst ’14, hvc ’16]

Mimicking user behavior  
[in progress]

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Done

BUGREDUX

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

In house In the field

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

Done

MIMICKING FIELD FAILURES
User run (R) Mimicked run (R’)

•F’ is analogous to F
•R’ is an actual execution

F F’in the field in house

MIMICKING FIELD FAILURES
User run (R) Relevant events  

(breadcrumbs)
Mimicked run (R’)

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

BUGREDUX

Crash report
(execution data)

Synthesized
Executions

BUGREDUX

Crash report
(execution data)

BUGREDUX

Test input

Crash report
(execution data)

Oracle

Candidate 
input

Input
generator

• Execution data 
 
 

• Input generation technique

• Point of failure (POF)
• Failure call stack
• Call sequence
• Complete trace

• Guided symbolic execution
• Search-based input generation

Test input

BUGREDUX

SYMBOLIC EXECUTION

foo (x, y) {
 if(x > y) {
 z = x + y;
 if(z > 10)
 assert false;
}
print(“OK”);

Normal execution:
 Input: x=4, y=3
 Outcome: “OK”

Symbolic execution:
 Input: x=x0, y=y0

 Outcome:

SS: x=x0, y=y0

PC: true
SS: x=x0, y=y0

PC: x0 > y0

SS: x=x0, y=y0, z=x0+y0

PC: x0 > y0

SS: x=x0, y=y0, z=x0+y0

PC: x0 > y0 ∧ x0+y0>10

Symbolic execution:
 Input: x=x0, y=y0

 Outcome:
 failure
 PC: x0 > y0 ∧  
 x0 + y0 > 10

x0 = 7 
y0 = 4   solver

Input  
 icfg for P 
 goals (list of code locations)
Output  
 If (candidate input)
 
Main algorithm  
init; currGoal = first(goals) 
repeat 
 currState = SelNextState() 
 if (!currState) backtrack or fail  
 if (currState.cl == currGoal) 
 if (currGoal == last(goals)) 
 return solve(currState.pc) 
 else  
 currGoal = next(goals)  
 currState.goal = currGoal  
 SymbolicallyExecute(currState)

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}

SelNextState  
minDis = ∞ 
retState = null 
 
foreach state in statesSet 
 if (state.goal = currGoal) 
 if (state.cl can reach currGoal) 
 d = |shortest path state.cl, currGoal|  
 if d < minDis  
 minDis = d  
 retState = state  
return retState

Input  
 icfg for P 
 goals (list of code locations)
Output  
 If (candidate input)
 
Main algorithm  
init; currGoal = first(goals) 
repeat 
 currState = SelNextState() 
 if (!currState) backtrack or fail  
 if (currState.cl == currGoal) 
 if (currGoal == last(goals)) 
 return solve(currState.pc) 
 else  
 currGoal = next(goals)  
 currState.goal = currGoal  
 SymbolicallyExecute(currState)

ALGORITHM (SIMPLIFIED)

statesSet= {<cl, pc, ss, goal>}

SelNextState  
minDis = ∞ 
retState = null 
 
foreach state in statesSet 
 if (state.goal = currGoal) 
 if (state.cl can reach currGoal) 
 d = |shortest path state.cl, currGoal|  
 if d < minDis  
 minDis = d  
 retState = state  
return retState

Optimizations/Heuristics 

Dynamic tainting to reduce the symbolic input space 

Program analysis information to prune the search space 

Some randomness in the shortest path computation  

EMPIRICAL EVALUATION – RESEARCH QUESTIONS

• RQ1: 
Can BugRedux synthesize executions that are able to
reproduce field failures?

• RQ2: 
If so, which types of execution data provide the best cost-
benefit tradeoffs?

• In addition, we gathered performance data

EMPIRICAL EVALUATION – BUGREDUX TOOL
• Tool

Instrumenter

Analyzer

BugRedux

LLVM

Input
Generator

KLEE
Oracle

(perl scripts)

Field data options:
• POF
• Call Stacks
• Call Sequence
• Complete Traces

Oracle:
• inputs P, If, crash report C
• runs P(If), logs any crash C’
• returns fail if no C’ or C’ != C
• returns success otherwise

• Publicly available: 
http://www.cc.gatech.edu/~orso/software/bugredux.html

Easily 
customizable!

http://www.cc.gatech.edu/~orso/

EMPIRICAL EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1

EMPIRICAL EVALUATION – FAILURES CONSIDERED
Name Repository Size(KLOC) # Faults

sed SIR 14 2
grep SIR 10 1
gzip SIR 5 2

ncompress BugBench 2 1
polymorph BugBench 1 1

aeon exploit-db 3 1
glftpd exploit-db 6 1
htget exploit-db 3 1
socat exploit-db 35 1
tipxd exploit-db 7 1
aspell exploit-db 0.5 1
exim exploit-db 241 1
rsync exploit-db 67 1
xmail exploit-db 1 1

None of these faults can be discovered by  

a vanilla KLEE with a timeout of 72 hours

Only crashing bugs

EMPIRICAL EVALUATION – PROTOCOL

For each program P, fault f, and test case t that reveals f

1. While recording time and size of execution data
a. Run t against P
b. Run t against P instrumented to collect call sequences
c. Run t against P instrumented to collect complete traces 

2. Run BugRedux with a timeout of 24 hours using POF, call
stack, call sequence, and complete trace as execution data
a. Record whether a candidate If is produced
b. Record whether If can reproduce the failure  

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1
sed #2
grep

gzip #1
gzip #2

ncompress
polymorph

aeon
rsync
glftpd
htget
socat
tipxd
aspell
xmail
exim

One of three outcomes:
✘: fail
～: synthesize 
✔: (synthesize and) mimic

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synthesize: 9/16 
Mimic: 6/16

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synthesize: 10/16 
Mimic: 6/16

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synthesize: 16/16 
Mimic: 16/16

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synthesize: 2/16 
Mimic: 2/16

EMPIRICAL EVALUATION – RESULTS
Name POF Call Stack Call Seq. Compl.

Tracesed #1 ✘ ✘ ✔ ✘

sed #2 ✘ ✘ ✔ ✘

grep ✘ ～ ✔ ✘

gzip #1 ✔ ✔ ✔ ✘

gzip #2 ～ ～ ✔ ✘

ncompress ✔ ✔ ✔ ✘

polymorph ✔ ✔ ✔ ✘

aeon ✔ ✔ ✔ ✔

rsync ✘ ✘ ✔ ✘

glftpd ✔ ✔ ✔ ✘

htget ～ ～ ✔ ✘

socat ✘ ✘ ✔ ✘

tipxd ✔ ✔ ✔ ✘

aspell ～ ～ ✔ ✘

xmail ✘ ✘ ✔ ✘

exim ✘ ✘ ✔ ✔

Synthesize: 2/16 
Mimic: 2/16

•Divergence due  

 to lib modeling

•Limitations of  
 constraint solver

EMPIRICAL EVALUATION – DISCUSSION
• RQ1  

Can BugRedux synthesize executions that are able to reproduce field
failures? 
YES

• RQ2  
If so, which types of execution data provide the best cost-benefit
tradeoffs? 
Call sequences

• Observations
• [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
• More information may not be always better
• Call sequences work well, but provide a great deal of information
• BugRedux can generate multiple mimicked executions (pass & fail)

EMPIRICAL EVALUATION – DISCUSSION
• RQ1  

Can BugRedux synthesize executions that are able to reproduce field
failures? 
YES

• RQ2  
If so, which types of execution data provide the best cost-benefit
tradeoffs? 
Call sequences

• Observations
• [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
• More information may not be always better
• Call sequences work well, but provide a great deal of information
• BugRedux can generate multiple mimicked executions (pass & fail)

Performance: 
Average overhead for call-sequence collection: 15%  
(unoptimized implementation)

EMPIRICAL EVALUATION – DISCUSSION
• RQ1  

Can BugRedux synthesize executions that are able to reproduce field
failures? 
YES

• RQ2  
If so, which types of execution data provide the best cost-benefit
tradeoffs? 
Call sequences

• Observations
• [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
• More information may not be always better
• Call sequences work well, but provide a great deal of information
• BugRedux can generate multiple mimicked executions (pass & fail)

MINIMIZING CALL SEQUENCES
Relevant events  
(breadcrumbs)

Mimicked run

MINIMIZING CALL SEQUENCES
Relevant events  
(breadcrumbs)

Mimicked run

MINIMIZING CALL SEQUENCES
Relevant events  
(breadcrumbs)

Mimicked run

Mini study
• for each entry e

• remove e from sequence
• if BugRedux “ generates

a failure” ➡ continue
• else add back e

MINIMIZING CALL SEQUENCES – RESULTS
Name Original Length Minimal Length

sed.fault1 73 12
sed.fault2 146 7

grep 31 2
xmail 1142 363

gzip.fault2 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

MINIMIZING CALL SEQUENCES – RESULTS
Name Original Length Minimal Length

sed.fault1 73 12
sed.fault2 146 7

grep 31 2
xmail 1142 363

gzip.fault2 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

Summary

1. On average, only 16% of entries in the original call
sequence are required to reproduce the failures–in some
cases, as little as 2!

2. The number of entries needed increases with the
complexity of the input that triggers the faults. 

MINIMIZING CALL SEQUENCES – RESULTS
Name Original Length Minimal Length

sed.fault1 73 12
sed.fault2 146 7

grep 31 2
xmail 1142 363

gzip.fault2 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

Summary

1. On average, only 16% of entries in the original call
sequence are required to reproduce the failures–in some
cases, as little as 2!

2. The number of entries needed increases with the
complexity of the input that triggers the faults. 

Preliminary Conclusion

It seems possible to recreate observed failu
re with only

limited (and inexpensive to collect) in
formation

EMPIRICAL EVALUATION – DISCUSSION
• RQ1  

Can BugRedux synthesize executions that are able to reproduce field
failures? 
YES

• RQ2  
If so, which types of execution data provide the best cost-benefit
tradeoffs? 
Call sequences

• Observations
• [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
• More information may not be always better
• Call sequences work well, but provide a great deal of information
• BugRedux can generate multiple mimicked executions (pass & fail)

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Done

Done

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Done

Done

How can we leverage the reproduced failure for debugging? 

(1) We could simply report the relevant entries in the crash data

(2) We could use an existing fault localization approach

OVERALL VISION

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Done

Done

How can we leverage the reproduced failure for debugging? 

(1) We could simply report the relevant entries in the crash data

(2) We could use an existing fault localization approach

✘
✔

F3

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Done

Done
Execution
generator

(Guided symbolic
execution)

Synthesized
executions

Pass (f)

Fail (f)

Fault localizer

F3(Fault localization for Field Failures)

Synthesized
executions

Pass (f)

Fail (f)

GENERATING MULTIPLE EXECUTIONS

F’F’

...

F3

Crash report
(execution data)Synthesized

Executions
Field Failure
Reproduction

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

Execution
generator

(Guided symbolic
execution)

Synthesized
executions

Pass (f)

Fail (f)

Fault localizer

F3(Fault localization for Field Failures)

qq

EMPIRICAL STUDY

• RQ1: Can F3 synthesize multiple passing and failing
executions for a given set of crash data? 

• RQ2: Can F3 use these synthesized executions to perform
fault localization effectively?  

• RQ3: Do our optimizations actually improve the
effectiveness of fault localization and, if so, to what extent?  

Faults # Failing # Passing

exim 598 4

xmail 303 1001

sed.fault2 54 30

sed.fault1 1017 296

grep 567 137

aspell 134 10

htget 44 210

gzip.fault2 5 27

socat 46 5

rsync 156 2576

executions generated using original crash data
executions generated using reduced crash data
executions generated using an empty list

Synthesized
executions

Pass (f)

Fail (f)

GENERATED EXECUTIONS (RQ1)

Faults # Failing # Passing

exim 598 4

xmail 303 1001

sed.fault2 54 30

sed.fault1 1017 296

grep 567 137

aspell 134 10

htget 44 210

gzip.fault2 5 27

socat 46 5

rsync 156 2576

executions generated using original crash data
executions generated using reduced crash data
executions generated using an empty list

Synthesized
executions

Pass (f)

Fail (f)

GENERATED EXECUTIONS (RQ1)

RQ1: Can F3 synthesize multiple passing and failing
executions for a given set of crash data? 
Yes

Best Case

1

1

1

3

12

1

1

3

6

1

Faults
Ochiai+

Suspicious Entities Rank of Real Fault

exim 3 1

xmail 3 1

sed.fault2 11 1

sed.fault1 19 13

grep 72 12

aspell 0 / 45 NA / 1

htget 0 / 93 NA / 1

gzip.fault2 80 3

socat 14 11

rsync 28 6

FAULT LOCALIZATION RESULT (RQ2)

Best Case

1

1

1

3

12

1

1

3

6

1

Faults
Ochiai+

Suspicious Entities Rank of Real Fault

exim 3 1

xmail 3 1

sed.fault2 11 1

sed.fault1 19 13

grep 72 12

aspell 0 / 45 NA / 1

htget 0 / 93 NA / 1

gzip.fault2 80 3

socat 14 11

rsync 28 6

FAULT LOCALIZATION RESULT (RQ2)

Worst-case scenario

Best Case

1

1

1

3

12

1

1

3

6

1

Faults
Ochiai+

Suspicious Entities Rank of Real Fault

exim 3 1

xmail 3 1

sed.fault2 11 1

sed.fault1 19 13

grep 72 12

aspell 0 / 45 NA / 1

htget 0 / 93 NA / 1

gzip.fault2 80 3

socat 14 11

rsync 28 6

FAULT LOCALIZATION RESULT (RQ2)

Worst-case scenario

Best Case

1

1

1

3

12

1

1

3

6

1

Faults
Ochiai+

Suspicious Entities Rank of Real Fault

exim 3 1

xmail 3 1

sed.fault2 11 1

sed.fault1 19 13

grep 72 12

aspell 0 / 45 NA / 1

htget 0 / 93 NA / 1

gzip.fault2 80 3

socat 14 11

rsync 28 6

FAULT LOCALIZATION RESULT (RQ2)

Worst-case scenario

RQ2: Can F3 use these synthesized executions
to perform fault localization effectively?  
Top ranked for 5 faults, within 15 for
all others

CURRENT AND FUTURE WORK

Crash report
(execution data)

Field Failure
Reproduction

Synthesized
Executions

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field

CURRENT AND FUTURE WORK

Crash report
(execution data)

Field Failure
Reproduction

Synthesized
Executions

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the fieldTesting is rarely representative

Limited  
resources

Erroneous 
assumptions

Well-known but not well-studied problem

CURRENT AND FUTURE WORK

Crash report
(execution data)

Field Failure
Reproduction

Synthesized
Executions

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the fieldTesting is rarely representative

Limited  
resources

Erroneous 
assumptions

Well-known but not well-studied problemNeed to bridge the gap between
field executions and in-house tests

CURRENT AND FUTURE WORK

Crash report
(execution data)

Field Failure
Reproduction

Synthesized
Executions

sed.c:8958 -> sed.c:
8958

sed.c:8993 -> sed.c:
9011

sed.c:8785 -> sed.c:
8786

sed.c:8786 -> sed.c:
8786

sed.c:990 -> sed.c:
990

Likely faults Field Failure
Debugging

Instrumentation
Software
developer Application

In house In the field
Two main steps

Software
developer ApplicationIn-house testing Field behavior

Software
developer ApplicationIn-house testing Field behavior

MIMICKING USER BEHAVIOR

Software
developer Application

In house In the fieldObserved
behaviors

Test suite

Instrumentation

Monitors for
unseen behaviors

Execution logsSynthesized  
executions

Execution  
synthesizer

Test case 
encoder/ 

anonymizer

New behaviors

MIMICKING USER BEHAVIOR

Software
developer Application

In house In the fieldObserved
behaviors

Test suite

Instrumentation

Monitors for
unseen behaviors

Execution logsSynthesized  
executions

Execution  
synthesizer

Test case 
encoder/ 

anonymizer

New behaviorsPROJECT STATUS
• Behavioral difference detection  
 
 
 
 

• Execution synthesis

• String-enabled Klee  

• Local Symbolic Execution

TWO KLEE-RELATED BYPRODUCTS

CONCLUSION

CONCLUSION

META CONCLUSION

Release your

software!

https://www.cc.gatech.edu/~orso/

https://www.cc.gatech.edu/~orso/

