
A Pointer Tracking
Memory Model for KLEE

Felix Rath,

Daniel Schemmel, Oscar Soria Dustmann, Klaus Wehrle

https://comsys.rwth-aachen.de 1st KLEE Workshop, London, UK, 2018-04-20

https://comsys.rwth-aachen.de


Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

2 Felix Rath



Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

int a[3] = 1, 2, 3;
int s = klee_int("s");

2 Felix Rath



Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

int a[3] = 1, 2, 3;
int s = klee_int("s");

a[s]

2 Felix Rath



Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

int a[3] = 1, 2, 3;
int s = klee_int("s");

a[s]

if(a[s] == 2)

0 ≤ s ≤ 2

Out-of-bounds

¬(0 ≤ s ≤ 2)

2 Felix Rath



Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

int a[3] = 1, 2, 3;
int s = klee_int("s");

a[s]

if(a[s] == 2)

0 ≤ s ≤ 2

Out-of-bounds

¬(0 ≤ s ≤ 2)

return 1;

s = 1

return 0;

¬(s = 1)

2 Felix Rath



Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }

int a[3] = 1, 2, 3;
int s = klee_int("s");

a[s]

if(a[s] == 2)

0 ≤ s ≤ 2

Out-of-bounds

¬(0 ≤ s ≤ 2)

return 1;

s = 1

return 0;

¬(s = 1)
Expected: 3 Test Cases

Actual: 17 Test Cases

2 Felix Rath



Resolving a[s]

a[s]

= *(a+s)

3 Felix Rath



Resolving a[s]

a[s] = *(a+s)

3 Felix Rath



Resolving a[s]

a[s] = *(a+s)

+

ConstantExpr
0x3a28213aa = ReadExpr

w32 s = s

3 Felix Rath



Resolving a[s]

a[s] = *(a+s)

+

ConstantExpr
0x3a28213aa = ReadExpr

w32 s = s

a

0x0 0x..

3 Felix Rath



Resolving a[s]

a[s] = *(a+s)

+

ConstantExpr
0x3a28213aa = ReadExpr

w32 s = s

a

0x0 0x..

3 Felix Rath



Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution

4 Felix Rath



Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution

+

KnownPointer
0x3a28213a
Object: a

ReadExpr
w32 s

4 Felix Rath



Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution

+

KnownPointer
0x3a28213a
Object: a

ReadExpr
w32 s

4 Felix Rath



Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution

+

KnownPointer
0x3a28213a
Object: a

ReadExpr
w32 s

a

0x0 0x..

4 Felix Rath



Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution

+

KnownPointer
0x3a28213a
Object: a

ReadExpr
w32 s

a

0x0 0x..

4 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?

• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects

• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects

• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard

• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore

• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses

• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?
• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects
• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare

5 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?

• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?

• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?

• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation

• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT
• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?

• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT
• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?

• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT
• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)

• KnownPointer and KnownValue not expressive enough

6 Felix Rath



Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?
• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT
• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough

6 Felix Rath



MaybePointer

Insight
• We can’t always know if the result of an operation will be a pointer.
• Might only become obvious after subsequent operations.

Solution:

MaybePointer
0x3a282130

Objects: a, b

• Remember information about all involved objects
• No clear association with one specific object

7 Felix Rath



MaybePointer

Insight
• We can’t always know if the result of an operation will be a pointer.
• Might only become obvious after subsequent operations.

Solution:

MaybePointer
0x3a282130

Objects: a, b

• Remember information about all involved objects
• No clear association with one specific object

7 Felix Rath



MaybePointer

Insight
• We can’t always know if the result of an operation will be a pointer.
• Might only become obvious after subsequent operations.

Solution:

MaybePointer
0x3a282130

Objects: a, b

• Remember information about all involved objects
• No clear association with one specific object

7 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively

• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution

• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE

• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution

• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory

• Challenge: We can’t track pointer information

Solution

• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution

• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution
• After each external call check all changed memory locations

• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution
• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it

• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution
• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers

• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution
• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed

• → ConstantExpr

8 Felix Rath



Pointer Tracking: External Function Calls

External Function Calls
• Executed natively
• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution
• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr

8 Felix Rath



Pointer Tracking: Summary

KnownPointer(Object)

A value that is known to point to Object.

MaybePointer(ObjectA, ObjectB, ...)

A value that was somehow created through operations on pointers into
ObjectA and ObjectB, and might currently point into any of them or
not.

KnownValue

A value that is known to not be a pointer.

ConstantExpr

A value that might be a pointer into any object, or might not be a
pointer at all. Results from external function calls.

9 Felix Rath



Pointer Tracking: Summary

KnownPointer(Object)

A value that is known to point to Object.

MaybePointer(ObjectA, ObjectB, ...)

A value that was somehow created through operations on pointers into
ObjectA and ObjectB, and might currently point into any of them or
not.

KnownValue

A value that is known to not be a pointer.

ConstantExpr

A value that might be a pointer into any object, or might not be a
pointer at all. Results from external function calls.

9 Felix Rath



Pointer Tracking: Summary

KnownPointer(Object)

A value that is known to point to Object.

MaybePointer(ObjectA, ObjectB, ...)

A value that was somehow created through operations on pointers into
ObjectA and ObjectB, and might currently point into any of them or
not.

KnownValue

A value that is known to not be a pointer.

ConstantExpr

A value that might be a pointer into any object, or might not be a
pointer at all. Results from external function calls.

9 Felix Rath



Pointer Tracking: Summary

KnownPointer(Object)

A value that is known to point to Object.

MaybePointer(ObjectA, ObjectB, ...)

A value that was somehow created through operations on pointers into
ObjectA and ObjectB, and might currently point into any of them or
not.

KnownValue

A value that is known to not be a pointer.

ConstantExpr

A value that might be a pointer into any object, or might not be a
pointer at all. Results from external function calls.

9 Felix Rath



Old Memory Model

Before: Single address space, containing all objects

0x0 0x..

• Address resolution based solely on values
• No idea which values are pointers

10 Felix Rath



Old Memory Model

Before: Single address space, containing all objects

0x0 0x..

• Address resolution based solely on values

• No idea which values are pointers

10 Felix Rath



Old Memory Model

Before: Single address space, containing all objects

0x0 0x..

• Address resolution based solely on values
• No idea which values are pointers

10 Felix Rath



New Memory Model

Now: One full-size address space per object

0x0 0x..

• Address resolution based on tracked pointers
• Much better knowledge about pointers and pointees

11 Felix Rath



New Memory Model

Now: One full-size address space per object

0x0 0x..

• Address resolution based on tracked pointers

• Much better knowledge about pointers and pointees

11 Felix Rath



New Memory Model

Now: One full-size address space per object

0x0 0x..

• Address resolution based on tracked pointers
• Much better knowledge about pointers and pointees

11 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

12 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

12 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

0x0 0x..

12 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

0x0 0x..

12 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

0x0 0x..

12 Felix Rath



Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth

0x0 0x..

12 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position

• Does not easily work either (“changing the past”)

13 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position

• Does not easily work either (“changing the past”)

13 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”

• Quick fix: Re-allocate to a new position

• Does not easily work either (“changing the past”)

13 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position

• Does not easily work either (“changing the past”)

13 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position
• Does not work either (“changing the past”)

Does not easily work either
(“changing the past”)

13 Felix Rath



External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position
• Does not easily work either (“changing the past”)

13 Felix Rath



First Experiments

• 25 iterations, one hour each
• Able to run all 107 coreutils
• 80 without ConstantExprs
• No MaybePointers with more

than four objects
• Four subtractions found, all due

to one realloc in uclibc
• Somewhat high overhead

(unoptimized)

original tracked
0.0

0.2

0.4

0.6

0.8

To
ta

l I
ns

tru
ct

io
ns

1e11

14 Felix Rath



Regex_old

1 UCHAR_T* old_buffer = cur_buffer;

2 cur_buffer = realloc(cur_buffer, new_size);

3 // ...

4 if(cur_buffer != old_buffer) {

5 int offset = cur_buffer - old_buffer;

6 FIXUP_POINTER(foo, offset);

7 FIXUP_POINTER(bar, offset);

8 // ...

15 Felix Rath



Summary

KLEE’s memory model:
• Single address space
• No knowledge about pointers

Pointer tracking:
• Keep track of pointers
• Some operations and external calls require overapproximation
• KnownPointer, MaybePointer, KnownValue, ConstantExpr

• Basic symbolic allocation sizes
Evaluation:

• Works on the coreutils
• Found one case of an illegal pointer subtraction

16 Felix Rath



Summary

KLEE’s memory model:
• Single address space
• No knowledge about pointers

Pointer tracking:
• Keep track of pointers
• Some operations and external calls require overapproximation
• KnownPointer, MaybePointer, KnownValue, ConstantExpr

• Basic symbolic allocation sizes

Evaluation:
• Works on the coreutils
• Found one case of an illegal pointer subtraction

16 Felix Rath



Summary

KLEE’s memory model:
• Single address space
• No knowledge about pointers

Pointer tracking:
• Keep track of pointers
• Some operations and external calls require overapproximation
• KnownPointer, MaybePointer, KnownValue, ConstantExpr

• Basic symbolic allocation sizes
Evaluation:
• Works on the coreutils
• Found one case of an illegal pointer subtraction

16 Felix Rath


	Introduction
	The Story So Far
	Pointer Tracking
	Memory Model
	Symbolic Allocation Sizes
	Summary

