LEVERAGING SYMBOLIC EXECUTION
TO REPRODUCE FIELD FAILURES
AND MIMIC USER BEHAVIOR

Alessandro (Alex) Orso

School of Computer Science
College of Computing
Georgia Institute of Technology

Partially supported by: NSF, IBM, MSR, and Google

Software Engineering
Static/Dynamic Program Analysis, Software Testing, Security

Alessandro (Alex) Orso
School of Computer Science

College of Computing
Georgia Institute of Technology

Partially supported by: NSF, IBM, MSR, and Google

An unexpected error has occurred.
Please quit and reopen Keynote.

Software
Static/Dyn:

&

Security

Alessandro (Alex) Orso
School of Computer Science
College of Computing
Georgia Institute of Technology

Partially supported by: NSF, IBM, MSR, and Google

Window Help W ™ & - <) B} &F83% Mon435PM Q

i

® Mail File Edit View Mailbox Message Format

‘ All Mail — alex@gmail (164376 messages, 1182 unread)

> ™ e From - - _S:b)ect
Problem Report for Keynote

Keynote quit unexpectedly.

Click “Send to Apple" to submit the report to Apple. This information is collected anonymously.

Comments

{ ’ ctonc r
[y eps

Problem Details and System Configuration

Process: Keynote [7016)

Path: /Applications/iWork '09/Keynote.app/Contents/Mac0S/Keynote
Identifier: com.apple.iWork.Keynote

Version: 5.1 (1018)

Build Info: Keynote~10180000~1

Code Type: X86 (Native)

Parent Process: launchd [185)

Date/Time: 2011-08-16 16:14:42.961 +0530
0S Version: Mac 0S X 10.6.8 (18K549)
Report Version: 6

Interval Since Last Report: 673669 sec

Crashes Since Last Report: 6

Per-App Interval Since Last Report: 170458 sec

Per-App Crashes Since Last Report: 1

Anonymous UUID: FBFFCBA4-DEFB-43D1-86DF-4ES512E5DAESE

Exception Type: EXC_BREAKPOINT (SIGTRAP)
Exception Codes: 0x@002000000002002, 2x02Q0220000020000
Crashed Thread: © Dispatch queue: com.apple.main-thread

Annlicatsinn CSnacificr Tnfarmatinn:

Hide Details " Don'tSend) [SendtoApple)

@ Mail File Edit View Mailbox Message Format Window Help W ™ 8 - <) B} &F83% Mon435PM Q

.) SNO ‘ ‘ All Mail — alex@gmail (16437-6 messages, 1182 unread)

Re

MAILBOXES ¢ ® e From . Subject
Problem Report for Keynote

Keynote quit unexpectedly.

Click “Send to Apple" to submit the report to Apple. This information is collected anonymously.

Comments

r ctens r
Any PS5

Problem Details and System Configur=*

Process: Keynots "~
Path:
Idents ¢

-D6FB-43D1-86DF-4E512ESDAESE

SIGTRAP)
_ 0000002, OxPORPRRDPRARDORRRRY
_. inread: Dispatch queue: com.apple.main-thread

Annlicratinn Snacificr Tnfarmatinn:

Hide Details " Don'tSend (Send to Apple)

TYPICAL DEBUGGING PROCESS

Very hard to

(1) reproduce
(2) debug

—

TYPICAL DEBUGGING PROCESS

Kevnote auit unexoectedy.

S el e
PP \ /
P - 4 /
~ \
4 \\,
.| Kevnote it unexcectody.) o 0
v LA &
5 P - 3 o
g |
| Kevnote aut unexoectsdh. il
) D
.| Keyrote qut unexpectedly. L £H
ok Send 1 B st er £ A This forstion il sy 4

o Survey of Apache, Eclipse, and Mozilla developers: 3

Information on how to reproduce field failures is the most g

valuable, and difficult to obtain, piece of information for

investigating such failures.
[Zimmermann | O]

L ———————— B | ile
(1) reproduce
(2) debug

———

TYPICAL DEBUGGING PROCESS

S et -
. \ /
AF° N
) f!‘ g
.................... 3

Keynote .
v - 2 N

P 0y

N Kevnote auit unexoectediy. » 3 o
eyn — g
5 Kevnote aut unexoectedv. il
>
y Keynote quit unexpectedly. .

.| OVERARCHING GOAL: help developers 3
(1) investigate field failures, %

(2) understand their causes,
(3) eliminate such causes,
(4) prevent future failures

o

(1) reproduce

(2) debug

—————

OUR WORK 5O FAR

Recording and replaying executions
[icsm 2007, icse 2007]

Input minimization
[woda 2006, icse 2007]

Input anonymization
[icse 201 1]

Mimicking & explaining field failures

[icse "2, issta '12,issta '13,ase 'l 3,ase '14,icst ’14, hvc ’16]

Mimicking user behavior

[in progress]

OUR WORK 5O FAR

@Q, Mimicking & explaining field failures

[icse "2, issta '12,issta '13,ase 'l 3,ase '14,icst ’14, hvc ’16]

Mimicking user behavior

[in progress]

OVERALL VISION

In house In the field

Software mﬁlfl L_l }

developer APplication Instrumentation

Likely faults Field Failure ~ Synthesized Field Failure Crash report
Debugging Executions Reproduction * (éxecution data)

In house

Software
developer

Likely faults Field Failure

OVERALL VISION

In the field

Application

Field Failure Crash report |
Reproduction * (éxecution data) |

§ Synthesized
{ Executions

Debugging

In house In the field

ﬁng
10gL 1
r

Application

Software
developer

Field Failure Crash report

Likely faults Field Failure § Synthesized | j
Debugging | I:%(ecutions Reproduction * (execution data) |

MIMICKING FIELD FAILURES

User run (R) Mimicked run (R?)

e[is analdgous to F
®R'Is an actual execution

in the field F* F’* In house

MIMICKING FIELD FAILURES

User run (R) Relevant events Mimicked run (R?)

(breadcrumbs)
o

BUGR

DUX

<

Synthesized

Field Failure Crash report
Executions Reproduction (execution data)

BUGR

w
-
X

g+

<F

Synthesized
Executions

Crash report
(execution data)

01:09 Action Al
01:09 Action A2
01:09 Action A3
01:09 Action Ad

01:09 Actio
01:09 Acti /

Test input

BUGR

g+

g ¢ —

Crash report
(execution data)

01:09 Action Al
01:09 Action A2
01:09 Action A3
01:09 Action Ad

01:09 Action
01:09 Actigll /

Test input

BUGR

01:09 Acti
01:09 Acti
cagll 01:09 Act
01:09 Acti

i

01:09 Acti

01:09 Action

on Al
A2
on A3
on Ad

Input
generator

 Execution data
Point of failure (POF)

Failure call stack

Call sequence

Complete trace

g+

it widagra u 1
g v, oty s 81

Crash report
(execution data)

e Input generation technique

Guided symbolic execution
Search-based input generation

SYMBOLIC EXECUTION

SS: x=X0, Y=Y0, Z=X0TY0
PC:x0> yo A xotyo>10

foo (x,Y) { Normal execution:
if(x >y) { Input: x=4, y=3
Z=X"tvy Outcome:"OK"
if(z> 10) .
|| Symbolic execution:
assert false; '
Input: x=xo, Y=Yo
} Out '
print("OK™); HHOME:
fallure
0=/ PC:x0> Yo A
yo = 4 @

xo+ yo> 10

ALGORIT

M (SIMPLIFIED)

Input

icfg for P

goals (list of code locations)
Output

lr (candidate input)

Main algorithm
init; currGoal = first(goals)
repeat
currState = SelNextState()
if (lcurrState) backtrack or fail
if (currState.cl == currGoal)
if (currGoal == last(goals))
return solve(currState.pc)
else
currGoal = next(goals)
currState.goal = currGoal

SymbolicallyExecute(currState)

statesSet= {<cl, pc, ss, goal>}

SelNextState
minDis = o0
retState = null

foreach state in statesSet
if (state.goal = currGoal)
if (state.cl can reach currGoal)
d = |shortest path state.cl, currGoal|
if d < minDis
minDis = d
retState = state
return retState

ALGORITHM (SIMPLIFIED)

Input
icfg for P
goals (list of code locations)
Output statesSet= {<cl, p¢, ss, goal>}‘
lr (candidate input)
Moi- -* . . euriStics
optimlzaﬂonS{h‘: Symbo“c '\ﬂput space
ing to reduce the search space

€.cl can reach currGoal)

wpc) d = |shortest path state.cl, currGoal|

else if d < minDis
currGoal = next(goals) minDis = d
currState.goal = currGoal retState = state

SymbolicallyExecute(currState) return retState

EMPIRICAL EVALUATION — RESEARCH QUESTIONS

- RQI:
Can BugRedux synthesize executions that are able to
reproduce field failures?

- RQ2:
If so, which types of execution data provide the best cost-
benefit tradeoffs?

» In addition, we gathered performance data

EMPIRICAL EVALUATION — BUGREDL X Trar

Easily

* Jool customizable!
BugRedux Field data optiofsT
| - POF
Call Stacks

Call Sequence

Instrumenter Complete Traces

Oracle:
inputs P If, crash report C

runs P(If), logs any crash C
returns fail if no C'or C'l1= C

returns success otherwise

.
Input —)
Generator Oracle

KLEE [(perl scripts)

Analyzer

- Publicly available:
http://www.cc.gatech.edu/~orso/software/bugredux.html

http://www.cc.gatech.edu/~orso/

EMPIRICAL EVALUATION — FAILURES CONSIDERED

Repository Size(KLOC) # Faults

sed SIR |4 2
orep SIR 10 |
o7Ip SIR S 2
NCOMPress BugBench 2 |
polymorph BugBench | |
aeon explort-db 3 |
olftpd explort-db 6 |
htget explort-db 3 |
socat explort-db 35 |
tipxd explort-db / |
aspell explort-db 0.5 |
exim explort-db 241 |
rsync explort-db 6/ |
xmall exploit-db | |

EMPIRICAL EVALUATION — FAILURES Only crashing bugs

Repository Size(KLOC)

sed SIR |4 2
orep SIR 10 |
o7Ip SIR S 2
NCOMPress BugBench 2 |
polymorph BugBench | |

aeon exploit-k covered by

giftpd None of these ‘C?U\ts ?r?\:cfu?\; 772 hours
htget 5 vanilla KLEE Vw‘// |
socat R 35 |
tipxd explort-db / |
aspell explort-db 0.5 |
exim explort-db 241 |
rsync explort-db 6/ |
xmall exploit-db | |

EMPIRICAL EVALUATION — PROTOCOL

For each program B fault f, and test case t that reveals

|. While recording time and size of execution data
a. Run t against P
b. Run t against P instrumented to collect call sequences
c. Run t against P instrumented to collect complete traces

2. Run BugRedux with a timeout of 24 hours using POF, call
stack, call sequence, and complete trace as execution data
a. Record whether a candidate lr Is produced
b. Record whether I can reproduce the failure

EMPIRICAL EVALUATION — RESULTS

Name POF Call Stack (oF 1| ILY-T. 8 Compl.
sed # |

sed #2

grep

gzip # |

ozIp #2

NCompress One of three outcomes:

olymorph .
A X: fail
aeon

rsync ~: synthesize

2litpd v (synthesize and) mimic

htget

socat

tipxd

aspell

xmall

exim

EMPIRICAL EVALUATION — RESULTS

Name POF

sed #2
grep
gzip #|
ozip #2
NCOMPpress
polymorph
aeon

olftpd
htget
socat
tipxd
aspell

xmall

rsync

exim

EMPIRICAL EVALUATION — RESULTS

Name Call Stack
sed # |
sed #2
grep
gzip #|
ozip #2
ncompress
polymorph
aeon
rsync
olftpd
htget
socat
tipxd
aspell
xmall

| sed#l
| sed#2
| gp#l
| ncompress
_polymorph |
| aeon
| royne
| gfipd
| socat |
| tpxd
| xmail
| exim |

exim

EMPIRICAL EVALUATION — RESULTS

Name
sed # |
sed #2
grep
gzip #|
ozip #2
ncompress
polymorph
aeon
rsync
olftpd
htget
socat
tipxd
aspell
xmall

exim

EMPIRICAL EVALUATION — RESULTS

Name
sed # |
sed #2
grep
gzip #|
ozip #2
ncompress
polymorph
aeon
rsync
olftpd
htget
socat
tipxd
aspell
xmall

exim

EMPIRICAL EVALUATION — RESULTS

Name Compl.

sed # |

sed #2

grep

gzip # |

ozip #2

NCOMPIESS

polymorph

Synthesize: 216

aeon

Mimic: 2/ 6

rsync

olftpd

e Divergence due

htget

o lib modeling

socat

tipxd o | jmitations of

aspell constraint solver

xmall

UIX[X|X|X[X|X|X|C[X|X|X|X]|X|X|x

exim

EMPIRICAL EVALUATION — DISCUSSION
- RQI

Can BugRedux synthesize executions that are able to reproduce field

fallures?
YES

- RQ2
If so, which types of execution data provide the best cost-benefit
tradeoffs?
Call sequences

 Observations
 [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
- More information may not be always better
(- Call sequences work well, but prowde a great ‘deal of information
{ + BugRedux can generate multiple mimicked executions (pass & fail) }

EMPIRICAL EVALUATION — DISCUSSION

- RQI

Can BugRedux synthesize executions that are able to reproduce field

fallures?
YES

- RQ2
If so, which types of execution data provide the best cost-benefit
tradeoffs?
Call sequences

° OL---._--A.S-..-

* Performance: ,
Average overhead for call-sequence collection: 5%
(unoptlmlzed implementation)

Bug edux can generate multlple m|m|c|<ed execu’uons Epass & fall)]

EMPIRICAL EVALUATION — DISCUSSION
- RQI

Can BugRedux synthesize executions that are able to reproduce field

fallures?
YES

- RQ2
If so, which types of execution data provide the best cost-benefit
tradeoffs?
Call sequences

 Observations
 [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
+ More information may not be always better
(‘Call sequences vvor|< vvell but prowde a great deal of mformaﬂon
BugRedux can generate mu tlp e mimicked executions. pass & fall

MINIMIZING CALL S

Relevant events Mimicked run

(breadcrumbs)
o

-QU

-NC

MINIMIZING CALL S

Relevant events Mimicked run
(breadcrumbs)
@
@
® @
® Q@

-QU

-NC

MINIMIZING CALL SEQUENCE

Relevant events Mimicked run

(breadcrumbs)
o

Mini study
e for each entry e
* remove e from sequence
e if BugRedux " generates
a fallure” = continue
* else add back e

T — T——

MINIMIZING CALL SEQUENCES — RESULTS

Name Original Length Minimal Length
sed.faultl 73 12
sed.tfault? 146 7

grep 31 2

xmail 1142 363

gzip.fault? 27 2
rysnc 23 2
aspell 516 256
socat 62 3
htget 25 2
exim 1029 326

MINIMIZING CALL SEQUENCES — RESULTS

Original Length Minimal Length

~~d Lo 111 70 1N
1

sSummary

—— |. On average, only |16% of entries in the original call —
sequence are required to reproduce the fallures—in some
¢ Cases,as ittle as 2!

2. The number of entries needed increases with the
complexity of the input that triggers the faults.

—— e

htget 25 2
exim 1029 326

MINIMIZING CALL SEQUENCES — RESULTS

I(ﬁ,\,.] L£...11s1 7N

| Onaverage,only '~ . ¢O% ‘
| sequence are .“‘“\0('1) 6@%3\\0/&&\00 €

¢ cases. >’ ?(e\\ 05"
i e

exim 1029 326

EMPIRICAL EVALUATION — DISCUSSION
- RQI

Can BugRedux synthesize executions that are able to reproduce field

fallures?
YES

- RQ2
If so, which types of execution data provide the best cost-benefit
tradeoffs?
Call sequences

 Observations
 [Manual examination] Faults can be distant from the failure points,

so POFs and call stacks are unlikely to help
« More information may not be always better
-+ Call seguences work well, but provide a great deal of information
i MBugRedux can generate multlle m|m|c|<ed execu’uons (ass & fa||)]

In house

Software
developer

i Likely faults

Application

OVERALL VISION

.dﬂfﬁ

Field Failure Synthesized : _
Reproduction

Debugging Executions {

In the field

Crash report
(execution data)

OVERALL VISION

In house In the field

a.f - e
o = v
Software .~

de

How can we leverage the reproduced failure for debugging?
(1) We could simply report the relevant entries in the crash data

(2) We could use an existing fault localization approach

sed.c:8786 -> sed.c: ~——] " ‘ . . .
8786 '] vy s)
sw.mg%g: - m D o .
Failure

{ Likely faults Field Failure ~ Synthesized § ' : Crash report
‘ Debugging Executions § Reproduction ' (execution data)

OVERALL VISION

In house In the field

ﬁng il e
gL g ow
Software .~

de

How can we leverage the reproduced failure for debugging?
x We could simply report the relevant entries in the crash data

V We could use an existing fault localization approach

sed.c:tﬂa!;s8 ;> sed.c: R -~ > _ ‘ ‘ . . '
Y g (Wit vh) ooy
sed.c:990 -> sed.c: . (% D o o
990 | e
. 3 b T
Failure

{ Likely faults Field Failure ~ Synthesized § : _ Crash report
' Debugging Executions § Reproduction ' (execution data)

In house
@0 g
1 1
K
Software —
developer Application

F3(Fault localization for Field Failures')r

.....................

Fault localizer

o |

01:09 Action Al
01:09 Action A2

01:09 Action A3

01:09 Action A4

01:09 Action
01:09 Acti

01:09 Action Al
01:09 Action A2
01:09 Action A3

01:09 Action A4 Execution
°‘f°““f;* generator
01:09 Acti . .
_ (Guided symbolic
Fail (f) execution)

Synthesized

executions

. O“e a .

‘

| foduction

In the field

Crash report
(execution data)

GENERATING MULTIPLE EXECUTIONS

K

In house
a.® ®
1 L
Software Applicati
developer APplication Instrumentation

3

In the field

F3(Fault localization for Field Failures')r |

.....................

Fault localizer

o |

01:09 Action Al

01:09 Action A2

01:09 Action A3
01:09 Action A4

01:09 Action
01:09 Acti

01:09 Action Al
01:09 Action A2
01:09 Action A3

01:09 Action A4 EXeCUtion -
o i : generator 4 T
)_. ./:: : (Guided symbolic | & i Fajlure Crash report
ai : . ‘ .
: xeodion roduction © (execution data)

Synthesized

executions

-MPIRICAL STUDY

RQI: Can P synthesize multiple passing and failing
executions for a given set of crash data?

RQ2: Can F3 use these synthesized executions to perform
fault localization effectively!?

GENERATE

D EXECUTIONS (RQ)

Failing # Passing
exim 598 { . o
xmail 303
sed.fault2 54
sed.faultl 1017
grep 567
aspell 134
htget 44
gzip.fault2 5
socat 46
rsync 156

executions generated using original crash data
executions generated using reduced crash data
executions generated using an empty list

GENERATED EXECUTIONS (RQ)

At faalling # Passing

exim 598 : o - —

xmail 303 ~ 100]
sed.fault2 54 i' 0

RQI: Can P synthesize multiple passing and failing
executions for a given set of crash data?

— Yes
1 — _
gzip.fault2 5 ' o
socat 46 ’ 5
rsync 156 2576

executions generated using original crash data
executions generated using reduced crash data
executions generated using an empty list

FAULT LOCALIZATION RESULT (RQ?2)

Ochiai+
Suspicious Entities Rank of Real Fault
exim 3 I
xmail 3 I
sed.fault2 Il I
sed.faultl 19 13
grep 72 12
aspell 0/45 NA /|
htget 0/93 NA /|
gzip.fault2 80 3
socat 14 I
rsync 28 6

FAULT LOCALIZATION RESULT (RQ?2)

Ochiai+
Suspicious Entities Rank of Real Fault
exim 3 I
xmail 3 I
sed.fault2 Il I
sed.faultl 19 13
grep 72 12
aspell 0/45 NA /|
htget 0/93 NA /|
gzip.fault2 80 3
socat 14 I
rsync 28 6

Worst-case scenario

FAULT LOCALIZATION RESULT (RQ?2)

Ochiai+
Best Case
Suspicious Entities Rank of Real Fault

exim 3 I I

xmail 3 I I
sed.fault2 | I I
sed.faultl 19 13 3

grep 72 12 12

aspell 0/45 NA /| I

htget 0/93 NA /| I
gzip.fault2 80 3 3

socat 14 I 6

rsync 28 6 I

Worst-case scenario

FAULT LOCALIZATION RESULT (RQ?2)

Ochiai+
Best Case
Suspicious Entities Rank of Real Fault
exim 3 I I
xmail 3 I I

dc__ 1A

RQ2: Can F3 use these synthesized executions

to perform fault localization effectively? -
| Top ranked for 5 faults, within 15 for ___

- all others 1
e ————————————————————————
socat |4 I 6
rsync 28 6 I

Worst-case scenario

CURRENT AN

In house

Software
developer

Likely faults

a,f

Q)

Application

Field Failure
Debugging

2

Synthesized

Instrumentation

O

Executions

Field Failure
Reproduction

D FUTURE WORK

In the field

Crash report
(execution data)

FII‘\I‘\I—L L= AN LI~ —1 L= ||—\|—\A_AN§

. lesting is rarely representative ..

Erroneous Limited
assumptions resources

Well-known but not well-studied problem

L\\ /

Debugging

FII‘\I‘\I—L L= AN LI~ —1 L= ||—\|—\A_AN§

Testing is rarely representative |.

-

Erroneous Limited
assumptions resources

Need to bridge the gap between
field executions and in-house tests

L\\ @)

Debugging

FII‘\I‘\I—L L= AN LI~ —i L= ||—\|—\A_1A_N§

Two main steps

(%

In-house testing ’ Field behavior

“'&
0L00L
> Ak A)

In-house testin Fi eId behavior
L\\ g | vio

Debugging Executions HEeproauction ~ (CATTUto ual

In h eld

0L00L
L0001

-

MIMICKING USER BEHAVIOR

Monitors for

In house Observed unseen behaviors . In the field
behaviors New behaviors

ﬁ % | © >

Software - '

developer A_ppl/catlcl)n Instrumentation

[T

LY
T e a
BT

Execution logs

01:09 Action Al
01:09 Action A2

0
0
0
0 0
0 0
0 0| 01:09 Action A3
0
0

01:09 Action A4

01:09 Action
==l 01:09 Acti

Test case |

encoder/ t

anonymizer =
-y

-

Synthesized Execution
executions synthesizer

MIMICKING USER BEHAVIOR
PROJECT STATUS

e Behavioral difference detection

v |
B [
‘
S dinninin 1 4
SIS
) a b
—
-)
i el oot e - Ta
¥ i rains
iomin = diacrpimia 1 4
'
T V18Lis oo 1S A Lbmoe '\/
S———"
—_— — — R

* Execution synthesis

O+

o

executions synthesizer €

TWQO KLEE-RELATE

 String-enabled Klee

D BYPRO

DUCTS

NAK = Z3str3

* Local Symbolic Execution

CONCLUSION

In house In the field

ﬂug

LI
0.
Software

developer Application

01001
1001
7 =
: Sc
\/\ de! In house In the field

Likely faults Field Failur

i 01001 ©
ey TTES | —
1

Software

developer Application Instrumentation
D) 88 Acsian Al |

In-i

Test case
encoder/
anonymizer =

Synthesized Execution Execution |
executions synthesizer ecution logs

R — e

CONCLUSION

In house In the field

a.f

"}
Software -
developer Application

-

In the field

Likely faults Fiel

R —
anonymizer = ' !

Synthesized Execution
executions synthesizer

Execution logs

R — B

TA CONCLUSION

BugRatux Homa BugReax F0 Nena BERT

BugRedux F3(Fault localization for Field Failures)

Overview: Overview:

BugRodux is general ramework for sspporing in house debugging of fioid faluros.
BugRedux 9 in the feld, mimic the
observed flekd falures. Out approach is based 01 SyTPEOIC BxecLon ardt has two key
aspects. Fiest, i1 #3568 ha AXACUTION G3LA f0M 1A Tic 10 kSanity A 56t Of INEFMAGIATA §OaR.
hat can guido the axioraton of the sokuson spaca. Sacond, 1 uses & heuristic based on
ditance t soloat which 22atas to oonsider st when ¥ying to reach en inarmadiate goal
during the explorason.

9 (Fault locaitzaton for Fiaid Faikires) is a framework n which we extanced o
tachrique, SugRodux,with automatad dobugging capabils~- -

crly recraata, bt also cebug these *
pasaing axocet

s
-7 0
- ak

‘_4‘@

Installation:

The curtent version of F is 3550 a exteasion of KLEE. Piase refer 18 instalation guice on
BupRadux page

User guide:
0 (excopt for Stap 3 in KLEE's GotStarted page, as you
(1) We extend the crigral BugRedux by adding an new option for non-s1op genaation *-use-
call 90q ron stop replay”

2. Mako gure you belid our customnized KLEE with POSIX runtime sspport {also explained on

KLEE's “Geting 5 £ page) (2) We also added an opicn for coliecting branch traces *-use-conorets branch’”.

B ——

\
(o)
7
-
(o)
l

\
-

L
9

L
U
(o)

3
«
v
9
3
3
3

N

Py
7,

)

Y

L

https://www.cc.gatech.edu/~orso/

