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Motivation

1 int main(void) {

2 int a[3] = {1, 2, 3};

3 int s = klee_int("s");

4
5 if(a[s] == 2)

6 return 1;

7 else

8 return 0;

9 }
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Resolving a[s]

a[s]

= *(a+s)
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Pointer Tracking

Idea:
• Mark the return value of an allocation as a pointer: KnownPointer

• Also remember which object is pointed to
• Use this information for address resolution
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What is a bug?

Operations on pointers
• KnownPointer(a, 0x3a282130) + KnownValue(5)?

• Result: KnownPointer(a, 0x3a282135)

Pointer subtractions of different objects

• KnownPointer(a, 0x..) - KnownPointer(b, 0x..)

• Undefined behaviour according to C standard
• x86_64 does not care anymore
• Is this a bug that we want to detect?

• GCC 8 will be adding similar analyses
• -fsanitize=pointer-subtract, -fsanitize=pointer-compare
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Offsets and Bitops

But..
• KnownPointer(a, 0x3a282135) - KnownPointer(a, 0x3a282130)?

• What is the result?
• Is this still a KnownPointer?
• Typical case of a length/offset calculation
• Result: KnownValue(5)

BUT

• KnownPointer(a, 0x3a282135) ^ KnownPointer(a, 0x3a282130)?
• (&,|,~,<<,>>,%,*,/)?
• Actually appear in real code (e.g., xor-pointer swap)
• KnownPointer and KnownValue not expressive enough
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MaybePointer

Insight
• We can’t always know if the result of an operation will be a pointer.
• Might only become obvious after subsequent operations.

Solution:

MaybePointer
0x3a282130

Objects: a, b

• Remember information about all involved objects
• No clear association with one specific object
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Pointer Tracking: External Function Calls

External Function Calls
• Executed natively

• Outside of KLEE
• Opaque operations that can change memory
• Challenge: We can’t track pointer information

Solution

• After each external call check all changed memory locations
• If something was a pointer before, try to resolve it
• But: Might not be possible, or concrete values are now pointers
• More overapproximation needed
• → ConstantExpr
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Pointer Tracking: Summary

KnownPointer(Object)

A value that is known to point to Object.

MaybePointer(ObjectA, ObjectB, ...)

A value that was somehow created through operations on pointers into
ObjectA and ObjectB, and might currently point into any of them or
not.

KnownValue

A value that is known to not be a pointer.

ConstantExpr

A value that might be a pointer into any object, or might not be a
pointer at all. Results from external function calls.
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Old Memory Model

Before: Single address space, containing all objects

0x0 0x..

• Address resolution based solely on values
• No idea which values are pointers
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New Memory Model

Now: One full-size address space per object

0x0 0x..

• Address resolution based on tracked pointers
• Much better knowledge about pointers and pointees
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Symbolic Allocation Sizes

Currently only concretized in KLEE:
• malloc(klee_size_t("s")) → Error: concretized symbolic size

Possible solution: Lazy growth
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External Function Calls revisited

EFCs require us to flatten our address space:

0x0 0x..

• “Problematic”
• Quick fix: Re-allocate to a new position

• Does not easily work either (“changing the past”)
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First Experiments

• 25 iterations, one hour each
• Able to run all 107 coreutils
• 80 without ConstantExprs
• No MaybePointers with more

than four objects
• Four subtractions found, all due

to one realloc in uclibc
• Somewhat high overhead

(unoptimized)
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Regex_old

1 UCHAR_T* old_buffer = cur_buffer;

2 cur_buffer = realloc(cur_buffer, new_size);

3 // ...

4 if(cur_buffer != old_buffer) {

5 int offset = cur_buffer - old_buffer;

6 FIXUP_POINTER(foo, offset);

7 FIXUP_POINTER(bar, offset);

8 // ...

15 Felix Rath



Summary

KLEE’s memory model:
• Single address space
• No knowledge about pointers

Pointer tracking:
• Keep track of pointers
• Some operations and external calls require overapproximation
• KnownPointer, MaybePointer, KnownValue, ConstantExpr

• Basic symbolic allocation sizes
Evaluation:

• Works on the coreutils
• Found one case of an illegal pointer subtraction
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